
Proceedings of the 27th International Conference on Computational Linguistics, pages 1178–1190
Santa Fe, New Mexico, USA, August 20-26, 2018.

1178

Abstract Meaning Representation for Multi-Document Summarization

Kexin Liao Logan Lebanoff Fei Liu
Computer Science Department

University of Central Florida, Orlando, FL 32816, USA
{ericaryo,loganlebanoff}@knights.ucf.edu feiliu@cs.ucf.edu

Abstract

Generating an abstract from a collection of documents is a desirable capability for many real-
world applications. However, abstractive approaches to multi-document summarization have not
been thoroughly investigated. This paper studies the feasibility of using Abstract Meaning Rep-
resentation (AMR), a semantic representation of natural language grounded in linguistic theory,
as a form of content representation. Our approach condenses source documents to a set of sum-
mary graphs following the AMR formalism. The summary graphs are then transformed to a set
of summary sentences in a surface realization step. The framework is fully data-driven and flexi-
ble. Each component can be optimized independently using small-scale, in-domain training data.
We perform experiments on benchmark summarization datasets and report promising results. We
also describe opportunities and challenges for advancing this line of research.

1 Introduction

Abstractive summarization seeks to generate concise and grammatical summaries that preserve the mean-
ing of the original; further, they shall abstract away from the source syntactic forms. The task often in-
volves high-level text transformations such as sentence fusion, generalization, and paraphrasing (Jing and
McKeown, 1999). Recent neural abstractive summarization studies focus primarily on single-document
summarization (Paulus et al., 2017; See et al., 2017). These approaches are limited by the availability of
training data, and large datasets for multi-document summarization can be costly to obtain. Generating
abstractive summaries for sets of source documents thus remains a challenging task.

Traditional approaches to abstractive summarization often condense the source documents to a set
of “semantic units,” then reconstruct abstractive summaries from these semantic units. Previous work
has investigated various forms of content representation. Examples include noun/verb phrases (Genest
and Lapalme, 2011; Bing et al., 2015), word-occurrence graphs (Ganesan et al., 2010), syntactic parse
trees (Cheung and Penn, 2014; Gerani et al., 2014), and domain-specific templates (Pighin et al., 2014).
Nonetheless, generating summary text from these heuristic forms of representation can be difficult. There
is an increasing need to exploit a semantic formalism so that condensing source documents to this form
and generating summary sentences from it can both be carried out in a principled way.

This paper explores Abstract Meaning Representation (AMR, Banarescu et al., 2013) as a form of con-
tent representation. AMR is a semantic formalism based on propositional logic and the neo-Davidsonian
event representation (Parsons, 1990; Schein, 1993). It represents the meaning of a sentence using a
rooted, directed, and acyclic graph, where nodes are concepts and edges are semantic relations. Figure 1
shows an example AMR graph. A concept node can be a PropBank frameset (“state-01”), an English
word (“warhead”), a special keyword (“date-entity”), or a string literal (“Japan”). A relation can be
either a core argument (“ARG0,” “ARG1”) or a modification relationship (“mod,” “time”). The AMR
representation abstracts away from surface word strings and syntactic structure, producing a language-
neutral representation of meaning. The graph representation is flexible and not specifically designed for
a particular domain. It is thus conceptually appealing to explore AMR for abstractive summarization.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1179

ARG1

name

ARG1

topic
poss

(s / state-01
 :ARG0 (g / government-organization
 :ARG0-of (g2 / govern-01
 :ARG1 (c / country
 :name (n2 / name :op1 "Japan"))))
 :ARG1 (p / policy
 :poss g
 :topic (h / hold-01 :polarity -
 :ARG1 (w / warhead
 :mod (n / nucleus))))
 :time (d / date-entity :year 2002 :month 4 :day 8))

state-01

government-organization

govern-01

country

name

“Japan”

policy

hold-01

warhead

nucleus

“–”

date-entity “2002”

“4”

“8”

ARG0

ARG0-of

op1

polarity

mod

time year

month

day
ARG1

The Japanese Government stated on April 8, 2002 its policy of holding no nuclear warheads.

PENMAN formatAMR graph

Figure 1: A example sentence, its goldstandard AMR graph, and the corresponding PENMAN format.

Our goal in this work is to generate a text abstract containing multiple sentences from a cluster of
news articles discussing a given topic. The system framework includes three major components: source
sentence selection takes a set of news articles as input and selects sets of similar sentences covering dif-
ferent aspects of the topic; content planning consumes a set of similar sentences and derives a summary
graph from them; surface realization transforms a summary graph to a natural language sentence. This
framework allows each component (source sentence selection, content planning, surface realization) to
be individually optimized using small-scale, in-domain training data, reducing the need for large-scale
parallel training data. Our research contributions are summarized as follows:

• we investigate AMR, a linguistically-grounded semantic formalism, as a new form of content repre-
sentation for multi-document summarization. Liu et al. (2015) conducted a pilot study using AMR for
single-document summarization. This paper exploits the structured prediction framework but presents
a full pipeline for generating abstractive summaries from multiple source documents;

• we study to what extent the AMR parser and generator, used for mapping text to and from AMR, can
impact the summarization performance. We also compare multiple source sentence selection strategies
to group source sentences into clusters covering various aspects of the topic;

• we conduct extensive experiments on benchmark summarization datasets, and contrast our work with
state-of-the-art baselines, including the pointer-generator networks (See et al., 2017). Results show
that leveraging the AMR representation for summarization is promising. Our framework is flexible,
allowing different components to be optimized independently using small-scale, in-domain datasets.
We finally describe opportunities and challenges for advancing this line of research.

2 Related Work

Neural abstractive summarization has sparked great interest in recent years. These approaches focus
primarily on short text summarization and single-document summarization (Rush et al., 2015; Nallapati
et al., 2016). Variants of the neural encoder-decoder architecture have been exploited to reduce out-of-
vocabulary tokens and word repetitions (See et al., 2017; Suzuki and Nagata, 2017), improve the attention
mechanism (Chen et al., 2016; Zhou et al., 2017; Tan et al., 2017), control the summary length (Kikuchi
et al., 2016), improve the learning objective and search (Ranzato et al., 2016; Huang et al., 2017), and
generate summaries that are true to the original inputs (Cao et al., 2018; Song et al., 2018). Training
neural models requires large amounts of data; they are often acquired by pairing news articles with titles
or human-written highlights. Nonetheless, obtaining parallel data for multi-document summarization is
often costly. There is thus a need to investigate alternative approaches that are less data-thirsty.

Abstractive summarization via natural language generation (NLG, Reiter and Dale, 2000; Gatt and
Krahmer, 2018) is a promising line of work. The approaches often identify salient text units from source
documents, arrange them in a compact form, such as domain-specific templates, and subsequently syn-
thesize them into natural language texts (Barzilay et al., 1999; Genest and Lapalme, 2011; Oya et al.,
2014; Gerani et al., 2014; Fabbrizio et al., 2014). A challenge faced by these approaches is that there

1180

Content
Planning

Surface
Realization

a cluster of source documents
discussing the same topic

multiple sets of similar sentences
covering different aspects of the source

a set of summary graphs
serving as content representation of the source

an abstractive summary
containing multiple
summary sentences

Content
Planning

Surface
Realization

Source
Sentence
Selection

… … … …

Figure 2: Our system framework, consisting of three major components.

lacks a principled means of content representation. This paper studies the feasibility of using AMR, a
semantic formalism grounded in linguistic theory, for content representation. Within this framework,
condensing source documents to summary AMR graphs and generating natural language sentences from
summary graphs are both data-driven and not specifically designed for any domain.

The AMR formalism has demonstrated great potential on a number of downstream applications, in-
cluding machine translation (Tamchyna et al., 2015), entity linking (Pan et al., 2015), summarization (Liu
et al., 2015; Takase et al., 2016), question answering (Jurczyk and Choi, 2015), and machine compre-
hension (Sachan and Xing, 2016). Moreover, significant research efforts are dedicated to map English
sentences to AMR graphs (Flanigan et al., 2014; Wang et al., 2015a; Wang et al., 2015b; Ballesteros
and Al-Onaizan, 2017; Buys and Blunsom, 2017; Damonte et al., 2017; Szubert et al., 2018), and gen-
erating sentences from AMR (Flanigan et al., 2016; Song et al., 2016; Pourdamghani et al., 2016; Song
et al., 2017; Konstas et al., 2017). These studies pave the way for further research exploiting AMR for
multi-document summarization.

3 Our Approach

We describe our major system components in this section. In particular, content planning (§3.1) takes as
input a set of similar sentences. It maps each sentence to an AMR graph, merges all AMR graphs to a
connected source graph, then extracts a summary graph from the source graph via structured prediction.
Surface realization (§3.2) converts a summary graph to its PENMAN representation (Banarescu et al.,
2013) and generates a natural language sentence from it. Source sentence extraction (§3.3) selects sets of
similar sentences from source documents discussing different aspects of the topic. The three components
form a pipeline to generate an abstractive summary from a collection of documents. Figure 2 illustrates
the system framework. In the following sections we describe details of the components.

3.1 Content Planning
The meaning of a source sentence is represented by a rooted, directed, and acyclic AMR graph (Ba-
narescu et al., 2013), where nodes are concepts and edges are semantic relations. A sentence AMR
graph can be obtained by applying an AMR parser to a natural language sentence. In this work we
investigate two AMR parsers to understand to what extent the performance of AMR parsing may im-
pact the summarization task. JAMR (Flanigan et al., 2014) presents the first open-source AMR parser.
It introduces a two-part algorithm that first identifies concepts from the sentence and then determines
the relations between them by searching for the maximum spanning connected subgraph (MSCG) from
a complete graph representing all possible relations between the identified concepts. CAMR (Wang et
al., 2015b) approaches AMR parsing from a different perspective. It describes a transition-based AMR
parsing algorithm that transforms from a dependency parse tree to an AMR graph. We choose JAMR
and CAMR because these parsers have been made open-source and both of them reported encouraging
results in the recent SemEval evaluations (May, 2016; May and Priyadarshi, 2017).

Source Graph Construction. Given a set of source sentences and their AMR graphs, source graph
construction attempts to consolidate all sentence AMR graphs to a connected source graph. This is
accomplished by performing concept merging. Graph nodes representing the same concept, determined
by the surface word form, are merged to a single node in the source graph. Importantly, we perform

1181

coreference resolution on the source documents to identify clusters of mentions of the same entity or
event. Graph nodes representing these mentions are also merged. A special treatment to date entity
(see “date-entity” in Figure 1) and named entity (“country”) includes collapsing the subtree to a “mega-
node” whose surface form is the concatenation of the consisting concepts and relations (e.g., “date-
entity :year 2002 :month 1 :day 5”). These mega-nodes can then only be merged with other identical
fragments. Finally, a ‘ROOT’ node is introduced; it is connected to the root of each sentence AMR
graph, yielding a connected source graph.

Summary Graph Extraction. We hypothesize that a summary graph, containing the salient content of
source texts, can be identified from the source graph via a trainable, feature-rich structured prediction
framework. The framework iteratively performs graph decoding and parameter update. The former
identifies an optimal summary graph using integer linear programming, while the latter performs pa-
rameter update by minimizing a loss function that measures the difference between the system-decoded
summary graph and the goldstandard summary graph.

We use G = (V,E) to represent the source graph. Let vi and ei,j be a set of binary variables where
vi = 1 (or ei,j = 1) indicates the corresponding source graph node (or edge) is selected to be included
in the summary graph. The node and edge saliency are characterized by a set of features, represented
using f(i) and g(i, j), respectively. θ and φ are the feature weights. Eq. (1) presents a scoring function
for any graph G. It can be factorized into a sum of scores for selected nodes and edges. In particular,
[θ>f(i)]vi=1 denotes the node score (if vi is selected) and [φ>g(i, j)]ei,j=1 denotes the edge score.

score(G;θ,φ) =
N∑
i=1

vi [θ
>f(i)]vi︸ ︷︷ ︸

node score

+
∑

(i,j)∈E

ei,j [φ
>g(i, j)]ei,j︸ ︷︷ ︸
edge score

(1)

Features characterizing the graph nodes and edges are adopted from (Liu et al., 2015). They include
concept/relation labels and their frequencies in the documents, average depth of the concept in sentence
AMR graphs, position of sentences containing the concept/relation, whether the concept is a named
entity/date entity, and the average length of concept word spans. We additionally include the concept
TF-IDF score and if the concept occurs in a major news event (Wiki, 2018). All features are binarized.

The graph decoding process searches for the summary graph that maximizes the scoring function:
Ĝ = argmaxG score(G). We can formulate graph decoding as an integer linear programming problem.
Each summary graph corresponds to a set of values assigned to the binary variables vi and ei,j . We
implement a set of linear constraints to ensure the decoded graph is connected, forms a tree structure,
and limits to L graph nodes (Liu et al., 2015).

The parameter update process adjusts θ and φ to minimize a loss function capturing the difference
between the system-decoded summary graph (Ĝ) and the goldstandard summary graph (G∗). Eq. (2)
presents the structured perceptron loss. Minimizing this loss function with respect to θ and φ is straight-
forward. However, the structured perceptron loss has problems when the goldstandard summary graph
G∗ is unreachable via the graph decoding process. In that case, there remains a gap between score(Ĝ)
and score(G∗) and the loss cannot be further minimized. The structured ramp loss (Eq. (3)) addresses
this problem by performing cost-augmented decoding. It introduces a cost function cost(G;G∗) that can
also be factored over graph nodes and edges. A cost of 1 is incurred if the system graph and the goldstan-
dard graph disagree on whether a node (or edge) should be included. As a result, the first component of
the loss function maxG(score(G) + cost(G;G∗)) yields a decoded system graph that is slightly worse
than Ĝ = argmaxG score(G); and the second component maxG(score(G) − cost(G;G∗)) yields a
graph that is slightly better than Ĝ. The scoring difference between the two system graphs becomes the
structured ramp loss we wish to minimize. This formulation is similar to the objective of the structured
support vector machines (SSVMs, Tsochantaridis et al., 2005). Becase decent results have been reported
by (Liu et al., 2015), we adopt structured ramp loss in all experiments.

Lperc(θ,φ) = max
G

score(G)− score(G∗) = score(Ĝ)− score(G∗) (2)

Lramp(θ,φ) = max
G

(score(G) + cost(G;G∗))−max
G

(score(G)− cost(G;G∗)) (3)

1182

3.2 Surface Realization

Algorithm 1 An algorithm for transforming a sum-
mary graph to the PENMAN format.
Input: Triples: (src concept, relation, tgt concept).

1: r ← index of the ROOT concept
2: P ← all paths from ROOT to leaves, sorted by

the concept indices on the paths
3: I Set all concepts and relations as unvisited
4: visited [Cm]← FALSE, ∀m
5: visited [Rm,n]← FALSE, ∀m,n
6: for i = 1, . . . , |P| do
7: flag special concept ← FALSE.
8: k ← 0
9: while k < |pi| do

10: k ← k + 1
11: n′ ← index of the k-th concept on the path
12: m′ ← index of the previous concept
13: if visited [Cn′] = FALSE then
14: I Concept unvisited
15: visited [Cn′]← TRUE

16: visited [Rm′,n′]← TRUE

17: output += (k − 1)∗TAB
18: if Cn′ is a string literal then
19: output +=Rm′,n′ ::Cn′

20: flag special concept ← TRUE

21: BREAK

22: else if k < |pi| then
23: output +=Rm′,n′ ::“(”::Cn′ ::EOS
24: else
25: output +=Rm′,n′ ::“(”::Cn′

26: end if
27: else if visited [Rm′,n′] = FALSE then
28: I Concept reentrance
29: visited [Rm′,n′]← TRUE

30: output += (k − 1)∗TAB
31: output +=Rm′,n′ ::Cn′

32: flag special concept ← TRUE

33: BREAK

34: end if
35: end while
36: I Output path ending brackets and EOS.
37: k′ ← tracing the path backwards to find posi-

tion of the closest ancestor who has an unvis-
ited child; if none exists, k′ ← 0

38: if flag special concept = TRUE then
39: output += (k − k′ − 1)∗“)”::EOS
40: else
41: output += (k − k′)∗“)”::EOS
42: end if
43: end for

The surface realization component converts
each summary graph to a natural language sen-
tence. This is a nontrivial task, because AMR
abstracts away from the source syntactic forms
and an AMR graph may correspond to a number
of valid sentence realizations. In this section we
perform two subtasks that have not been inves-
tigated in previous studies. We first convert the
summary AMR graphs to the PENMAN format
(Figure 1), which is a representation that can be
understood by humans. It is also the required in-
put form for an AMR-to-text generator. We then
leverage the AMR-to-text generator to generate
English sentences from summary graphs.

Algorithm 1 presents our algorithm for trans-
forming a summary graph to the PENMAN for-
mat. Because the summary graph is rooted and
acyclic, we can extract all paths from the ROOT
node to all leaves. These paths are sorted by the
concept indices on the path, and the paths shar-
ing the same ancestors will be processed in or-
der. The core of Algorithm 1 is the while loop
(line 9–35); it writes out one concept per line.
An AMR concept can have three forms: a regu-
lar form (“c / country”), string literal (“Japan”),
or a re-entrance (“g”). The last two are treated
as “special forms.” In these cases, a relation is
first written out, followed by the special con-
cept (Rm′,n′ ::Cn′). “::” denotes a whitespace.
A regular concept will be wrapped by a left
bracket (Rm′,n′ ::“(”::Cn′ , line 23/25) and a right
bracket ((k − k′)∗“)”::EOS, line 41). Finally, a
proper number of closing brackets is postpended
to each path (line 37–42).

To transform the PENMAN string to a sum-
mary sentence we employ the JAMR AMR-to-
text generator (Flanigan et al., 2016). JAMR is
the first full-fledged AMR-to-text generator. It
is trained on approximately 10K sentences and
achieves about 22% BLEU score on the test set.
The system first transforms the input graph to a
spanning tree, and then decodes it into a string
using a tree-to-string transducer and a language
model. The final output sentence is the highest-
scoring sentence according to a feature-rich dis-
criminatively trained linear model. We choose
the JAMR AMR-to-text generator because of its
competitive performance in the recent SemiEval
evaluations (May and Priyadarshi, 2017).

1183

3.3 Source Sentence Selection

We seek to generate an abstractive summary containing multiple sentences from a cluster of documents
discussing a single topic (e.g., health and safety). Each summary sentence will cover a topic aspect; it is
generated by fusing a set of relevant source sentences. We thus perform clustering on all source sentences
to find salient topic aspects and their corresponding sets of similar sentences. Spectral clustering has been
shown to perform strongly on different clustering problems (Ng et al., 2002; Yogatama and Tanaka-Ishii,
2009). The approach constructs an affinity matrix by applying a pairwise similarity function to all source
sentences. It then calculates the eigenvalues of the matrix and performs clustering in the low-dimensional
space spanned by the largest eigenvectors. A large cluster indicates a salient topic aspect. We focus on
the M largest clusters and extract N sentences from each cluster.1 These sentences have the highest
similarity scores with other sentences in the cluster. The selected sets of relevant sentences are later fed
to the content planning component to generate summary AMR graphs.

Training the content planning component, however, requires sets of source sentences paired with their
goldstandard summary graphs. Manually selecting sets of sentences and annotating summary graphs
is costly and time-consuming. Instead, we leverage human reference summaries to create training in-
stances. We obtain summary graphs by AMR-parsing sentences of human reference summaries. For
every reference sentence, we further extract a set of source sentences. They are judged similar to the
reference sentence via a similarity metric. The summary AMR graphs and sets of source sentences thus
form the training data for content planning. We gauge how best to select source sentences by exploring
different similarity metrics. In particular, (i) LCS calculates the longest common subsequence between
a candidate source sentence and the reference sentence; (ii) VSM represents sentences using the vector
space model and calculates the cosine similarity between the two sentence vectors; (iii) Smatch (Cai
and Knight, 2013) calculates the F-score of AMR concepts between the candidate and reference sen-
tences; (iv) Concept Coverage selects source sentences to maximize the coverage of AMR concepts of
the reference sentence. We experiment with these source sentence selection strategies and compare their
effectiveness in Section §5.1.

4 Datasets and Baselines

We perform experiments on standard multi-document summarization datasets2, prepared by the NIST
researchers for DUC/TAC competitions and later exploited by various summarization studies (Nenkova
and McKeown, 2011; Hong et al., 2014; Yogatama et al., 2015). A summarization instance includes
generating a text summary containing 100 words or less from a cluster of 10 source documents discussing
a single topic. 4 human reference summaries are provided for each cluster of documents; they are created
by NIST assessors. We use the datasets from DUC-03, DUC-04, TAC-09, TAC-10, and TAC-11 in this
study, containing 30/50/44/46/44 clusters of documents respectively.

We compare our AMR summarization framework with a number of extractive (ext-∗) and abstractive
(abs-∗) summarization systems, including the most recent neural encoder-decoder architecture (See et
al., 2017). They are described as follows.

• ext-LexRank (Erkan and Radev, 2004) is a graph-based approach that computes sentence impor-
tance based on the concept of eigenvector centrality in a graph representation of source sentences;

• ext-SumBasic (Vanderwende et al., 2007) is an extractive approach that assumes words occurring
frequently in a document cluster have a higher chance of being included in the summary;

• ext-KL-Sum (Haghighi and Vanderwende, 2009) describes a method that greedily adds sentences
to the summary so long as it decreases the KL divergence;

• abs-Opinosis (Ganesan et al., 2010) generates abstractive summaries by searching for salient paths
on a word co-occurrence graph created from source documents;

1We use N=M=5 in our experiments. This setting fuses 5 source sentences to a summary sentence. It then produces 5
summary sentences for each topic, corresponding to the average number of sentences in human summaries.

2https://duc.nist.gov/data.html https://tac.nist.gov/data/index.html

1184

Nodes (Oracle) Nodes Edges (Oracle) Edges
Approach P R F P R F P R F P R F
LCS 16.7 26.7 19.9 31.5 49.5 37.6 6.7 8.0 6.9 16.1 18.7 16.6
Smatch 20.9 33.2 24.9 33.2 52.0 39.6 9.3 10.7 9.4 17.2 20.1 17.8
Concept Cov. 25.0 40.3 30.1 48.8 77.5 58.7 7.3 10.0 8.0 18.9 25.3 20.8
VSM 24.0 38.6 28.8 40.8 64.3 48.9 9.6 11.3 9.8 21.1 25.1 22.1

Table 1: Summary graph prediction results on the DUC-04 dataset. The scores measure how well the predicted summary graphs
match reference summary graphs on nodes and edges. Reference summary graphs are created by parsing reference summary
sentences using the CAMR parser. “Oracle” results are obtained by performing only cost-based decoding. They establish an
upper bound for the respective approaches.

• abs-Pointer-Generator (See et al., 2017) describes a neural encoder-decoder architecture. It en-
courages the system to copy words from the source text via pointing, while retaining the ability to
produce novel words through the generator. It also includes a coverage mechanism to keep track
of what has been summarized, thus reducing word repetition. The pointer-generator networks have
not been tested for multi-document summarization. In this study we evaluate their performance on
the DUC/TAC datasets.

5 Experimental Results

In this section we evaluate our AMR summarization framework. We are interested in knowing how well
the system performs on predicting summary graphs from sets of relevant source sentences (§5.1). We
also investigate the system’s performance on generating abstractive summaries and its comparison with
various baselines (§5.2). Finally, we provide an analysis on system summaries and outline challenges
and opportunities for advancing this line of work (§5.3).

5.1 Results on Summary Graph Prediction
Graph prediction results on the DUC-04 dataset (trained on DUC-03) are presented in Table 1. We report
how well the decoded summary graphs match goldstandard summary graphs on nodes (concepts) and
edges (relations). We compare several strategies to select sets of source sentences. The goldstandard
summary graphs are created by parsing the reference summary sentences via the CAMR parser (Wang
et al., 2015b). Note that we cannot obtain goldstandard summary graphs for sets of source sentences se-
lected by spectral clustering. This approach therefore is not evaluated for graph prediction. The system-
decoded summary graphs are limited to 15 graph nodes, corresponding to the average number of words
in reference summary sentences (stopwords excluded). We additionally report “Oracle” decoding re-
sults, obtained by performing only cost-based decoding Ĝ = argmaxG(−cost(G;G∗)) on the source
graph, where G∗ is the goldstandard summary graph. The oracle results establish an upper bound for the
respective approaches.

We observe that node prediction generates better results than edge prediction. Using ‘Concept Cov,’
the system-decoded summary graphs successfully preserve 40.3% of the goldstandard summary con-
cepts, and this number increases to 77.5% when using oracle decoding, indicating the content planning
component is effective at identifying important source concepts and preserving them in summary graphs.
‘VSM’ performs best on edge prediction. It achieves an F-score of 9.8% and the oracle decoding further
boosts the performance to 22.1%. We observe that only 42% of goldstandard summary bigrams appear
in the source documents, serving as a cap for edge prediction. The results suggest that ‘VSM’ is effec-
tive at selecting sets of source sentences containing salient source relations. The high performance on
summary node prediction but low on edge prediction suggests that future work may consider increasing
the source graph connectivity by introducing edges between concepts so that salient summary edges can
be effectively preserved.

5.2 Results on Summarization
In Table 2 we report the summarization results evaluated by ROUGE (Lin, 2004). In particular, R-1, R-
2, and R-SU4 respectively measure the overlap of unigrams, bigrams, and skip bigrams (up to 4 words)

1185

ROUGE-1 ROUGE-2 ROUGE-SU4
System P R F P R F P R F

DUC 2004

ext-SumBasic 37.5 24.9 29.5 5.3 3.6 4.3 11.1 7.3 8.6
ext-KL-Sum 31.1 31.1 31.0 6.0 6.1 6.0 10.2 10.3 10.2
ext-LexRank 34.3 34.6 34.4 7.1 7.2 7.1 11.1 11.2 11.2
abs-Opinosis 36.5 23.7 27.5 7.2 4.3 5.1 11.7 7.4 8.6
abs-Pointer-Gen-all 37.5 20.9 26.5 8.0 4.4 5.6 12.3 6.7 8.5
abs-Pointer-Gen 33.2 21.5 25.6 5.8 3.8 4.5 10.3 6.6 7.9
abs-AMRSumm-Clst 29.9 30.5 30.2 4.1 4.2 4.1 8.7 8.9 8.8
abs-AMRSumm-VSM 36.7 39.0 37.8 6.5 6.9 6.6 11.4 12.2 11.8

TAC 2011

ext-SumBasic 37.3 28.2 31.6 6.9 5.5 6.1 11.8 9.0 10.1
ext-KL-Sum 31.2 31.4 31.2 7.1 7.1 7.1 10.5 10.6 10.6
ext-LexRank 32.9 33.3 33.1 7.4 7.6 7.5 11.1 11.2 11.1
abs-Opinosis 38.0 20.4 25.2 8.6 4.0 5.1 12.9 6.5 8.1
abs-Pointer-Gen-all 37.3 22.2 27.6 7.8 4.6 5.8 12.2 7.1 8.9
abs-Pointer-Gen 34.4 21.6 26.2 6.9 4.4 5.3 10.9 6.8 8.2
abs-AMRSumm-Clst 32.2 31.7 31.9 4.7 4.7 4.7 9.8 9.7 9.7
abs-AMRSumm-VSM 40.1 42.3 41.1 8.1 8.5 8.3 13.1 13.9 13.5

Table 2: Summarization results on DUC-04 and TAC-11 datasets. We compare the AMR summarization framework
(AMRSumm-*) with both extractive (ext-*) and abstractive (abs-*) summarization systems.

between system and reference summaries. Our AMR summarization framework outperforms all other
abstractive systems with respect to R-1 and R-SU4 F-scores on both DUC-04 (trained on DUC-03) and
TAC-11 (trained on TAC-09,10) datasets. “AMRSumm-VSM” further produces the highest R-2 F-scores.
We conjecture that the R-2 scores of AMRSumm-* are related to the performance of the AMR-to-text
generator (Flanigan et al., 2016). When it transforms a summary graph to text, there can be multiple
acceptable realizations (e.g., “I hit my hand on the table” or “My hand hit the table”) and the one chosen
by the AMR generator may not always be the same as the source text. Because abstractive systems are
expected to produce novel words, they may yield slightly inferior results to the best extractive system
(LexRank). Similar findings are also reported by Nallapati et al. (2017) and See et al. (See et al., 2017).

We experiment with two variants of the pointer-generator networks: “Pointer-Generator-all” uses all
source sentences of the document set and “Pointer-Generator” uses the source sentences selected by
spectral clustering, hence the same input as “AMRSumm-Clst.” We observe that “AMRSumm-Clst”
performs stronger than “Pointer-Generator” at preserving salient summary concepts, yielding R-1 F-
scores of 30.2% vs. 25.6% and 31.9% vs. 26.2% on DUC-04 and TAC-11 datasets. Further, we found
that the summaries produced by the pointer-generator networks are more extractive than abstractive. We
report the percentages of summary n-grams contained in the source documents in Figure 3. “Pointer-
Generator-all” has 99.6% of unigrams, 95.2% bigrams, and 87.2% trigrams contained in the source
documents (DUC-04). In contrast, the ratios for human summaries are 85.2%, 41.6% and 17.1%, and
for “AMRSumm-Clst” the ratios are 84.6%, 31.3% and 8.4% respectively. Both human summaries and
“AMRSumm-Clst” summaries tend to be more abstractive, with fewer bigrams/trigrams appeared in
the source. These results suggest that future abstractive systems for multi-document summarization may
need to carefully balance between copying words from the source text with producing new words/phrases
in order to generate summaries that resemble human abstracts.

5.3 Result Analysis

Table 3 shows results of the AMR-Summ framework with different system configurations. We use
CAMR (Wang et al., 2015b) to parse source sentences into AMR graphs during training, and apply
either JAMR (Flanigan et al., 2014) or CAMR to parse sentences at test time. We observe that the qual-
ity of AMR parsers has an impact on summarization performance. In particular, JAMR reports 58%
F-score and CAMR reports 63% F-score for parsing sentences. The inter-annotator agreement places

1186

JAMR CAMR (Oracle) CAMR
Approach P R F P R F P R F

ROUGE-1
AMRSumm-Clst 29.0 29.8 29.4 29.9 30.5 30.2 36.4 37.8 37.1
AMRSumm-Concept Cov 36.3 37.8 36.9 36.9 39.3 38.1 46.9 49.8 48.3
AMRSumm-VSM 35.9 37.2 36.5 36.7 39.0 37.8 43.3 46.1 44.6

ROUGE-2
AMRSumm-Clst 3.2 3.3 3.2 4.1 4.2 4.1 6.0 6.3 6.1
AMRSumm-Concept Cov 4.8 5.0 4.9 5.7 6.0 5.8 9.8 10.4 10.1
AMRSumm-VSM 4.6 4.8 4.7 6.5 6.9 6.6 9.7 10.3 10.0

Table 3: Summarization results of the AMR-Summ framework on the DUC-04 dataset. “JAMR” uses the JAMR parser (Flani-
gan et al., 2014) to produce AMR graphs for source sentences, while “CAMR” uses the CAMR parser (Wang et al., 2015b).
“Oracle” results are obtained by performing only cost-based decoding.

Figure 3: Percentages of summary n-grams contained in the
source documents. Both human summaries and AMRSumm
summaries are highly abstractive, with few bigrams and tri-
grams contained in the source. Pointer-Generator summaries
appear be more extractive than abstractive.

op1

op1 op2

ARG1-of

ARG2

ARG1

name

government-organization

govern-01

country

name

“Japan”

ARG0-of

op1

Japanese Government more-than

product-of

amount2

invest-01

p

more than two times the
amount invested in them

Figure 4: Example AMR for text segments.

an upper bound of 83% F-score on expected parser performance (Wang et al., 2015b). There remains
a significant gap between the current parser performance and the best it can achieve. Consequently, we
notice that there is a gap of 1∼2 points in terms of ROUGE scores when comparing summaries produced
using the two parsers. We notice that source sentence selection strategies making use of reference sum-
mary sentences produces better results than ‘AMRSumm-Clst.’ Using oracle decoding further boosts the
summarization performance by 7-10% for R-1 F-score and 2-5% for R-2 F-score.

When examining the source and summary graphs, we notice that a simplified AMR representation
could be helpful to summarization. As a meaning representation grounded in linguistic theory, AMR
strives to be comprehensive and accurate. However, a summarization system may benefit from a reduced
graph representation to increase the algorithm robustness. For example, the large ‘semantic content units’
could be collapsed to “mega-nodes” in some cases. Figure 4 shows two examples. In the first example
(“Japanese Government”), the human annotator chooses to decompose derivational morphology given
that a relative clause paraphrase is possible (Schneider et al., 2015). It produces 5 concept nodes, repre-
senting “government organization that governs the country of Japan.” In the second example, “more than
two times the amount invested in them” also has fine-grained annotation. For the purpose of summariza-
tion, these graph fragments could potentially be collapsed to “mega-nodes” and future AMR parsers may
consider working on reduced AMR graphs.

6 Conclusion

In this paper we investigated the feasibility of utilizing the AMR formalism for multi-document summa-
rization. We described a full-fledged approach for generating abstractive summaries from multiple source
documents. We further conducted experiments on benchmark summarization datasets and showed that
the AMR summarization framework performs competitively with state-of-the-art abstractive approaches.
Our findings suggest that the abstract meaning representation is a powerful semantic formalism that holds
potential for the task of abstractive summarization.

1187

Acknowledgements

We are grateful to the anonymous reviewers for their insightful comments. The authors thank Chuan
Wang, Jeffrey Flanigan, and Nathan Schneider for useful discussions.

References
Miguel Ballesteros and Yaser Al-Onaizan. 2017. Amr parsing using stack-LSTMs. In Proceedings of the Confer-

ence on Empirical Methods in Natural Language Processing (EMNLP).

Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin Knight, Philipp
Koehn, Martha Palmer, and Nathan Schneider. 2013. Abstract meaning representation for sembanking. In
Proceedings of Linguistic Annotation Workshop.

Regina Barzilay, Kathleen R. McKeown, and Michael Elhadad. 1999. Information fusion in the context of multi-
document summarization. In Proceedings of the Annual Meeting of the Association for Computational Linguis-
tics (ACL).

Lidong Bing, Piji Li, Yi Liao, Wai Lam, Weiwei Guo, and Rebecca J. Passonneau. 2015. Abstractive multi-
document summarization via phrase selection and merging. In Proceedings of ACL.

Jan Buys and Phil Blunsom. 2017. Robust incremental neural semantic graph parsing. In Proceedings of the
Annual Meeting of the Association for Computational Linguistics (ACL).

Shu Cai and Kevin Knight. 2013. Smatch: an evaluation metric for semantic feature structures. In Proceedings of
the Annual Meeting of the Association for Computational Linguistics (ACL).

Ziqiang Cao, Furu Wei, Wenjie Li, and Sujian Li. 2018. Faithful to the original: Fact aware neural abstractive
summarization. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, and Hui Jiang. 2016. Distraction-based neural networks
for document summarization. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial
Intelligence (IJCAI).

Jackie Chi Kit Cheung and Gerald Penn. 2014. Unsupervised sentence enhancement for automatic summarization.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP).

Marco Damonte, Shay B. Cohen, and Giorgio Satta. 2017. An incremental parser for abstract meaning represen-
tation. In Proceedings of EACL.

Günes Erkan and Dragomir R. Radev. 2004. LexRank: Graph-based lexical centrality as salience in text summa-
rization. Journal of Artificial Intelligence Research.

Giuseppe Di Fabbrizio, Amanda J. Stent, and Robert Gaizauskas. 2014. A hybrid approach to multi-document
summarization of opinions in reviews. Proceedings of the 8th International Natural Language Generation
Conference (INLG).

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell, Chris Dyer, and Noah A. Smith. 2014. A discriminative graph-
based parser for the abstract meaning representation. In Proceedings of the Annual Meeting of the Association
for Computational Linguistics (ACL).

Jeffrey Flanigan, Chris Dyer, Noah A. Smith, and Jaime Carbonell. 2016. Generation from abstract meaning
representation using tree transducers. In Proceedings of the North American Chapter of the Association for
Computational Linguistics (NAACL).

Kavita Ganesan, ChengXiang Zhai, and Jiawei Han. 2010. Opinosis: A graph-based approach to abstractive
summarization of highly redundant opinions. In Proceedings of the International Conference on Computational
Linguistics (COLING).

Albert Gatt and Emiel Krahmer. 2018. Survey of the state of the art in natural language generation: Core tasks,
applications and evaluation. Journal of Artificial Intelligence Research, 61:65–170.

Pierre-Etienne Genest and Guy Lapalme. 2011. Framework for abstractive summarization using text-to-text
generation. In Proceedings of ACL Workshop on Monolingual Text-To-Text Generation.

1188

Shima Gerani, Yashar Mehdad, Giuseppe Carenini, Raymond T. Ng, and Bita Nejat. 2014. Abstractive summa-
rization of product reviews using discourse structure. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP).

Aria Haghighi and Lucy Vanderwende. 2009. Exploring content models for multi-document summarization. In
Proceedings of the North American Chapter of the Association for Computational Linguistics (NAACL).

Kai Hong, John M Conroy, Benoit Favre, Alex Kulesza, Hui Lin, and Ani Nenkova. 2014. A repository of state
of the art and competitive baseline summaries for generic news summarization. In Proceedings of the Ninth
International Conference on Language Resources and Evaluation (LREC).

Liang Huang, Kai Zhao, and Mingbo Ma. 2017. When to finish? Optimal beam search for neural text generation
(modulo beam size). In Proceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP).

Hongyan Jing and Kathleen McKeown. 1999. The decomposition of human-written summary sentences. In Pro-
ceedings of the International ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR).

Tomasz Jurczyk and Jinho D. Choi. 2015. Semantics-based graph approach to complex question-answering.
In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational
Linguistics: Student Research Workshop.

Yuta Kikuchi, Graham Neubig, Ryohei Sasano, Hiroya Takamura, and Manabu Okumura. 2016. Controlling
output length in neural encoder-decoders. In Proceedings of EMNLP.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin Choi, and Luke Zettlemoyer. 2017. Neural amr: Sequence-
to-sequence models for parsing and generation. In Proceedings of the Annual Meeting of the Association for
Computational Linguistics (ACL).

Chin-Yew Lin. 2004. ROUGE: a package for automatic evaluation of summaries. In Proceedings of ACL Work-
shop on Text Summarization Branches Out.

Fei Liu, Jeffrey Flanigan, Sam Thomson, Norman Sadeh, and Noah A. Smith. 2015. Toward abstractive summa-
rization using semantic representations. In Proceedings of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (NAACL).

Jonathan May and Jay Priyadarshi. 2017. SemEval-2017 task 9: Abstract meaning representation parsing and
generation. In Proceedings of SemEval.

Jonathan May. 2016. SemEval-2016 task 8: Meaning representation parsing. In Proceedings of SemEval.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Caglar Gulcehre, and Bing Xiang. 2016. Abstractive text
summarization using sequence-to-sequence RNNs and beyond. In Proceedings of the 20th SIGNLL Conference
on Computational Natural Language Learning (CoNLL).

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017. SummaRuNNer: A recurrent neural network based
sequence model for extractive summarization of documents. In Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence (AAAI).

Ani Nenkova and Kathleen McKeown. 2011. Automatic summarization. Foundations and Trends in Information
Retrieval.

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. 2002. On spectral clustering: Analysis and an algorithm. In
Proceedings of the 14th International Conference on Neural Information Processing Systems (NIPS).

Tatsuro Oya, Yashar Mehdad, Giuseppe Carenini, and Raymond Ng. 2014. A template-based abstractive meeting
summarization: Leveraging summary and source text relationships. In Proceedings of the 8th International
Natural Language Generation Conference (INLG).

Xiaoman Pan, Taylor Cassidy, Ulf Hermjakob, Heng Ji, and Kevin Knight. 2015. Unsupervised entity linking
with abstract meaning representation. In Proceedings of the 2015 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies (NAACL).

Terence Parsons. 1990. Events in the semantics of English. MIT Press.

Romain Paulus, Caiming Xiong, and Richard Socher. 2017. A deep reinforced model for abstractive summariza-
tion. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP).

1189

Daniele Pighin, Marco Cornolti, Enrique Alfonseca, and Katja Filippova. 2014. Modelling events through
memory-based, open-ie patterns for abstractive summarization. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics (ACL).

Nima Pourdamghani, Kevin Knight, and Ulf Hermjakob. 2016. Generating english from abstract meaning repre-
sentations. In Proceedings of the 9th International Natural Language Generation conference (INLG).

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. 2016. Sequence level training with
recurrent neural networks. In Proceedings of the International Conference on Learning Representations (ICLR).

Ehud Reiter and Robert Dale. 2000. Building Natural Language Generation Systems. Cambridge University Press
New York, NY, USA.

Alexander M. Rush, Sumit Chopra, and Jason Weston. 2015. A neural attention model for sentence summariza-
tion. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP).

Mrinmaya Sachan and Eric P. Xing. 2016. Machine comprehension using rich semantic representations. In
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL).

Barry Schein. 1993. Plurals and Events. MIT Press.

Nathan Schneider, Jeffrey Flanigan, and Tim O’Gorman. 2015. The logic of amr: Practical, unified, graph-based
sentence semantics for nlp. In Proceedings of the 2015 Conference of the North American Chapter of the
Association for Computational Linguistics: Tutorial Abstracts (NAACL).

Abigail See, Peter J. Liu, and Christopher D. Manning. 2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the Annual Meeting of the Association for Computational Linguistics
(ACL).

Linfeng Song, Yue Zhang, Xiaochang Peng, Zhiguo Wang, and Daniel Gildea. 2016. Amr-to-text generation as
a traveling salesman problem. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP).

Linfeng Song, Xiaochang Peng, Yue Zhang, Zhiguo Wang, and Daniel Gildea. 2017. Amr-to-text generation
with synchronous node replacement grammar. In Proceedings of the Annual Meeting of the Association for
Computational Linguistics (ACL).

Kaiqiang Song, Lin Zhao, and Fei Liu. 2018. Structure-infused copy mechanisms for abstractive summarization.
In Proceedings of the International Conference on Computational Linguistics (COLING).

Jun Suzuki and Masaaki Nagata. 2017. Cutting-off redundant repeating generations for neural abstractive summa-
rization. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational
Linguistics (EACL).

Ida Szubert, Adam Lopez, and Nathan Schneider. 2018. A structured syntax-semantics interface for english-amr
alignment. In Proceedings of the Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies (NAACL-HLT).

Sho Takase, Jun Suzuki, Naoaki Okazaki, Tsutomu Hirao, and Masaaki Nagata. 2016. Neural headline genera-
tion on abstract meaning representation. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Ales Tamchyna, Chris Quirk, and Michel Galley. 2015. A discriminative model for semantics-to-string translation.
In Proceedings of the ACL Workshop on Semantics-Driven Statistical Machine Translation (S2MT).

Jiwei Tan, Xiaojun Wan, and Jianguo Xiao. 2017. Abstractive document summarization with a graph-based at-
tentional neural model. In Proceedings of the Annual Meeting of the Association for Computational Linguistics
(ACL).

Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin Altun. 2005. Large margin methods
for structured and interdependent output variables. Journal of Machine Learning Research, 6:1453–1484.

Lucy Vanderwende, Hisami Suzuki, Chris Brockett, and Ani Nenkova. 2007. Beyond SumBasic: Task-focused
summarization with sentence simplification and lexical expansion. Information Processing and Management,
43(6):1606–1618.

1190

Chuan Wang, Nianwen Xue, and Sameer Pradhan. 2015a. Boosting transition-based amr parsing with refined ac-
tions and auxiliary analyzers. In Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Processing (ACL-IJCNLP).

Chuan Wang, Nianwen Xue, and Sameer Pradhan. 2015b. A transition-based algorithm for amr parsing. In
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL).

Wiki. 2018. Portal:Current events. https://en.wikipedia.org/wiki/Portal:Current events.

Dani Yogatama and Kumiko Tanaka-Ishii. 2009. Multilingual spectral clustering using document similarity prop-
agation. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP).

Dani Yogatama, Fei Liu, and Noah A. Smith. 2015. Extractive summarization by maximizing semantic volume.
In Proceedings of the Conference on Empirical Methods on Natural Language Processing (EMNLP).

Qingyu Zhou, Nan Yang, Furu Wei, and Ming Zhou. 2017. Selective encoding for abstractive sentence summa-
rization. In Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL).

