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Abstract

In this paper, we study the problem of data augmentation for language understanding in task-
oriented dialogue system. In contrast to previous work which augments an utterance without
considering its relation with other utterances, we propose a sequence-to-sequence generation
based data augmentation framework that leverages one utterance’s same semantic alternatives in
the training data. A novel diversity rank is incorporated into the utterance representation to make
the model produce diverse utterances and these diversely augmented utterances help to improve
the language understanding module. Experimental results on the Airline Travel Information
System dataset and a newly created semantic frame annotation on Stanford Multi-turn, Multi-
domain Dialogue Dataset show that our framework achieves significant improvements of 6.38
and 10.04 F-scores respectively when only a training set of hundreds utterances is represented.
Case studies also confirm that our method generates diverse utterances.

Title and Abstract in Chinese

对话语义理解的序列到序列数据增强

在本文中，我们研究了面向任务的对话系统中语言理解模块的数据增强问题。相比之前
的工作在生成新语句时不考虑语句间关系，我们利用训练数据中与一个语句具有相同语
义的其他句子，提出了基于序列到序列生成的数据增强框架。我们创新地将多样性等级
结合到话语表示中以使模型产生多样化的语句数据，而这些多样化的新语句有助于改善
语言理解模块。在航空旅行信息系统数据集以及一个新标注的斯坦福多轮多域对话数
据集上的实验结果表明，当训练集仅包含数百句语料时，我们的框架在F值上分别实现
了6.38和10.04的显着提升。案例研究也证实我们的方法能够产生多样化的话语。

1 Introduction

Language understanding (LU) is the initial and essential component in the task-oriented dialogue system
pipeline (Young et al., 2013). One challenge in building robust LU is to handle myriad ways in which
users express demands. This challenge becomes more serious when switching to a new domain whose
large-scale labeled data is usually unreachable. Insufficiency in training data makes LU vulnerable to
unseen utterances which are syntactically different but semantically related to the existing training data,
and further harms the whole task-oriented dialogue system pipeline.

Data augmentation, which enlarges the size of training data in machine learning systems, is an effec-
tive solution to the data insufficiency problem. Success has been achieved with data augmentation on a
wide range of problems including computer vision (Krizhevsky et al., 2012), speech recognition (Han-
nun et al., 2014), text classification (Zhang et al., 2015), and question answering (Fader et al., 2013).
However, its application in the task-oriented dialogue system is less studied. Kurata et al. (2016a) pre-
sented the only work we know that tried to augment data for LU. In their paper, an encoder-decoder is
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learned to reconstruct the utterances in the training data. During the augmenting process, the encoder’s
output hidden states are randomly perturbed to yield different utterances.

The work of Kurata et al. (2016a) augments one single utterance by adding noise without considering
its relation with other utterances. Besides theirs, there are also works which explicitly consider the
paraphrasing relations between instances that share the same output. These works achieve improvements
on tasks like text classification and question answering. Paraphrasing techniques including word-level
substitution (Zhang et al., 2015; Wang and Yang, 2015), hand-crafted rules generation (Fader et al.,
2013; Jia and Liang, 2016), and grammar-tree generation (Narayan et al., 2016) have been explored.
Compared with these work, Kurata et al. (2016a) has the advantage of fully data-driven method and can
easily switch to new domain without too much domain-specific knowledge, but doesn’t make use of the
relations between instances within the training data.

In this paper, we study the problem of data augmentation for LU and propose a novel data-driven
framework that models relations between utterances of the same semantic frame in the training data. A
sequence-to-sequence (seq2seq, Sutskever et al. 2014) model lies in the core of our framework which
takes a delexicalised utterance and generates its lexical and syntactical alternatives. To further encour-
age diverse generation, we incorporate a novel diversity rank into the utterance representation. When
training the seq2seq model, the diversity rank is also used to filter the over-alike pairs of alternatives.
These approaches lead to diversely augmented data that significantly improves the LU performance in
the domains that labeled data is scarce.

We conduct experiments on the Airline Travel Information System dataset (ATIS, Price 1990) along
with a newly annotated layer of slot filling over the Stanford Multi-turn, Multi-domain Dialogue Dataset
(Eric and Manning, 2017).1 On the small proportion of ATIS which contains 129 utterances, our method
outperforms the baseline by a 6.38 F-score on slot filling. On the medium proportion, this improvement
is 2.87. Similar trends are witnessed on our LU annotation over Stanford dialogue dataset which the
average improvement on three new domains is 10.04 on 100 utterances and 0.47 on 500 utterances.

The major contributions of this paper include:

• We propose a data augmentation framework for LU (§2) using the seq2seq model. A novel diver-
sity rank (§3) is used to encourage our seq2seq model to generate diverse utterances both in the
augmentation and training (§4).

• We conduct experiments on the ATIS and Stanford dialogue dataset (§5). Experimental results show
our augmentation can effectively enlarge the training data and improve LU performance by a large
margin when only a small size of training data is presented. Case studies also confirm that our
method generates diverse utterances compared to the results from previous work.

We release our code at:
https://github.com/AtmaHou/Seq2SeqDataAugmentationForLU.

2 Overview of the Approach

Notion and Problem Description. In this paper, we study the data augmentation for language un-
derstanding (LU), which maps a natural language utterance into its semantic frames. We focus on slot
filling and follow previous works (Pieraccini et al., 1992) by treating it as a sequence classification in
which semantic class labels (slot types) are assigned to contiguous sequences of words indicating these
sequences are corresponding slot values. In this paper, we use the bidirectional long short term memory
(BiLSTM) for slot labeling (tagging) as previous works did (Mesnil et al., 2013; Yao et al., 2014; Kurata
et al., 2016b).

We formalize the data augmentation for LU as given a natural language utterance u and its semantic
frame s, we generate a set of new utterances with corresponding semantic frames. During the augmenting
process, we go through the whole training data D = {(ui, si)}Ni=1. For each training instance (ui, si),

1abbreviated as Stanford dialogue dataset henceforth.
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show me the [closest]<distance>
[restaurant]<poi type>

show me the <distance> <poi type>

show me the <distance> <poi type> #1

show me the <distance> <poi type> #2

show me the <distance> <poi type> #3

where is the <distance> <poi type>

can you find the <distance> <poi type> to me

give me the address to the <distance> <poi type>

where is the nearest shopping mail

can you find the nearest rest stop to me

give me the address to the near grocery

delexicalisation

diverse ranks incorporation

seq2seq generation

surface realisation

find me the <distance> route to <poi type>

(1.0) give me the <distance> route to <poi type>

(4.4) i ’m desiring to eat at some <poi type>
is there any in <distance>

(5.0) is there a <distance> <poi type>

find me the <distance> route to <poi type>

#1: is there a <distance> <poi type>

#2: i ’m desiring to eat at some <poi type>
is there any in <distance>

#3: give me the <distance> route to <poi type>

find me the <distance> route to <poi type> #1
→ is there a <distance> <poi type>

find me the <distance> route to <poi type> #2
→ i ’m desiring to eat at some <poi type>

is there any in <distance>

seq2seq model

ranking candidates by diversity score

filtering and generating “translation” pairs

training model with filtered pairs

Figure 1: The workflow of our framework. The left part shows the augmenting process and the right
part shows the training instance generation process for our seq2seq model. u→ u′ marks that u can be
augmented into u′.

we expand it to a set of instances {(uk
i , s

k
i )}k and use the union of the expanded instances as new data to

train the LU module.
In the training phase, we define the cluster of semantic frame s as Cs = {(u′, s′) | (u′, s′) ∈ D ∧ s′ =

s}. For one utterance u and its semantic frame s, each utterance u′ ∈ Cs/{(u, s)} is considered as the
alternative expression and augmentation of u. We use u→ u′ to mark this relation.

To achieve the goal of generating variant utterances under the same semantic frames, We break down
the problem into first converting the input utterance u into its delexicalised form d, and then generating
the delexicalised variances of d with a seq2seq model. Finally, surface realization is carried out to
convert the delexicalised form into the raw utterance. The left part of Figure 1 shows the workflow of
our augmenting process.

Delexicalisation. When given the raw utterance and its semantic frames associated with certain seg-
ments of the utterance, we can easily delexicalise the utterance by replacing the corresponding segments
with the semantic frame label. For example, when given the 4th word in “show me the closest restaurant”
as a <distance> slot type and 5th word as <poi type> slot type, its delexicalized form “show me
the <distance> <poi type>” is straight-forward to achieve.

In the task-oriented dialogue system, slot values usually consist of various entity names and are very
sparse. Delexicalisation reduces the size of vocabulary and makes the model focus more on generating
variant ways of expressing demands. What’s more, the semantic frames can be directly derived from the
delexicalised generation and used for training the LU module.

Incorporating Diversity Ranks into Utterance Representations. Considering the example in the
right part of Figure 1, “is there a <distance> <poi type>” is more diverse than “give me the
<distance> route to <poi type>” when compared with “find me the <distance> route to
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<poi type>”. This example shows that for utterance u with semantic frame s, its alternatives ex-
pressions can have different ranks in diversity. To consider the ranking information, we compile the
diversity rank as an additional information into the utterance representation. By setting it to a higher
rank, we aim to generate input utterance’s diverse augmentation, and by setting it to lower, a similar
utterance should be generated. We will discuss the details of how to compute the ranks during training
and how to decide the effective numbers of ranks during testing in Section 3.

Data Augmentation as Seq2Seq Generation. When given the delexicalised input utterance d and the
specified diverse rank k, we use the standard seq2seq model to generate the alternative delexicalised
utterance d′. In our seq2seq model, we append #k to the end of the input utterances and the model is
formalized as

p(d′ | d, k) =
∏
t

p(d′t | d1, ..., dn, #k, d′1, ..., d
′
t−1)

where n is the number of words for the input utterance d.
In this paper, we follow the seq2seq model for neural machine translation and use the input-feeding

network in (Luong et al., 2015) with attention as our seq2seq model. During testing, we use beam search
with beam size of 10 to yield more than one translation following Gimpel et al. (2013) and Vijayakumar
et al. (2016).

To train the seq2seq model, our basic assumption is that if d and d′ contain the same semantic frames,
they can be generated from each other. Generally, we assume each pair of delexicalised utterances in
the cluster Cs makes a pair of generation. However, it’s nontrivial to assign diverse ranks to training
data. What’s more, to prevent the model from just producing produce lexical paraphrases (like “show
me” to “give me”), we propose to also consider the diversities when generating training translations for
the seq2seq model. We will talk about the details in Section 4.

Surface Realisation. Till now, we have achieved the lexically and syntactically different utterances in
their delexicalized forms. We would like to bridge these utterances to their lexicalized forms and surface
realisation is employed as the final step of our approach.

In this paper, the surface realisation is performed by replacing the slot type in the delexicalised form
with its slot value. The mapping from slot type to its set of slot values (e.g. from <poi type> to
{hospital, restaurant}) is collected on the training data. Somehow, it’s nontrivial to just do the replace-
ment because one slot value doesn’t fit its slot type in any context. Taking the utterance in Figure 1
for example, in the delexicalised utterance “i ’m desiring to eat at some <poi type> is there any in
<distance>”, ‘hospital’ doesn’t fit in the <poi type> because ‘hospital’ isn’t the place intended
for a meal. To make the surface realisation more reasonable, we build the mapping with consideration of
the context and use slot type along with its surrounding 5 words as the key in the mapping.

During surface realisation for an utterance, we first extract the slot type and its context. Then we use
this to get all its slot values. If the slot type under certain context is not presented in the mapping, we use
the one with the most similar context in the sense of edit distance. If more than one slot values present,
we randomly pick a slot value.

3 Diversity Ranks in Utterance Representations

The major motivation of this paper is to encourage diverse generation. To accomplish this motivation,
we propose a criterion named diversity rank to model the diversities. During augmenting the data, for
an instance (u, s) we generate the delexicalised utterance at rank from 1 to Ns, where Ns is a number
governed by the semantic frame s and calculated as ||Cs||/2, which is the half size of the instances in D
that have the semantic frame s.

During training the seq2seq model with diversity rank, for one instance (u, s), we first collect Cs, then
rank each instance (u′, s) ∈ Cs/{(u, s)} by its diversity score against u. In this paper, the diversity score
of an utterance pair (u,u′) is calculated by both considering the edit distance and a length difference
penalty (LDP) as:

SCORE(u,u′) = EDITDISTANCE(u,u′)× LDP(u,u′) (1)
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Navigation Scheduling Weather
# of training utterances 500 500 500
# of devel. utterances 321 201 262
# of test utterances 337 212 271
Kappa 0.68 0.92 0.90
Agreement 85.05 90.75 95.99

Table 1: Statistics for our annotation.

where LDP is defined as LDP(u,u′) = e
− |||u||−||u

′|||
||u|| . After obtaining the ranks over the utterances u′,

we directly incorporate the rank value as an additional last token for the seq2seq model.
We note that using the LDP reduces the impact of differences in length and makes the score paying

more attention to the lexical and syntactical difference. For example, the first block of right part of
Figure 1 shows the diversity scores of three different utterances. Although the utterance “i ’m desiring to
eat at some <poi type> is there any in <distance>” presents larger edit distance (12 in this case)
than that of “is there a <distance> <poi type>” (5 in this case), the final score is penalized to 4.4
because the length difference.

In our method, the diversity rank can be treated as an utterance-independent controller for the diversity
of target generation.

4 Filtering the Alike Instances

To learn the seq2seq model, it’s straight-forward to use each pair of utterances in Cs as training data for
the model. However, the goal of our paper is to generate diverse augmented data and the usefulness of
less diverse pair (like give me the <distance> route to <poi type> and find me the <distance>
route to <poi type> in Figure 1) is arguable.

In this paper, we propose to filter the less diverse pairs when training the seq2seq model. Again, we
make use of the ranks derived by the diversity scores and for an utterance u only the most diverse half of
the translations u→ u′ are used to train the seq2seq model and the training data can be formalized as

Dseq2seq =
⋃

(u,s)∈D

{u, RANK(u,u′)→ u′ | u′ ∈ Cs, RANK(u,u′) ≥ ||Cs||/2}

After filtering the less diverse pairs, we use Dseq2seq to train the seq2seq model.
In this section, we revisit the role of our diversity ranks in the learning perspective. Since we consider

the utterance in cluster Cs as translation to each other, without the RANK value, one utterance can si-
multaneously translate to different utterances in the training data. It increases the ambiguities in learning
the seq2seq model and even makes it intractable. With the RANK value, such ambiguities are resolved
because each pair of the training data is expanded with a unique value.

5 Experiments

5.1 Settings
Dataset. In this paper, we conduct our experiments on the ATIS dataset which is extensively used
for LU (Mesnil et al., 2013; Mesnil et al., 2015; Chen et al., 2016a). The ATIS dataset contains 4978
training utterances from Class A training data in the ATIS-2 and ATIS-3 corpus, while the test contains
893 utterances from the ATIS-3 Nov93 and Dec94 datasets. The size of the training data is relatively
large for LU in a single domain. To simulate the data insufficient situations, we follow Chen et al.
(2016a), and also evaluate our model on two small proportions of the training data which is small (1/40
of the original training set with 129 instances) proportion and medium (1/10 of the original training set
with 515 instances). In all the experiments, a development set of 500 instances is used.

To test our model on new domains beyond ATIS, we also create a new LU annotation over the Stanford
dialogue dataset (Eric and Manning, 2017). We use the same data split as Eric and Manning (2017) and
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Model small medium full
129 515 4,478

Baseline 67.33** 85.85** 94.93*
Ours 73.71 88.72 94.82
Re-implementation of Kurata et al. (2016a) 67.93** 87.34** 94.61**
Model-1 Additive (Kurata et al., 2016a) - - 95.08
K-SAN syntax (Chen et al., 2016a) 74.35 88.40 95.00
Model-III (Zhai et al., 2017) - - 95.86

Table 2: The results on the ATIS dataset. The first block shows the results from our implementation
and the second block is drawn from the papers of previous works. Here we use * to indicate that the
difference between the model and Ours is statistically significant under t-test (** for p-value threshold
as 0.05 and * for threshold as 0.1) .

annotate the full test sets for the three domains (navigation, scheduling, and weather) along with a small
training set of 500 utterances. The Stanford dialogue dataset provides semantic frames (slot) for each
utterance but doesn’t associate the semantic class of the slot with corresponding segment in the utterance.
Our annotation focus on assigning the slot to its corresponding segment. During the annotation, each
dialogue was processed by two annotators. Data statistics, Kappa value (Snow et al., 2008), and inner
annotator agreement measured by F-score on the three domains are shown in Table 1.

Evaluation. We evaluate our data augmentation’s effect on LU with F-score. conlleval is used in
the same way with previous works (Mesnil et al., 2013; Mesnil et al., 2015; Chen et al., 2016a).

Implementation. We use OpenNMT (Klein et al., 2017) as the implementation of our seq2seq model.
We set the number of layers in LSTM as 2 and the size of hidden states as 500. Utterances that are longer
than 50 are truncated. We adopt the same training setting as Luong et al. (2015) and use Adam (Kingma
and Ba, 2014) to train the seq2seq model. Learning rate is halved when perplexity on the development
set doesn’t decrease. During generation, we replace the model-yielded unknown token (unk) with the
source word that has the highest attention score.

For the slot tagging model, we set both the dimension for word embedding and the size of hidden state
to 100. We also vary dropout rate in {0, 0.1, 0.2} considering its regularization power on small size of
data. The batch size is set to 16 in all the experiments. Best hyperparameter settings are determined on
the development set. GloVe embedding (Pennington et al., 2014) is used to initialize the word embedding
in the model. Adam with the suggested settings in Kingma and Ba (2014) is used to train the parameters.

Reimers and Gurevych (2017) pointed out that neural network training is nondeterministic and de-
pends on the seed for the random number generator. We witness dramatic changes of the slot tagging
performance using different random seeds. To control for this effect, we take their suggestions and report
the average of 5 differently-seeded runs.

5.2 Results on ATIS

Table 2 shows the slot tagging results on the ATIS dataset. Our baseline model is the vanilla BiLSTM
slot tagger and our augmented slot tagger use the same architecture but is trained with the augmented
data generated by our method. Compared with the vanilla tagger baseline, our augmentation method
significantly improves the LU performance by a 6.38 F-score on the small proportion and a 2.02 F-score
on the medium proportion. The improvements show the effectiveness of our augmentation method in
the data-insufficient scenario. On the full data, our augmentation slightly lags the baseline. We address
this to the fact that full ATIS is large enough for LU on a single domain and our augmentation introduce
some noise.

To compare with the previous augmentation work from Kurata et al. (2016a), we re-implemented their
model-1 additive model using the suggested settings in their paper. The results on the small, medium,
and full proportions are shown in the third row of Table 2. On all the proportions, our augmentation
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# utterances Model Navigation Scheduling Weather
100 Baseline 59.93 68.29 82.43

Ours 72.91 77.30 90.55
500 Baseline 78.99 86.05 93.68

Ours 78.46 87.67 94.01

Table 3: The results on Stanford dialogue dataset.

Model F-score # new max. ED
Ours 88.72 301 3.18

- seq2seq generation -0.84** 0 0
- diversity ranks -0.40* 163 2.42
- filtering -0.38 870 2.86

Table 4: The result of the ablation test. # new marks the number of newly generated delexicalised
utterances. max. ED marks the averaged maximum edit distances. Here we use * to indicate that the
result is statistically significant under t-test (** for p-value threshold as 0.05 and * for threshold as 0.1)
By removing the seq2seq generation from our method, no delexicalised utterance will be generated so
the max. ED cell is 0.

method outperforms theirs and the differences are significant on small and medium. Since their model
relies on learning a seq2seq model to reconstruct the input utterances, it’s usually difficult to train a
reasonable model on very small data due to sparsity. Our method mitigates this by both generating on
the delexicalised utterances and learning the generation model from pairs of utterances that share same
semantic frame which enlarge the size of data for us to train the model. We also compare our model
with the syntax version of K-SAN (Chen et al., 2016a) without joint training from intent annotation.
We see that our augmented tagger lags their syntax-parsing-enhanced model by a 0.64 F-score on small
proportion and outperforms theirs by a 0.32 F-score on medium proportion. But considering the training
data is sampled with different random seeds between our work and theirs, these results are not directly
comparable. At last, we show the (Zhai et al., 2017) as state-of-art results on ATIS dataset, which views
slot filling task as sequence chunking problem. As we focus data augmentation for sequence labeling
task rather than chunking, this result is not directly comparable to ours. Besides, K-SAN (Chen et al.,
2016a) and (Zhai et al., 2017) are not data augmentation methods, we included their results to show that
our augmentation method is reasonably good The basic trend shows that our augmentation can be used
as an alternative to the LU model leveraging rich syntactic information.

5.3 Results on Stanford Dialogue Dataset

The results for Stanford dialogue dataset are shown in Table 3. Similar trend as the ATIS experiments is
witnessed in which the augmentation improves the LU performance. The average improvement on the
training data with 100 utterances is 10.04, and the number is 0.47 for that with 500 utterances. Consid-
ering that only fewer than 350 utterances present in the test set in all these domains, these improvements
are reasonable. Besides, similar to the ATIS results, the margin of improvements is larger for the smaller
training set.

An advantage of our method is that it’s purely data-driven. Only a mapping from slot type context to
slot values is required and it can be constructed from the training data. It’s easy for our method to switch
to new domains and our results on the Stanford dialogue dataset confirms this.

5.4 Analysis

Ablation. To get further understanding of each component in our method, we conduct ablation on the
medium proportion, Each of the three parts of our method is removed respectively, including the seq2seq
generation, diversity ranks, and filtering. In addition to evaluate the model’s performance with F-score,
we also examine the augmented data by the number of newly generated delexicalised utterances and the
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Figure 2: Our method’s performances on the ATIS training data of different sizes.

maximum edit distances against the rest of instances.2 The results are shown in Table 4.
For our method without seq2seq generation, we only conduct surface realisation on the delexicalised

utterance and a 0.84 F-score drop is witnessed. Since surface realisation only substitutes slot type with
different slot values without changing the utterances syntactically, this ablation shows it’s more beneficial
to generate syntactic alternatives using our seq2seq model.

For our method without diversity ranks, we remove diversity ranks from the utterance representation
and this lead a drop of 0.40 F-score. We address the drop of performance to the fact that removing either
these components will lead to less diverse generation. The second and third column in Table 4 confirm
this by showing less newly and diversely generated delexicalised utterances.

If we don’t filter the alike instances when training the seq2seq model, the drop of performance is a
0.65 F-score. However, larger number of new utterances with smaller edit distances are yielded which
indicates that more noise is introduced when the training data of the seq2seq model is not properly
filtered.

This ablation also shows correlation between the maximum edit distance and the final F-score, which
indicates generating diverse augmentation helps the performance.

Effect of Training Data Size. The results on ATIS and Stanford dialogue dataset witness the trend
that smaller training data benefits more from our augmentation method. A natural question that arises
is what’s boundary of our augmentation in the sense of improving the baseline. In this section, we
study this by varying training data size on the ATIS data. Figure 2 shows the results. For the ATIS
data, improvements can be achieved in all our settings with training size smaller than one thousand.
These results indicate that our augmentation is applicable when we only access to a LU training data of
hundreds instances.

Case Study. In this paragraph, we perform case study on our method to verify its capability of gener-
ating diversely augmented data. Table 5 shows two cases of our augmentation. Each case includes the
original sentence and its delexicalised form (in italic font), the diversity rank (starts with # mark), the
training utterance under this rank, our augmentation along with surface realization, and the augmentation
produced by Kurata et al. (2016a).

By comparing our augmentation with the delexicalised form of source utterance, two observations can
be drawn: 1) our method yields syntactically different alternatives meanwhile keeps the original semantic
frame as the source utterance; 2) the lengths of the generated utterances are in the same scale with the
source utterance thanks to the effect of length penalty in Equation 1.

By comparing our augmentation with the target training utterance under the same rank, our seq2seq
model yields different utterance instead of repeating the training utterance. We address this diversity

2This number is normalized by the total number of utterances.
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show me all flights from atlanta to washington with prices
(delex.) show me all flights from <from city> to <to city> with prices
#1 train let ’s look at <from city> to <to city> again

ours what are all the flights between <from city> and <to city>
(realized) what are all the flights between indianapolis and tampa

#100 train list types of aircraft that fly between <from city> and <to city>
ours i ’m looking for a flight from <from city> to <to city>

(realized) i ’m looking for a flight from milwaukee to los angeles
Kurata16 show me all flights from [atlanta]<from city> to [washington]<to city> with

airports
is there a flight between san francisco and boston with a stopover at dallas fort worth
(delex.) is there a flight between <from city> and <to city> with a stopover at <stop city>
#1 train which airlines fly from <from city> to <to city> and have a stopover in

<stop city>
ours is there a flight from <from city> to<to city> with a stop in <stop city>

(realized) is there a flight from washington to miami with a stop in dallas fort worth
#30 train do you have any airlines that would stop at <stop city> on the way from

<from city> to <to city>
ours i ’d like to fly from <from city> to <to city> with a stop in <stop city>

(realized) i ’d like to fly from memphis to boston with a stop in minneapolis
Kurata16 is there a flight between [san francisco]<from city> and [boston]<to city>

with a stopover at [dallas fort worth]<to city>

Table 5: Case study of our augmented data against the training data and the results of Kurata et al.
(2016a) (marked as Kurata16). train marks the target utterance in the training data. (delex.) marks the
delexicalised form of the input utterance. (realized) marks the utterance after surface realisation.

to the fact that our diversity rank has some universal effect on modeling the diversity degree across
different instances. When contrasting to the augmentation of Kurata et al. (2016a), our method clearly
shows diverse augmentation against the source utterance while theirs are basically repeating the source
utterances. In the sense of generating diverse alternatives for expressing the same semantics, our method
has the advantage.

6 Related work

Data augmentation is an effective way of improving the model’s performance and it has been extensively
explored on the computer vision community. Single transformation approaches like randomly copying,
flipping, and changing the intensity of RGB are the common practice in the top-performed vision sys-
tems (Krizhevsky et al., 2012). Beyond these classic approaches, adding noise to the image, randomly
interpolating a pair of images (Zhang et al., 2018) are also proposed in previous works. However, these
signal transformation approaches are not directly applicable to language because order of words in lan-
guage may form rigorous syntactic and semantic meaning (Zhang et al., 2015). Therefore, the best way
of data augmentation in language usually involves generating the alternative expressions.

Paraphrasing is the most studied techniques in natural language processing for generating alternative
expressions (Barzilay and McKeown, 2001; Bannard and Callison-Burch, 2005; Callison-Burch, 2008).
However, generic paraphrasing technique has been reported not helpful for specific problem (Narayan
et al., 2016). Most of the successful work that applying paraphrasing for data augmentation requires
special tailored paraphrasing techniques. For example, Wang and Yang (2015) performed word-level
paraphrasing to extend their corpus on twitter that contains annoying behaviors. Fader et al. (2013)
derived question templates from seed paraphrases and bootstrap the templates to achieve the enlarged
open-domain QA dataset. Narayan et al. (2016) constructed latent variable PCFG for questions and
augment the training data by sampling from the grammar. All these works assume the same output (i.e.
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class in text classification, answer in question answering) for input paraphrases. Our method resembles
theirs in the assumption for input paraphrases, but differs on using the seq2seq generation which is purely
data-driven and doesn’t rely on special tailored domain knowledge. Besides these methods, works that
introduce errors to language understanding have also been proposed (Schatzmann et al., 2007b; Sagae et
al., 2012).

Language understanding, as an important component in the task-oriented dialogue system pipeline,
has drawn a lot of research attention in recent year, especially when enhanced by the rich representation
power of the neural network, like recurrent neural network, LSTM (Yao et al., 2013; Yao et al., 2014;
Mesnil et al., 2013; Mesnil et al., 2015) and memory network (Chen et al., 2016b). Rich linguistic
features (Chen et al., 2016a) and representation in broader scope on sentence-level (Kurata et al., 2016c)
and dialogue history-level (Chen et al., 2016b) have also been studied. Our augmentation method is
orthogonal to these works and it’s hopeful to achieve more improvements with their works.

Dialogue management is also a key component of task-oriented dialogue system, which mainly fo-
cuses on dialogue policy. However, optimal dialogue policy is hard to obtain from a static corpus due to
the vast space of conversation process. A solution is to transform the static corpus into user simulator
(Kreyssig et al., 2018), and most user simulators work on user semantics level. (Eckert et al., ; Schatz-
mann et al., 2007a; Asri et al., 2016; Scheffler and Young, 2000; Scheffler and Young, 2001; Pietquin
and Dutoit, 2006; Georgila et al., 2005; Cuayáhuitl et al., 2005). Recent work starts to generate user
utterance directly to reduce data annotation(Kreyssig et al., 2018).

In recent years, Generative Adversarial Network (GAN, Goodfellow et al. 2014) draws a lot of re-
search attention. Its ability of generating adversarial examples is attractive for data augmentation. How-
ever, it hasn’t been tried in data augmentation beyond computer vision (Antoniou et al., 2018). How to
apply GAN to language understanding is still an open question.

7 Conclusion

In this paper, we study the problem of data augmentation for LU. We propose a data-driven framework to
augment training data. In our framework, one utterance’s alternative expressions of the same semantic are
leveraged to train seq2seq model. We also propose a novel diversity rank to encourage diverse generation
and filter alike instances. In the experiments, our model achieves significant improvements of 6.38 and
10.04 F-scores respectively when only a training set of hundreds utterances is represented. Careful case
study also shows the capability of our framework to generate diverse alternative expressions.
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