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Abstract

Recent evaluations on bilingual lexicon extraction from specialized comparable corpora have
shown contrasted performance while using word embedding models. This can be partially ex-
plained by the lack of large specialized comparable corpora to build efficient representations.
Within this context, we try to answer the following questions: First, (i) among the state-of-the-art
embedding models, whether trained on specialized corpora or pre-trained on large general data
sets, which one is the most appropriate model for bilingual terminology extraction? Second (ii)
is it worth it to combine multiple embeddings trained on different data sets? For that purpose, we
propose the first systematic evaluation of different word embedding models for bilingual termi-
nology extraction from specialized comparable corpora. We emphasize how the character-based
embedding model outperforms other models on the quality of the extracted bilingual lexicons.
Further more, we propose a new efficient way to combine different embedding models learned
from specialized and general-domain data sets. Our approach leads to higher performance than
the best individual embedding model.

1 Introduction

Bilingual lexicons are fundamental resources in multilingual natural language processing tasks such as
machine translation (Och and Ney, 2003), cross-language information retrieval (Nie, 2010) or computer-
assisted translation (Delpech, 2014). Because a manual compilation of bilingual lexicons requires sub-
stantial human efforts, bilingual lexicons are automatically extracted from bilingual corpora. These
corpora can be parallel or comparable data sets. Despite good results obtained when compiling bilingual
lexicons from parallel corpora, the latter are scarce resources, especially for specialized and technical
domains and for language pairs not involving English. In this context, comparable corpora are an inter-
esting and practical alternative to the use of parallel corpora.

Comparable corpora, which gather texts sharing common features such as domain, topic, discourse,
etc. without having a parallel source text-target text relationship, allow access to the original vocabulary
without falling under the influence of the human translation. Compiling a large comparable corpus is
easier, especially for general language (Talvensaari et al., 2007). In contrast, specialized comparable
corpora are traditionally of modest size due to the difficulty to obtain many specialized documents in a
language other than English. Specialized comparable corpora have a size of around one million words
whereas general-domain comparable corpora can gather several million words (Morin and Hazem, 2014).

One way to overcome the small size of specialized comparable corpora is to associate external re-
sources. These resources may be close specialized corpora (e.g. a breast cancer corpus may benefit from
contexts derived from a more general oncology corpus), corpora of different types of discourse and gen-
der (e.g. a corpus of popular science discourse supplementing a corpus of scientific discourse), corpora of
general language or out-of-domain data. The main challenge is to know how to associate such resources
with a comparable specialized corpus.

This work is licensed under a Creative Commons Attribution 4.0 International
License. License details: http://creativecommons.org/licenses/by/4.0/.



938

According to Jakubina and Langlais (2017), word embeddings are more effective on large compa-
rable corpora than on small comparable corpora. This statement lend support the idea that enriching
small specialized comparable corpora may be beneficial to bilingual terminology extraction task. The
combination of external resources such as a general-domain comparable corpus with a specialized com-
parable corpus can be performed using word embedding models. We recently conducted a first attempt
in Hazem and Morin (2017) and have shown under which conditions external resources introduced in
the form of Skip-gram and CBOW models can be jointly used to improve the performance of bilingual
terms extraction. However, our approach was not able to compete with the historical count-based pro-
jection approach (Fung and McKeown, 1997; Rapp, 1999). Our current work pursues this direction by
contrasting different neural embedding models and by showing how to take advantage of their combi-
nation. More specifically, we show that the character-based Skip-gram and CBOW models (Bojanowski
et al., 2016) drastically outperform other models including Skip-gram and CBOW. We also propose a
new approach based on Ensemble models which combines specialized and general domain embeddings
to obtain a unified Meta-Embedding model. Our approach shows significant improvements and obtains
the best results on two specialized English/French comparable corpora.

2 Related Work

According to Hermann and Blunsom (2014), methods dealing with bilingual lexicon extraction from
comparable corpora can be classified as distributional-based or distributed-based approaches. In the
former, words are represented by their context vectors using a distributional count-based approach also
known as the standard approach (Fung, 1998; Rapp, 1999). While in the latter, words are embedded
into a low-dimensional vector space using neural network models (Bengio et al., 2003; Mikolov et al.,
2013b).

The historical standard approach builds a context vector for each word of the source and the target
languages, translates the source context vectors to the target language using a bilingual seed lexicon,
and compares the translated context vectors to each target context vector using a similarity measure.
Different contributions have been proposed in the past few years to improve each step of the standard
approach (Gaussier et al., 2004; Gamallo, 2007; Ismail and Manandhar, 2010; Prochasson and Fung,
2011; Hazem and Morin, 2012; Bouamor et al., 2013, among others).

With the advent of neural network techniques, Mikolov et al. (2013a) were the first to propose a
method to learn a linear transformation from the source language into the target language to improve
the task of lexicon extraction from bilingual corpora. Faruqui and Dyer (2014) introduced canonical
correlation analysis (CCA) to project the embeddings in both languages to a shared vector space. More
recently, Artetxe et al. (2016) presented an approach for learning bilingual mappings of word embeddings
that preserves monolingual invariance using several meaningful and intuitive constraints related to other
proposed methods (Faruqui and Dyer, 2014; Xing et al., 2015).

Jakubina and Langlais (2017) made a careful comparison of the approaches of Mikolov et al. (2013a)
and Faruqui and Dyer (2014) with the standard approach. They have clearly shown that the two previous
approaches outperform the standard approach for very frequent terms to be translated (the number of
occurrences is at least 250 from an English-Spanish comparable corpus obtained from the 6th workshop
on statistical machine translation gathering 2.55 giga words). On the other hand, when the terms are
less frequent (the number of occurrences is less than 25 from a French/English comparable corpora
built from the Wikipedia dumps gathering 1.53 giga words), the standard approach slightly outperforms
the two previous embedding approaches. More recently, we have shown under which conditions Skip-
gram and CBOW models can be jointly used to improve the performance of bilingual terms extraction
from specialized comparable corpora without exceeding the results of the standard approach (Hazem and
Morin, 2017).

Other works performed bilingual word representation without word-to-word alignments of comparable
corpora. Chandar et al. (2014) and Gouws et al. (2014) for instance used multilingual word embeddings
based on sentence-aligned parallel data whereas Vulić and Moens (2015) and Vulić and Moens (2016)
used document-aligned non-parallel data to produce bilingual word embeddings. Theses works are based
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on sentence- or document-aligned of general-domain comparable corpora and are outside the scope of
this study. It is unlikely to find this type of alignments in a specialized comparable corpus.

3 Embedding Models

In this section, we briefly recall the main and recent word embedding models that we will investigate in
this study.

CBOW and Skip-gram are two distributed representations introduced by Mikolov et al. (2013b) that
capture linguistic regularities, namely the Continuous Bag-of-Words (CBOW) model and the Skip-
gram model. The principle of the CBOW model is to combine the representations of surrounding
words to predict the word in the middle, while the training objective of the Skip-gram model is to
learn how to predict the surrounding words based on the representations of the middle word. If
these models exhibit similar architectures, CBOW is faster and more suitable for large data sets
while Skip-gram gives better word representations when monolingual data is small (Mikolov et al.,
2013a).

Glove takes advantage of the main benefits of count data while simultaneously capturing the meaningful
linear substructures prevalent in prediction-based methods such as word2vec. It is a global log-linear
regression model that makes use of a global factorization model and local context window methods
to represent words in a global vector space model (Pennington et al., 2014). This model directly
captures the global statistics from the corpus based on co-occurrence word probabilities. Its training
objective is to learn word vectors such that their dot product equals the log-probability of word’s
co-occurrence. Glove has shown good results in word analogy, word similarity, and named entity
recognition tasks.

Structured Embeddings are two adaptations of CBOW and Skip-gram models that include ordering
information1 (Ling et al., 2015). While word2vec is insensitive to word order, the structured em-
bedding model includes position information in the context representation of words. Given the
embedding of the center word w, the Skip-gram model for instance uses a single output matrix to
predict every contextual word. In contrast, the structured Skip-gram adapts the model to the posi-
tioning of the surrounding words. It defines an output for each relative position to the center word.
The adaptation of CBOW is the continuous window model where the input is the concatenation of
the embeddings of context words. While in the standard CBOW, the input model is the sum of the
embeddings of the context words.

Character n-gram Embeddings is an enhanced variant of the Skip-gram and CBOW models that en-
rich word vectors with subwords information. It takes into account the internal structure of words
which can be very useful for morphologically rich languages. It also incorporates character n-
gram embeddings where each word is represented by a bag-of character n-gram (Bojanowski et al.,
2016). More precisely, it uses character embedding and word embedding models jointly perform-
ing the vector sum of both to form the final embedding representation of words. We refer to the
character Skip-gram model by CharSG and the character CBOW model by CharCBOW.

Other models such as the dependency-based model (Levy and Goldberg, 2014) and generalized-based
model (Li et al., 2017) were assessed but not presented in this paper for sake of clarity and because of
the very low results obtained on the specialized domains when compared to the above presented models.

Several pre-trained embedding models are publicly available such as CBOW and Skip-gram models
(Mikolov et al., 2013b), global word representation-based models (Pennington et al., 2014), character
skip-gram-based models (Bojanowski et al., 2016), etc. If it is interesting to study the impact of pre-
trained embeddings on bilingual terminology extraction from comparable corpora. The major part of the
above cited pre-trained embedding models exist solely in English. We only use the character skip-gram
(CharSG) model (Bojanowski et al., 2016) which is available in both French and English.

1Word order in context word representation.
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4 Approach

The task of bilingual terminology extraction from specialized comparable corpora consists of acquiring
for each term of the source language its translation in the target language. The basic idea using embed-
ding models is to first (1) build word embeddings of the source and the target languages, then, (2) to build
a mapping matrix (Artetxe et al., 2016) that allows to obtain for each source term, its representation in the
target language and finally, (3) to measure the similarity between the target representation of the source
term and all the word candidates of the target language to extract the most similar term as the correct
translation (Mikolov et al., 2013a; Artetxe et al., 2016). Our approach follows these three steps (Mikolov
et al., 2013a) while acting at the word embedding level representation. Our idea is to enrich the word
embedding representation of the source and target languages in order to improve the mapping matrix and
so, bilingual terminology extraction from specialized comparable corpora. To do so, we present several
ways to take advantage of word embedding models and ensemble approaches.

The principle of ensemble approaches is to combine different models in order to capture the strengths
of each individual model. The main combination techniques that have shown their effectiveness so far
are vectors addition (Garten et al., 2015) and vectors concatenation (Garten et al., 2015; Yin and Schütze,
2016). For vectors addition, given two embedding models, the procedure consists in applying a simple
dimension-wise vectors addition2. For vectors concatenation, given two embedding models of dimen-
sions dim1 and dim2, the resulting concatenated embedding vector will be of size dim1+dim2. The vectors
have to be normalized before concatenation. Usually L2 norm is applied3. Yin and Schütze (2016) per-
formed a weighted concatenation of five embedding models. They also experienced the SVD (Singular
Value Decomposition) on top of weighted concatenation vectors of dimension 950. This resulted in a
reduced model of 200 dimensions.

In the line of the above cited approaches, we first explore the ensemble modeling (additive and con-
catenation) on a large scale over the multiple word embedding models presented in Section 3. This is
done exclusively on the small specialized comparable corpora. We then explore different ways to supply
each specialized comparable corpus with external resources based on ensemble approaches. We show
new ways to take advantage of external data and embedding models in order to efficiently extract bilin-
gual lexicons from specialized comparable corpora. Our methodology is two-fold. In the subsection 4.1
we first describe ensemble approaches and their application on one type of corpora (here the specialized
comparable corpora), then in subsection 4.2, we introduce the adaptation of ensemble approaches while
combining the specialized corpus with external resources.

4.1 Specialized Meta-Embeddings

While each embedding model captures some specific context word information, it is natural and straight-
forward to seek for their complementarity. The specialized meta-embeddings approach consists in com-
bining different embedding models learned from the specialized corpus. We basically use an ensemble
approach to represent each word, which means that each word has its own meta-embedding. This is
illustrated in the following equation:

Ensemble(w) = f(v1w, v
2
w, ..., v

n
w) (1)

with Ensemble(w) the meta-embedding representation of a given word w and f the ensemble approach
used to combine the different embedding models. f can be the additive or the concatenation technique.
Finally, vnw represents a given embedding model of the word w and n the number of used embedding
models. For instance, given the Glove, the CBOW and the Skip-gram models trained on a specialized
corpus, the ensemble model of a given word w would be the concatenation (or addition) of its three
embedding representations (f(vGlove

w , vCBOW
w , vSkip−gramw ).

2This technique can not be applied when embeddings are not of the same dimension size (unless using padding).
3L2 norm can be applied either at dimension level (as suggested by Glove authors) or at vector length level.
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4.2 Mixed Meta-Embeddings

While specialized comparable corpora suffer from the lack of data, one good alternative is to enrich
them with external resources. The remaining question is how to take advantage of out-of-domain data to
increase specialized corpus size without degrading its specific properties. A basic way to combine word
embeddings from two different data sets (here the specialized and the external corpora) is to apply an
ensemble approach while fixing the type of the embedding model. For instance, using the CBOW model,
each word can be jointly represented by its embedding vector issued from the specialized corpus (noted
vsw) and its embedding model issued from the general domain corpus (noted vgw). This is illustrated in
the following equation:

Ensemble(w) = f(vsw, v
g
w) (2)

The Mixed Meta-Embedding representation can be generalized over several embedding models as
follows:

Ensemble(w) = f ′(f(vs
1

w , vg
1

w ), f(vs
2

w , vg
2

w ), ..., f(vs
n

w , vg
n

w )) (3)

where f and f ′ represent the ensemble functions (concatenation or addition). n represents the number of
embedding models. One condition while combining embeddings built from different corpora is to ensure
that a given word w is present in all the combined corpora. If not, we can choose to discard this word or
to replace the missing vector by zeros (padding).

5 Data and Resources

In this section, we describe the different textual resources used for our experiments: the comparable
corpora, the bilingual dictionary and the terminology reference lists.

5.1 Comparable Corpora

The specialized comparable corpora were selected in terms of bilingual terminology access in technical
domains. For our experiments, we used two specialized comparable corpora:

Breast cancer corpus (BC) is composed of documents collected from scientific and medical portals
such as the ScienceDirect4. The documents were taken from the medical domain within the sub-
domain of “breast cancer”. We have selected the documents published between 2001 and 2015
where the title or the keywords contain the term breast cancer in English and its translation in
French.

Wind energy corpus (WE) has been released in the TTC project5. This corpus has been crawled from
the Web using Babouk crawler (Groc, 2011) based on several keywords such as wind, energy, rotor
in English and its translation in French.

In addition, we use three corpora of general language as external resources:

JRC acquis corpus (JRC) is a collection of legislative texts of the European Union6. We used the
French-English version at OPUS which is based on the paragraph-aligned corpus provided by JRC
(Tiedemann, 2012).

Common crawl corpus (CC) is an open repository of data collected over 7 years of web crawling sets
of raw web page data and text extracts7.

4www.sciencedirect.com/
5www.ttc-project.eu/index.php/releases-publications
6opus.lingfil.uu.se/JRC-Acquis.php
7commoncrawl.org
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Wikipedia corpus (Wiki) The English wikipedia corpus8 is a dump which was released on 03-Feb-2018
and the French wikipedia corpus 9 was released on 02-Feb-2018.

Even if JRC, CC are parallel corpora, we didn’t explicitly exploit their parallel relationship. We
considered these external data sets as if they were comparable corpora. The documents were normalized
through tokenisation, part-of-speech tagging, and lemmatisation using the TTC TermSuite10. Finally, the
function words were removed and the hapax were discarded. Table 1 shows the number of documents (#
doc.) and the number of content words (# words) for each corpus.

Corpus # content words # distinct words

FR EN FR EN

BC 521,262 525,934 6,630 8,221
WE 313,954 314,551 5,346 6,378

JRC 70.3M 64.2M 100,004 93,104
CC 91.3M 81.1M 250,999 259,226
WIKI 740.2M 2,669M 1,067,095 2,443,866

Table 1: Characteristics of the corpora.

5.2 Bilingual Dictionary
The bilingual dictionary used in our experiments is the French/English dictionary ELRA-M0033
(243,539 entries) available from the ELRA catalogue11. This resource is a general language dictionary
which contains only a few terms related to the medical and wind energy domains.

5.3 Gold Standard
To evaluate the quality of bilingual terminology extraction from specialized comparable corpora, a bilin-
gual terminology reference list is required. In the general domain, the reference list is randomly com-
posed of a sub-part of the bilingual dictionary (Gaussier et al., 2004; Jakubina and Langlais, 2017). In
the specialized domain, this list is usually composed of few words that reflect the terminology of the
specialized comparable corpus. For instance, Chiao and Zweigenbaum (2002) used a list composed of
95 single words, Morin et al. (2007) used 100 single words and Bouamor et al. (2013) used 125 and 79
single words. For breast cancer, the lists are derived from the UMLS12 meta-thesaurus. Concerning wind
energy, the lists are provided with the corpora (see footnote 5). Each word composing a pair of terms of a
reference list appears at least 5 times in the comparable corpus. The bilingual terminology reference list
is composed of 248 French/English single words for the Breast cancer corpus and 150 French/English
single words for the Wind energy corpus.

6 Experiments and Results

We conducted two sets of experiments. The first one aims at providing insights into the behaviour of
each state-of-the-art embedding model on the specialized comparable corpora. The second one aims at
studying the contribution of ensemble models.

We present the results obtained for the terms belonging to the reference list for English to French
direction measured in terms of the Mean Average Precision (MAP) (Manning et al., 2008) as follows:

MAP (Ref) =
1

|Ref |

|Ref |∑
i=1

1

ri
(4)

8dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
9dumps.wikimedia.org/frwiki/latest/frwiki-latest-pages-articles.xml.bz2

10code.google.com/p/ttc-project
11www.elra.info/
12www.nlm.nih.gov/research/umls
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where |Ref | is the number of terms of the reference list and ri the rank of the correct candidate translation
i.

Figure 1 shows the results of each embedding model for the task of bilingual terminology extrac-
tion from the two specialized comparable corpora. We report the results of the continuous bag-of-word
model (CBOW ), the Skip-gram model (SG), the glove model (Glove), the structured continuous win-
dow model (Cwindow) and the two character n-gram models, namely the character skip-gram model
(CharSG) and the character CBOW model (CharCBOW )13. For each specialized comparable corpus,
we varied the context window size (w) (see sub-figures 1(a) and 1(b)) and the embeddings dimension
size (dim) (see sub-figures 1(c) and 1(d)).
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(b) Wind energy
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(c) Breast cancer
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(d) Wind energy

Figure 1: Contrasting several embedding representations on the breast cancer and wind energy corpora.

The first remarkable point is the performance of the character n-gram embedding models which far
outperform other models. This is an important finding since to our knowledge, no previous evaluation
of character n-gram-based models have been conducted so far for bilingual terminology extraction from
specialized corpora. The first competitive model which is CharCBOW , is not sensitive to the con-
text window size as well as the embeddings dimension size. The second competitive model which is
CharSG, is also not sensitive to the embeddings dimension size but sensitive to the context window
size. CBOW which is the third competitive model, turned out to be the best word-based model. Nev-
ertheless, its performance is far below the character-based models. CBOW is also not very sensitive to
the context window and the embeddings dimension sizes.

Tables 2 and 3 show a comparison of several combinations of word embedding models for the two
specialized comparable corpora. Each combination is based on L2 normalization at vector length level
(len) or at vector dimension level (dim). We chose the three embedding models that have shown the
best performance individually (according to the Figure 1: CharSG, CharCBOW and CBOW ) and

13We don’t report the results of dependency-based and structured-based models due to the low performance of these ap-
proaches.
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we combine them with all the models. For each Table, the first line is a quick reminder of the three
embedding models and their performance in terms of MAP scores shown between brackets. The follow-
ing two lines also remind the embedding models used for combination and their MAP scores when used
individually. The following four lines present the results of the combination of these models by addition
or concatenation for both normalizations. For instance in Table 2, the CharSG and CBOW embedding
models used individually have respectively 36.4% and 21.9% of MAP and the combination of the two
models gives 22.9% of MAP by addition and 34.9% of MAP by concatenation with L2 normalization at
vector length level. Combining embedding models is very effective when using concatenation in most
cases. The best combination model is obtained by the concatenation of CharSG and CharCBOW us-
ing length L2 Norm (70.3% of MAP in Table 2) and by the concatenation of CharCBOW and CBOW
(49.5% of MAP in Table 3) followed by the same model using dimension L2 Norm for breast cancer
corpus (68.1% of MAP in Table 2) and using CharSG with SG concatenation for wind energy corpus
(45.4% of MAP in Table 3). We observe that both types of L2 normalization are in general useful for
concatenation with a better performance when using length normalization.

CharSG (36.4) CharCBOW (60.8) CBOW (21.9)
L2 Norm.

CBOW SG Glove CharCBOW Cwindow SG Glove CBOW Cwindow SG Glove Cwindow

21.9 16.9 12.4 60.8 16.1 16.9 12.4 21.9 16.1 16.9 12.4 16.1

Addition 22.9 15.9 19.7 59.3 18.9 47.6 40.5 57.3 55.8 20.3 14.6 18.4
Len

Concat. 34.9 34.6 29.8 70.3† 34.1 65.6† 48.3 64.3† 64.7† 26.2† 18.2 23.9†

Addition 21.9 17.2 20.2 56.0 18.8 40.9 40.8 55.1 48.5 17.4 15.5 18.5
Dim

Concat. 37.7† 37.0 31.4 68.1† 33.8 58.8 50.9 62.2† 59.2 23.9† 18.9 26.9†

Table 2: Embeddings combination using the breast cancer corpus (MAP %) (†:t-test significance at 0.05).

CharSG (36.9) CharCBOW (38.2) CBOW (19.6)
L2 Norm.

CBOW SG Glove CharCBOW Cwindow SG Glove CBOW Cwindow SG Glove Cwindow

19.6 13.7 4.81 38.2 19.6 13.7 4.81 19.6 19.6 13.7 4.81 19.6

Addition 35.7 21.1 18.6 33.2 23.7 29.5 23.1 41.9† 25.5 11.8 13.4 10.4
Len

Concat. 45.4† 42.8† 24.1 38.8† 30.0 45.6† 28.0 49.5† 40.1† 21.1† 15.9 22.0†

Addition 20.9 25.5 13.5 33.2 12.8 26.5 12.1 25.6 12.6 11.9 13.2 11.1
Dim

Concat. 31.3 43.4† 18.2 39.0† 32.1 44.0† 17.4 32.3 41.6† 20.2 17.1 23.5†

Table 3: Embeddings combination using the wind energy corpus (MAP %)(†:t-test significance at 0.05).

Model BC JRC CC WIKI ALL BC + JRC BC + CC BC + WIKI ALL

CharCBOW 60.8 35.3 57.4 60.7 62.7 52.9 73.9 73.1 74.3

CharSG 36.4 41.1 61.6 58.8 61.8 65.2 76.5 69.2 70.3

(Bojanowski et al., 2016) - - - 72.4 - - - - -

Model WE JRC CC WIKI ALL WE + JRC WE + CC WE + WIKI ALL

CharCBOW 38.2 42.8 60.1 67.8 70.1 43.8 65.9 71.3 71.4

CharSG 36.9 49.9 61.9 71.0 70.8 55.1 65.7 72.2 72.4

(Bojanowski et al., 2016) - - - 68.2 - - - -

Table 4: Results (MAP %) of different embedding models on the specialize corpora as well as several out-
of-domain corpora and their combinations ((Bojanowski et al., 2016) is the pre-trained CharSG model).

Table 4 shows the results of different combinations14 of specialized corpora with external resources.
14Combination means that we first merge different data sets in one single corpus and then, we learn an embedding model
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We represent in the 1st column the results for the specialized corpora taken individually (BC and WE)
and then, from the 2nd to the 4th column we show the results of the external resources taken individually
and their combination represented in the 5th column (ALL). Finally, from the 6th to the 8th column we
combine the specialized corpora with each external data and then their entire combination15 (All).

Overall, we see that combining different resources gives significant improvements over the two spe-
cialized corpora. We also notice the usefulness of external data used individually which performs better
than small specialized corpora, except for CharCBOW which shows the strength of this model and its
usefulness over other types of embedding models. Also, using the pre-trained embedding model of Bo-
janowski et al. (2016) obtained good results (72.4% for BC and 68.2% for WE) but if we compare it to
the same model (CharSG) learned while combining specialized and external data sets, we observe better
performance (76.5% for BC and 72.4% for WE) which shows that using jointly specialized and exter-
nal data is more efficient than the use of external data only. This statement is confirmed by the results
obtained by individual external data sets which are always lower than their combination with specialized
corpora.

Individual corpus Corpus combination (GSA)

Models BC JRC CC BC + JRC BC + CC

SA 27.0 52.0 75.5 61.7 80.2

CBOW 17.1 40.3 60.9 49.9 67.7
SG 12.8 40.5 56.0 46.5 63.2
CharCBOW 60.8 35.3 57.4 52.9 73.9
CharSG 36.4 41.1 61.6 65.2 76.5

Vector concatenation

SCBOW - - - 53.7 70.7
SSG - - - 36.3 40.2
SCBOW+SSG - - - 56.1 70.9
SSA - - - 66.6 82.3
Our approaches
SCharCBOW - - - 64.9 74.9
SCharSG - - - 73.0 77.4
SCharCBOW+SCharSG - - - 67.0 80.7
Meta-Emb (Best) - - - 74.8 83.1

Table 5: Results (MAP %) of the Standard Approach (SA), the Global Standard Approach (GSA)
and the Selective Standard Approach (SSA) and our approaches using CharCBOW and CharSG and
their combinations (SCharCBOW, SCharSG and Meta-Emb) for the breast cancer corpus (BC) using
the different external data (the improvements indicate a significance at the 0.05 level using the Student
t-test).

In Table 5, we report the results obtained in Hazem and Morin (2017) (SA, CBOW, SG, SCBOW,
SSG ,SCBOW+SSG and SSA) and our results using combination and meta-embeddings of charac-
ter n-gram models (SCharCBOW, SCharSG, SCharCBOW+SCharSG and Meta-Emb (Best)16). The
main conclusion in Hazem and Morin (2017) is that the best embedding combination (SCBOW+SSG)
couldn’t outperform the selective standard approach (SSA). According to our results, character n-gram
models and their combination obtained better results than the best CBOW and Skip-gram combina-
tion (SCBOW+SSG) and also outperformed the selective standard approach (SSA obtained 66.6% using
BC + JRC and 82.3% using BC + CC while our best model obtained 74.8% and 83.1% on the same
corpora). The results of Table 5 provide strong support for data combination and meta-embeddings using
character n-gram models. Also, we highlight the fact that character ngram models and their combination
is much faster than CBOW and Skip-gram models. In addition, the dimension size of embedding models

on the merged corpus.
15ALL in the 5th column means that we combine JRC, CC and WIKI, while ALL in the 9th column means that we

combine JRC, CC and WIKI and the specialized corpora BC or WE.
16Meta-Emb (best) stands for the combination of SCharSG on specialized corpus with SCharCBOW+SCharSG on external

data.
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is very low (around 300) while in the standard approach it corresponds to the vocabulary size which leads
to sparse vectors and high computational cost.

7 Discussion

The first important finding of this work is the efficiency of the character n-gram models (CharCBOW
and CharSG) which drastically outperform other models, whether on specialized or general domain data
sets. Their better performance can be explained by the fact that both models are based on characters to
build the embedding models. While CBOW and Skip-gram suffer from the lack of data to build efficient
models over specialized corpora, the character-based approaches benefit of much more training examples
as they use characters for their models. The second important finding is the performance of external data
when applied for extracting bilingual terms. This is not surprising as external data sets such as wikipedia
or common crawl for instance, contain several scientific and specialized documents. In addition, we
could observe the complementarity of external resources with the specialized domain data sets. More
precisely, concatenating embeddings of specialized and external resources significantly improves the
results. This can be explained by the nature of the captured information which can be resumed in the
concatenated embedding vectors. If a single generic embedding model is difficult to obtain, character n-
gram and word-based embedding models can be efficiently combined to improve bilingual terminology
extraction from comparable corpora.

We also conducted an error analysis of the different proposed models and we couldn’t find a strong
relation between the embedding models and the non captured terms. However, we observed that the
CharCBOW model with the meta-embedding combination using BC with CC corpora improves overall
the rank of the translations obtained for each individual corpus. By looking at the 115 translations of
BC and the 80 of BC+CC not found in the first rank, we found 58 terms in common including 44 terms
with a better rank with BC+CC corpora. In the same way, from the 75 translations of CC and the 80 of
BC+CC not found in the first rank, we found 62 terms in common including 46 terms with a better rank
with BC+CC corpora. It might seem surprising that we found more terms outside the first rank with CC
corpus than BC+CC (80 versus 75) since the MAP is lower with CC than BC+CC (57.4 versus 73.9).
In fact, the CharCBOW model with BC+CC improves overall the rank of all the translations of CC and
more particularly the rank of the first hundred translations taken into account in the calculation of the
MAP. We also observed that the more frequent terms are the best translated for SA and SSA approaches.
For the embedding approaches, this observation is not relevant. For instance, the translations of frequent
terms such as cancer and breast are found in the first ranks and the translations of infrequent terms
such as lumpectomy and fibroadenoma are found in the last ranks with SA and SSA approaches. With
embedding approaches, cancer and fibroadenoma are found in the first ranks and breast and lumpectomy
in the last ranks. We have not been able to better characterize terms in the last ranks with embedding
approaches. This is strongly dependent on embedding parameters and also context size and embedding
dimensions. Our best system, however obtained 90% of precision on top 5, in the perspective of providing
first translation terms for translation aided systems, our proposed approach is certainly more appropriate
than the standard approach whether in terms of computational cost or in terms of accuracy.

8 Conclusion

In this paper we have explored a variety of embedding models and there impact on the task of bilingual
terminology extraction from specialized comparable corpora. We have also proposed meta-embedding
representations and have shown under which conditions they can be jointly used for better perfor-
mance. If further investigations are probably needed, our findings strengthens the idea that using meta-
embeddings based on specialized and general domain data sets improves the performance of mining
bilingual specialized lexicons.
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Ivan Vulić and Marie-Francine Moens. 2016. Bilingual distributed word representations from document-aligned
comparable data. Journal of Artificial Intelligence Research (JAIR), 55(1):953–994.

Chao Xing, Dong Wang, Chao Liu, and Yiye Lin. 2015. Normalized word embedding and orthogonal transform
for bilingual word translation. In Proceedings of the 2015 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (NAACL-HLT’15), pages 1006–
1011, Denver, CO, USA.

Wenpeng Yin and Hinrich Schütze. 2016. Learning Word Meta-Embeddings. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (ACL’16), pages 1351–1360, Berlin, Germany.


