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Abstract

Sentence compression condenses a sentence while preserving its most important contents.
Delete-based models have the strong ability to delete undesired words, while generate-based
models are able to reorder or rephrase the words, which are more coherent to human sen-
tence compression. In this paper, we propose Operation Network, a neural network approach
for abstractive sentence compression, which combines the advantages of both delete-based and
generate-based sentence compression models. The central idea of Operation Network is to model
the sentence compression process as an editing procedure. First, unnecessary words are deleted
from the source sentence, then new words are either generated from a large vocabulary or copied
directly from the source sentence. A compressed sentence can be obtained by a series of such edit
operations (delete, copy and generate). Experiments show that Operation Network outperforms
state-of-the-art baselines.

1 Introduction

Sentence compression is the natural language generation (NLG) task of condensing a sentence while
preserving its most important contents. It can also be viewed as a sentence-level summarization task.
With the rapid growth of the web contents in recent years, summarization techniques such as sentence
compression are becoming more and more important since these techniques can greatly reduce the infor-
mation overload on the web. Sentence compression can benefit a wide range of applications, especially
those on mobile devices which have restricted screen spaces. Sentence compression models can be
broadly classified into two categories: delete-based models and abstractive models. Delete-based ap-
proaches remove unimportant words from the source sentence and generate a shorter sentence by stitch-
ing the remaining fragments together. On the contrary, abstractive models consider operations beyond
word deletion, such as reordering, substitution and insertion. Abstractive sentence compression models
produce a reform of the source sentence from scratch, thus the results produced by abstractive sentence
compression models are more expressive. Obviously, abstractive sentence compression is much harder
than delete-based sentence compression, since it needs deeper understanding of the source sentence.

Delete-based sentence compression treats the task as a word deletion problem: given an input source
sentence x = x1, x2, ..., xn (where xi stands for the ith word in the sentence x), the goal is to produce
a target sentence by removing any subset of words in the source sentence x (Knight and Marcu, 2002).
Delete-based sentence compression has been widely explored across different modeling paradigms, such
as noisy-channel model (Knight and Marcu, 2002; Turner and Charniak, 2005), large-margin learn-
ing (McDonald, 2006; Cohn and Lapata, 2007), integer linear programming (Clarke and Lapata, 2008)
and variational auto-encoder (Miao and Blunsom, 2016). In delete-based sentence compression models,
only delete operations are allowed, thus the order of the remaining words can not be changed. These con-
straints make delete-based sentence compression a relatively easier task. However, in spite of the strong
ability of deleting undesired words, delete-based models are not able to rephrase the words, which is far
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from human sentence compression. For example, in human sentence compression, the word “remove”
can replace the phrase “get rid of” under some particular circumstance, but this substitution can not be
accomplished by delete-only models.

Abstractive sentence compression has the ability to reorder, substitute words or rephrase, thus it is
more coherent to human sentence compression. Due to the difficulty of abstractive sentence compression,
there was only a limited number of work on the task (Cohn and Lapata, 2008; Cohn and Lapata, 2013;
Galanis and Androutsopoulos, 2011; Coster and Kauchak, 2011a). However, with the recent success of
the sequence-to-sequence (Seq2Seq) model, the task of abstractive sentence compression has become
viable. Seq2Seq has an encoder-decoder architecture where the encoder encodes the input sequence into
hidden states, and the decoder then generates the output sequence from the hidden states. The atten-
tion mechanism (Bahdanau et al., 2014), which can align the output sequence with the input sequence
automatically, boosts the performance of Seq2Seq significantly. A number of abstractive sentence com-
pression work has been built upon the Seq2Seq architecture with attention mechanism, such as (Chopra
et al., 2016; Wubben et al., 2016; Nallapati et al., 2016; See et al., 2017). These abstractive models
(which will be termed generate-based models hereafter) have the ability to reorder words or rephrase.
However, none of these models consider explicit word deletion. As Coster and Kauchak (2011b) pointed
out, deletion is a frequently occurring phenomena in sentence compression dataset. Coster and Kauchak
(2011a) imposed delete operation on their sentence compression model and improved the performance
significantly. Thus, deletion is also very important for abstractive sentence compression task.

Inspired by previous work, we propose an Operation Network for abstractive sentence compression,
which combines the advantages of both delete-based and generated-based sentence compression. The
central idea is to model the sentence compression process as an editing procedure. We not only enable
the model with a strong ability of word deletion inspired from delete-based models, but also endow the
model with the ability of word reordering and word rephrasing inspired from generate-based models.

With a series of editing operations, the source text can be transformed into a condensed version of
itself. There are three kinds of editing operations in our model: delete, copy and generate. Given a
source text as input, first the delete operations remove unnecessary words from the source text yet retain
the important content. Then, the summary is constructed by the copy and generate operations. Copy
operations duplicate words directly from the selected source text, while generate operations produce
words which are not in the source texts. Our model is built upon the Seq2Seq framework, and can be
trained in an end-to-end fashion.

To summarize, the contributions of this paper are as follows:

• We propose Operation Network, a neural framework for abstractive sentence compression, which
models the sentence compression task as a series of editing operations.

• Our Operation Network combines the advantages of both delete-based and generate-based sentence
compression. The model is equipped with a strong ability of not only word deletion, but also word
reordering and word rephrasing. Experiments show that our model outperforms the baselines.

2 Task Definition

We formulate the problem of abstractive sentence compression discussed in this paper as follows:
Given a source sentence X = (x1, x2, ..., xn) as input, the goal is to generate a target sentence
Y = (y1, y2, ..., ym), m < n, which is a condensed version of X with good readability and retains
the most important information in X . Essentially, the model estimates the conditional probability as
follows:

P (Y |X) =
m∏
t=1

P (yt|y<t,X). (1)

3 Background: Seq2Seq Model

Our model is built upon the general Seq2Seq model (Sutskever et al., 2014), which is also called the
encoder-decoder model. The model consists of an encoder and a decoder. The encoder takes as input
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a source sequence X = (x1, x2, ..., xn), and outputs a sequence of hidden states h = (h1, h2, ..., hn).
The decoder takes h as input and outputs the target sequence Y = (y1, y2, ..., ym).

In both encoder and decoder, we use gated recurrent unit (GRU) (Cho et al., 2014; Chung et al.,
2014) as the basic unit. We use a bi-directional RNN (Schuster and Paliwal, 1997) as encoder. A bi-
directional RNN contains two distinct RNNs, a forward RNN and a backward RNN. Given the input
X = (x1, x2, ..., xn) and the embedding lookup table e, the forward RNN reads the input in the left-
to-right direction, resulting a sequence of forward hidden states

−→
h = (

−→
h 1,
−→
h 2, ...,

−→
h n), where

−→
h t =

GRU(
−→
h t−1, e(xt)). Similarly, the backward RNN reads the input in the reversed direction and outputs

←−
h = (

←−
h 1,
←−
h 2, ...,

←−
h n). At each time step, we concatenate the hidden states of the corresponding

forward and backward RNNs and obtain the encoder hidden states h = (h1, h2, ..., hn), where ht =

[
−→
h t;
←−
h t], t = 1, ..., n and [A;B] denotes vector concatenation.

In the decoder for general Seq2Seq model, another GRU is used for updating the decoder hidden
states. Given a context vector ct and the previously decoded word yt−1, the decoder hidden states are
updated as follows:

st = GRU(st−1, [ct; e(yt−1)]) (2)

The context vector ct is designed to dynamically attend on key information of the input sentence during
the decoding procedure (Bahdanau et al., 2014). ct is calculated as a weighted sum of the encoder hidden
states:

ct =

n∑
k=1

αtkhk (3)

αt = (αt1, αt2, ..., αtn) is called the attention distribution. It can be viewed as a probability distri-
bution over the source words, which tells the decoder where to attend to produce the next word. The
attention distribution is calculated as follows:

αtk = softmax(etk) =
exp(etk)∑n
j=1 exp(etj)

(4)

etk = v>a tanh(Wast−1 + Uahk + ba) (5)

where va, Wa, Ua and ba are trainable parameters.
The vocabulary distribution P voc

t at time step t is calculated as follows:

P voc
t = softmax(W ′o(Wo[st; ct] + bo) + b′o) (6)

where W ′o, Wo, bo and b′o are trainable parameters. P voc
t is a probability distribution over all words in the

vocabulary V , and the output word yt at time step t is calculated as follows:

yt = argmax
w

P voc
t (w), w ∈ V (7)

During training, the loss for time step t is the negative log likelihood of the target word y∗t : losst =
− logP voc

t (y∗t ). The overall loss function for the whole word sequence is: loss = 1
TY

∑TY
t=1 losst, where

TY is the length of the target word sequence Y .

4 Operation Network

In this section, we introduce our model, called as the Operation Network, to address the task of abstractive
sentence compression. In Operation Network, we consider the transformation from the source sentence
to the target sentence as a series of operations. We use three kinds of different operations: delete, copy
and generate. To enable the model to perform these three types of edit operations, we use two distinct
decoders, one for delete and the other for copy and generate. Specifically, we use the same encoder as in
the general Seq2Seq model, but employ a delete decoder and a copy-generate decoder. After the input
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sentence is encoded by the encoder, the delete decoder will first delete unnecessary words from the input
sentence, then the copy-generate decoder will produce the output sentence either by copying from the
choices of the delete decoder, or generating from a fixed vocabulary. The overall architecture of our
model is shown in Figure 1.
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Figure 1: Operation Network, which consists of an encoder, a delete decoder and a copy-generate de-
coder.

4.1 Delete Decoder

The delete decoder “deletes” all unimportant words from the sentence. It takes as input the sequence of
the encoder hidden states h = (h1, h2, ..., hn), the text sequence X = (x1, x2, ..., xn), and outputs a
sequence d = (d1, d2, ..., dn), which has the same length n. di ∈ [0, 1], i ∈ 1, 2, ..., n. If di is close to 0,
then the corresponding word xi tends to be deleted. Otherwise if di is close to 1, then the corresponding
word xi tends to be kept. The output sequence d will be used together with the copy-generate decoder
which we will discuss in Section 4.2. The architecture of the delete decoder is shown in Figure 2.

For decoding step t in the delete decoder, we feed the decoder with the embedding of word xt, the
previous decoder output dt−1 and the context vector ct. The delete decoder states are updated as follows:

st = GRU(st−1, [ct; e(xt); dt−1]) (8)

dt = σ(Wds
d
t + bd) (9)

where σ is the sigmoid function, ct is the context vector calculated in the same way as Equation 3, e
denotes the word embedding table, and Wd and bd are trainable parameters.

The output of the delete decoder, d = (d1, d2, ..., dn), is fed into the copy-generate decoder for further
calculation.

4.2 Copy-Generate Decoder

The Copy-Generate decoder produces output the compressed sentence word by word, and the output
words are either copied from the input words which are filtered by the delete decoder, or generated with
a fixed vocabulary. In other words, our model integrates copy, generate, delete operations together to
produce the output sequence.

We implement the Copy-Generate decoder as a hybrid network between the basic Seq2Seq network
and a pointer network (Vinyals et al., 2015). The structure of the Copy-Generate decoder is close to
CopyNet (Gu et al., 2016), Pointer Softmax (Gulcehre et al., 2016) and Pointer-Generator (See et al.,
2017). However, the Copy-Generate decoder model has some unique characteristic designed for abstrac-
tive sentence compression task. The major difference is that our Copy-Generate decoder incorporates the
result of the delete decoder, to make sure that unnecessary words will not be copied back by accident.
Another difference from the other models is that our model generates explicit operations. During the
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Figure 2: Delete Decoder.

training procedure, we also add supervision on these operations (see Section 4.3). We find that explicit
operation supervision can lead to better results. Last, unlike Gu et al. (2016) and Gulcehre et al. (2016),
where copy operations are only used for handling UNK tokens (special tokens which stand for out-of-
vocabulary words) or named entities, in our model, copy operations are triggered much frequently as long
as the output word can be copied from the input sentence. This is useful especially when the training
dataset is relatively small.

The Copy-Generate decoder takes as input the encoder hidden states h = (h1, h2, ..., hn) and the
attention distributions α = (α1, α2, ..., αn), and outputs the target sentence as a sequence of words
Y = (y1, y2, ..., ym). At each step of decoding, a switch network is used to decide whether to use copy
mode or generate mode. If copy mode is chosen, the word is copied directly from the source words
(filtered by the delete decoder). We use the attention distributions to sample the source words. The
output of the delete decoder is used to modify the attention distributions to filter out unwanted words.
Otherwise, if generate mode is chosen, the word is generated from the fixed vocabulary. Specifically,
for words that are neither in the source sentence nor in the vocabulary, the switch network will choose
generate mode and UNK tokens will be produced from the decoder.

The Copy-Generate decoder use another distinct GRU to update its decoder hidden states as follows:

s′t = GRU(s′t−1, [ct; e(yt−1)]) (10)

where s′t is the decoder hidden state at time step t, ct is the context vector, e denotes the word embedding
table, and yt−1 is the previous decoded output.

At each time step t, the switch network calculates generate probability as follows:

ggent = σ(Wz[s
′
t; ct] + bz) (11)

ggent acts as a soft switch to choose between generate mode and copy mode.
In generate mode, the target word is sampled from the vocabulary distribution P voc

t (see Equation 6).
In copy mode, first we use the outputs of the delete decoder d (see Section 4.1) to mask and re-

normalize the attention distribution αt:

α′
t =

1∑n
i=1 diαti

(d1αt1, d2αt2, ..., dnαtn) = (α′t1, α
′
t2, ..., α

′
tn). (12)

Then the target word is sampled from the modified attention distribution α′
t.

For each sentence, let the extended vocabulary V ′ denotes the union of the vocabulary V and all words
appearing in the source sentence, then the final probability distribution over the extended vocabulary V ′

is:

Pt(w) = ggent P voc
t (w) + (1− ggent )

∑
k:w=xk

α′tk, w ∈ V ′ (13)
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where xk denotes the kth words in the source sequenceX . The output word yt at time step t is sampled
from the final distribution Pt:

yt = argmax
w

Pt(w), w ∈ V ′ (14)

4.3 Loss Function
The total loss consists of two parts: the loss from delete decoder and the loss from copy-generate decoder.

4.3.1 Delete Decoder Loss
The delete decoder loss measures the difference between the target deletion sequence and the actual
deletion sequence predicted by the delete decoder. The delete decoder loss is calculated as follows:

delete loss =
1

TX

TX∑
t=1

(
−d̂t log dt − (1− d̂t) log(1− dt)

)
(15)

where TX is the length of the source word sequence X , and d̂ is the target deletion sequence, d̂t = 0 if
word xt should be deleted, otherwise, if word xt should be kept, d̂t = 1.

4.3.2 Copy-Generate Decoder Loss
At each time step t, the copy-generate decoder loss can be divided into three parts: the switch loss, the
copy loss and the generate loss. The switch loss measures the difference between the target switch and
the predicted switch by the model. The copy loss measures the difference between the target attention
distribution and the actual attention distribution predicted by the model. And the generate loss measures
the loss between the target vocabulary distribution and the generated vocabulary distribution at that time
step. The losses at time step t is calculated as follows:

switch losst =− ĝgent log ggent

− (1− ĝgent ) log(1− ggent ) (16)

copy losst =− (1− ĝgent ) log
∑

k:y∗t =xk

α′tk (17)

gen losst =− ĝgent logP voc
t (y∗t ) (18)

where ĝgent = 1 if target is in generate mode at time step t, otherwise, if target is in copy mode, ĝgent = 0.
y∗t denotes the target word at time step t.

The overall copy-generate loss function for the target compressed sentence is as follows:

copy gen loss =
1

TY

TY∑
t=1

(switch losst + copy losst + gen losst) (19)

where TY is the length of the target word sequence Y .

5 Experiments

In this section, we introduce the experiments for abstractive sentence compression with our proposed
Operation Network. First, we present a brief description of the dataset, and the pre-processing procedure
in our experiments. Then, we introduce baselines that are compared with our model. Next, we introduce
parameters of our models in the experiments. At last we present and analyze the experiment results.

5.1 Dataset
We adopt the dataset provided by Toutanova et al. (2016) for our experiments. It’s a manually-created,
multi-reference dataset for sentence and short paragraph compression. It contains 6,169 source texts
with multiple compressions (26,423 pairs of source and compressed texts), consisting of business letters,
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news journals, and technical documents sampled from the Open American National Corpus (OANC1).
Of all the source texts, 3,769 are single sentences and the rest are 2-sentence short paragraphs. Each pair
of the source and compressed text is aligned by the state-of-the-art monolingual aligner Jacana (Yao et
al., 2013). The dataset is split into a training set (21,145 pairs), a validation set (1,908 pairs) and a test
set (3,370 pairs). The dataset is available online2.

The alignment information together with the pair of source text and compressed text are used for gen-
erating operation sequences for our experiments. Specifically, for each pair of the source and compressed
text, a delete operation sequence and a copy/generate sequence are generated. The delete operation se-
quence is a sequence of delete/retain tokens which has the same length with the source text. For each
word in the source text, if the word exists in the compressed text or is aligned by the aligner, the corre-
sponding token in the delete operation sequence is retain. On the other hand, if the word neither exists in
the compressed text nor aligned by the aligner, the corresponding token in the delete operation sequence
should be delete. The copy/generate operation sequence is a sequence of copy/generate tokens which
has the same length with the compressed text. For each word in the compressed text, if the word is
aligned by the aligner and is the same as its counterpart, then the corresponding token in the sequence is
copy, which means this word is copied from the source text. If the word is not aligned or not the same
as its counterpart, then the corresponding token in the sequence is set to generate, which means this
word is generated from the vocabulary. The reason we didn’t put delete, copy and generate operations
in a single sequence is that delete operations are source-text-based operations while copy and generate
operations are target-text-based operations. It is consistent with that the delete operation sequence has
the same length as the source text and the copy/generate operation sequence has the same length as the
compressed text.

5.2 Baselines

We compared the abstractive sentence compression results generated by our model (Operation Network)
with those by two baselines. These baselines consist of a generate-only model (Seq2Seq) and a generate
+ copy model (Pointer-Generator). The details of the baselines are described as follows:

• Seq2Seq: Seq2Seq is an generate-only model similar to the model described by Nallapati et al.
(2016). It uses the same bi-directional RNN encoder and attention mechanisms as our model. The
decoder of Seq2Seq model can only generate words from the fixed vocabulary.

• Pointer-Generator: Pointer-Generator is a model proposed by See et al. (2017). It uses a hybrid
pointer-generator network that can copy words from source text or generate words directly from a
large vocabulary. This model also use coverage to keep track of what has been summarized, which
discourage repetition. Refer to See et al. (2017) for more details.

5.3 Experiment Parameters

For all experiments, we use 300-dimensional word embeddings. We also use the pre-trained GoogleNews
vectors to initialize the embeddings. For words do not exist in GoogleNews vectors, we initialize them
randomly. The vocabulary size is set to 20,000. We also use the large vocabulary tricks described by
Jean et al. (2014). The sampled vocabulary size is set to 4,096. The hidden state of a single GRU is 256-
dimensional. To overcome overfitting, we also imposed dropout on the input, output and state vector of
the GRUs. The dropout probability is set to 0.5.

We trained the models on a single Nvidia Titan X GPU with a batch size of 32. During training, we
used Stochastic Gradient Descent with an initial learning rate of 0.15, and applied the exponential decay
to the learning rate as the training process proceeds. At test time, the output sentences are decoded using
beam search with beam size 4.

1http://www.anc.org/data/oanc
2The dataset can be downloaded from the project’s website

https://www.microsoft.com/en-us/research/project/intelligent-editing/
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5.4 Experiment Metric
In the experiments, we compare our model and the baselines with the following metrics.

Compression Ratio: The common assumption in compression research is that the system can make
the determination of the optimal compression length. Thus, compression ratios can vary drastically
across systems. Different systems can be compared only when they are compressing at similar ra-
tios (Napoles et al., 2011). Compression ratio is defined as:

CompRatio =
# of tokens in compressed text

# of tokens in source text
(20)

ROUGE: We evaluated our models with the standard ROUGE metric proposed by Lin (2004).
ROUGE stands for Recall-Oriented Understudy for Gisting Evaluation. It is commonly used for mea-
suring the quality of the summary by comparing computer-generated summaries to reference summaries
generated by humans. The basic idea of ROUGE is to count the number of overlapping units such as
n-grams, word sequences, and word pairs between computer-generated summaries and the reference
summaries. In our experiments, we considered ROUGE-1, ROUGE-2 and ROUGE-L (which respec-
tively measures the word-overlap, bigram-overlap, and longest common sequence between the reference
summary and the summary to be evaluated).

BLEU: We also report BLEU scores of the baseline models and Operation Network on the test dataset.
BLEU is proposed by Papineni et al. (2002), and is usually used for automatic evaluation of statis-
tical machine translation systems. However, it can also be used for evaluating sentence compression
task (Napoles et al., 2011). We use the multi-bleu script3 for BLEU score calculation.

5.5 Result Analysis
We present the average ratios of the operations in Operation Network’s outputs and the human-written
references on the test dataset in Figure 3. Note that the delete ratio is calculated as the number of delete
operations divide by the number of tokens in source text, and the copy and generate ratio is calculated
as the number of copy and generate operations divided by the number of tokens in compressed text,
respectively. From the figure we can see that Operation Network can utilize the operation information to
help accomplish the sentence compression task. The average delete ratio in Operation Network is lower
than in human reference, since there are multiple references for one source text in the dataset, and the
Operation Network learns to delete a token only it is deleted in most of the references. The average copy
ratio is higher in Operation Network than in human reference, this may suggest that Operation Network
tends to copy words directly from the source text whenever it is possible.
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Figure 3: The average ratios of delete, copy and generate operations of Operation Network and human-
written references on the test dataset.

Table 1 shows the average compression ratios (%), ROUGE and BLEU scores of the baseline models
and Operation Network on the test dataset. The second column shows the average compression ratios.

3https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.
perl
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The average compression ratio is calculated as the average of the compression ratios of all the compressed
text outputs in the test dataset. We can see that the average compression ratios of both our model and the
other two baselines are similar. Thus, the comparison between our model and the baseline models is fair.
Since we have employed the delete decoder in Operation Network, the average compression ratio of our
model is lower than the other baselines.

CompRatio (%) ROUGE-1 ROUGE-2 ROUGE-L BLEU

Seq2Seq 69.39 30.05 10.42 26.87 18.32
Pointer-Generator 66.59 35.34 16.57 32.56 25.09
OperationNet 65.53 36.21 17.43 33.72 26.30

Table 1: Average compression ratios (%), ROUGE and BLEU scores of the models on the test dataset.
Statistically significant improvements (p < 0.01) over the baselines are demonstrated by bold fonts.

From Table 1 we can see that the generate-only model (Seq2Seq) performs poorly compared to its
counterparts. This is due to the fact that the Seq2Seq model can only generate words from a fixed vocab-
ulary. When the training dataset is relatively small (about 21k pairs of source and compressed text), the
model may not be trained adequately. We tried the same models with random-initialized word embed-
dings and with GoogleNews-vector-initialized word embeddings and it turned out that random-initialized
word embeddings lead to worse performance. The copy-and-generate model (Pointer-Generator) per-
forms much better than the generate-only model. This is because the copy operations allow to copy
words directly from the source texts and the attention distribution is much smaller than the vocabulary
distribution and easier to train. With the addition of delete operation, our model (Operation Network)
outperforms the other baselines in terms of all three ROUGE metrics and the BLEU metric. Results
show that the delete operations can effectively filter out unnecessary words from the source texts and
lead to better performance. This can also show that the Operation Network is suitable for the abstractive
sentence compression task.

In order to evaluate the quality of the summaries produced by our model and the other baselines, we ask
annotators to do a score evaluation on some aspects of the summaries. Specifically, we ask them to score
the grammaticality and non-redundancy of the summaries. Annotators are instructed to read the summary
carefully and rate each aspect with scores matching the quality of the corresponding aspect. Each aspect
is rated with a score from 0 (bad) to 5 (excellent). We randomly sample 100 samples from the test set
for evaluation. Each summary generated by our model or baselines is rated by at least 5 annotators.
The summaries are randomly reordered and model information is anonymous to the annotators. The
evaluation result is shown in Table 2.

Grammaticality Non-Redundancy

Seq2Seq 2.53 2.24
Pointer-Generator 3.46 3.58
OperationNet 3.23 3.64

Table 2: Results of aspect evaluation.

The results in Table 2 show that combined with the delete decoder, our model can effectively delete
unimportant contents without losing much grammar quality of the text. This exactly matches what we ex-
pect from our model. Pointer-Generator model performs better on grammaticality aspect than our model,
however, our model outperforms the other baselines on non-redundancy aspect. The basic Seq2Seq
model performs poorly on both grammaticality aspect and non-redundancy aspect.
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6 Related Work

Delete-based sentence compression. A large number of work is devoted to delete-based sentence com-
pression. Jing (2000) presented a system that used multiple sources of knowledge to decide which
phrases in a sentence can be removed. Knight and Marcu (2000) proposed statistical approaches to
mimic the sentence compression process, they used both noisy-channel and decision-tree to solve the
problem. McDonald (2006) presented a discriminative large-margin learning framework coupled with
a feature set and syntactic representations for sentence compression. Clarke and Lapata (2006) com-
pared different models for sentence compression across domains and assessed a number of automatic
evaluation measures. Clarke and Lapata (2008) used integer linear programming to infer globally op-
timal compression with linguistically motivated constraints. Berg-Kirkpatrick et al. (2011) proposed a
joint model of sentence extraction and compression for multi-document summarization. Filippova and
Altun (2013) presented a method for automatically building delete-based sentence compression corpus
and proposed an compression method which used structured prediction.

Abstractive sentence compression. Abstractive sentence compression extends delete-based com-
pression methods with additional operations, such as substitution, reordering and insertion. Cohn and
Lapata (2008) proposed a discriminative tree-to-tree transduction model which incorporated a gram-
mar extraction method and used a language model for coherent output. Galanis and Androutsopoulos
(2011) presented a dataset for extractive and abstractive sentence compression and proposed a SVR
based abstractive sentence compressor which utilized additional PMI-based and LDA-based features.
Shafieibavani et al. (2016) proposed a word graph-based model which can improve both informativeness
and grammaticality of the sentence at the same time.

Neural sentence compression. Filippova et al. (2015) proposed a delete-based sentence compression
system which took as input a sentence and output a binary sequence corresponding to word deletion deci-
sions in the sentence. The model was trained on a set of 2 millions sentence pairs which was constructed
by the same approach used in Filippova and Altun (2013). There are also some neural approaches for ab-
stractive sentence compression. Rush et al. (2015) proposed a fully data-driven approach which utilized
neural language models for abstractive sentence compression. They tried different kinds of encoders to
encode the input sentence into vector representation of fixed dimensions. Chopra et al. (2016) further im-
proved the model with Recurrent Neural Networks. However, both works used vocabularies of fixed size
for target sentence generation. Wubben et al. (2016) used a Seq2Seq model with bi-directional LSTMs
for abstractive compression of captions. Toutanova et al. (2016) manually created a multi-reference
dataset for sentence and short paragraph compression and studied the correlations between several auto-
matic evaluation metrics and human judgment.

7 Conclusion

In this paper, we propose Operation Network, a neural approach for abstractive sentence compression,
which combines the advantages of both delete-based and generate-based abstractive sentence compres-
sion. The central idea of Operation Network is to model the sentence compression process as an editing
procedure. With 3 kinds of operations (delete, copy and generate), Operation Network can transform
the source sentence into the condensed target. Operation Network is implemented based on the neural
Seq2Seq network and pointer network, which consists of a delete decoder and a copy-generate decoder.
Given a source sentence as input, first the delete decoder deletes unnecessary words from the source
sentence, then new words are either generated from a large vocabulary or copied from the source sen-
tence with the copy-generate decoder. The model is equipped with a strong ability of not only word
deletion, but also word reordering and word rephrasing. Experiments show that the model outperforms
the baselines.
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