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Abstract

We present a new summary evaluation approach that does not require human model summaries.
Our approach exploits the compositional capabilities of corpus-based and lexical resource-based
word embeddings to develop the features reflecting coverage, diversity, informativeness, and
coherence of summaries. The features are then used to train a learning model for predicting the
summary content quality in the absence of gold models. We evaluate the proposed metric in
replicating the human assigned scores for summarization systems and summaries on data from
query-focused and update summarization tasks in TAC 2008 and 2009. The results show that
our feature combination provides reliable estimates of summary content quality when model
summaries are not available.

1 Introduction

Quantifying the quality of summaries is an important and necessary task in the field of automatic text
summarization. Current summary evaluation methods like manual and automated pyramid (Passon-
neau et al., 2005; Passonneau et al., 2013) and well-established ROUGE scores (Lin, 2004) heavily rely
on multiple human-generated model summaries to assess the quality of system-generated summaries.
This evaluation paradigm falls short on non-standard test sets where model summaries are not available.
According to the quantitative analysis by Louis and Nenkova (2009a); Singh and Jin (2016), evaluat-
ing summaries by their comparison with the input obtains good correlations with manual evaluations.
Therefore, identifying a suitable input-summary similarity metric will provide a means for model-free
evaluation of summaries.

We hypothesize that comparing semantic representations of the input and summary content will lead
to more accurate input-summary evaluation. Hence, we explore the effectiveness of compositionality of
word embeddings in developing a model-free automatic metric to evaluate summary content quality. In
particular, our approach incorporates the word embedding models trained on the Google News corpus
and the WordNet lexical resource to compare centroid vectors of the input and summary. To demonstrate
the effectiveness of our approach, we have conducted a set of experiments on data from query-focused
and update summarization tasks in TAC' 2008 and 2009. The reliability of our metric is also studied
conducting an error analysis. The experiment results show that quantifying the indicators of content
quality by taking advantage of compositional properties of the word and sense embeddings produces
summary scores which accurately replicate human assessments. It is noteworthy that our approach com-
plements but is not intended to replace existing model-based evaluation approaches, since their reliability
and strength are important for high confidence evaluations.

2 Related Work
Proposals for developing automatic summary evaluation methods (Ellouze et al., 2013; Ng and Abrecht,
2015; ShafieiBavani et al., 2017) have been put forward in the past. However, these methods are not
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applicable on non-standard test sets where model summaries are not available. Herein, we try to briefly
review the most significant approaches that have addressed this issue. Donaway et al. (2000) proposed
an alternative to model-based evaluation where a comparison of the input text with a summary can clarify
how good the summary is. A summary that has higher similarity with the input text can be considered
better than one with lower similarity. Radev et al. (2003) performed an automated ranking of the test
documents using a search engine scenario. Their approach was motivated by the assumption that the
distribution of terms in a good summary is similar to the distribution of terms in the input document.

With the same intuition, Louis and Nenkova (2009a; 2013) introduced an evaluation system (SIMetrix)
that comprises multiple features to determine the quality of a summary. Their focus was on computing
divergences between the probability distributions of words in the input and summary. Jensen Shannon
divergence and feature regression turned out to be their best metrics. Louis and Nenkova (2009b) also
presented a similar evaluation approach utilizing a collection of large number of system summaries in
place of model summaries. Saggion et al. (2010); Cabrera-Diego and Torres-Moreno (2017) proposed
follow-up works to SIMetrix to assess the usefulness of divergences for multilingual summarization
evaluation, and the applicability of multiple divergences for evaluating summaries.

Alternatively, we assume that the way of representing the input and summary is a key factor in high
performance prediction of manual metrics. To this end, we exploit the compositional capabilities of word
embeddings to design our features of content quality based on the continuous vector representation of
words and senses. We then present a quantitative analysis of our features for characterizing the relation
between the input and summary content in the absence of model summaries. We have finally evaluated
our approach through two levels of granularity on two years data in TAC for query-focused and update
summarization tasks. We have also compared our approach with model-based ROUGE, and model-
free SIMetrix as an input-summary evaluation metric. The results demonstrate that the Support Vector
Regression (SVR) of our features achieves the best correlation with manual judgments.

3 Data and Evaluation Metrics

We carry out our experiments on the query-focused and update summarization tasks from TAC 2009
with 44 inputs as our test set, and from TAC 2008 with 48 inputs as the development set. These datasets
consist of two sets of 10 news documents for each input: (i) set A for initial summaries; (ii) set B for
update summaries. Both A and B are on the same general topic but B contains documents published later
than those in A. The update summary of set B is created assuming that the user is aware of what exists
in set A. There are also four human-crafted model summaries for each input in each document set. A
maximum of 100 words summary that addresses the information required by the given query statement
(consisting of a title and narrative) has been produced by each of the 53 and 58 automatic summarizers
participated in TAC 2009 and 2008, respectively. An example query statement is shown here:

Title: Barack Obama
Narrative: Track the increase in Barack Obama’s popularity, visibility, support, and activities.

Content and linguistic quality are two conventional factors in evaluation of summary quality. Herein,
we focus on the problem of automatic evaluation of content quality. Hence, we assess the performance
of our metrics in replicating manual correlations of pyramid and responsiveness. It is noteworthy that
responsiveness incorporates at least some aspects of linguistic quality.

Pyramid: This evaluation method (Passonneau et al., 2005) is a content assessment measure which
compares content units in a system summary to weighted content units in a set of model summaries.
It uses multiple human models from which annotators identify semantically defined Summary Content
Units (SCU). Each SCU is assigned a weight equal to the number of human model summaries that
express that SCU. An ideal maximally informative summary would express a subset of the most highly
weighted SCUs, with multiple maximally informative summaries being possible. The pyramid score for
a system summary is equal to the ratio between the sum of weights of SCUs expressed in a summary
(again identified manually) and the sum of weights of an ideal summary with the same number of SCUs.
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Four human summaries provided by NIST for each input and task were used for the pyramid evaluation
at TAC.

Responsiveness: This is a measure of overall quality combining both content and linguistic quality.
Summaries must present useful content in a structured fashion in order to better satisfy the user’s need.
Assessors directly assigned scores on a scale of 1 (poor) to 5 (very good) to each summary. These
assessments are done without reference to any model summaries.

Linguistic Quality: This measure ranks summaries in a 5-point scale indicating how well a summary
satisfied the factors of linguistic quality (i.e., grammaticality, non-redundancy, referential clarity, focus,
structure and coherence). In our work, we do not evaluate linguistic quality.

4 Features for Summary Evaluation

We propose five classes of features to assess the quality of summary content in the absence of model
summaries: (i) Distributional Semantic Similarity; (ii) Topical Relevance; (iii) Query Relevance; (iv)
Coherence; and (v) Novelty. Before computing the features, all words in input documents, summaries,
and queries are converted to lower case and stop-word filtered. We experiment with two variants of word
embeddings as the basic building block to design our features:

Corpus-based Word Embeddings: We utilize the 300-dimensional embeddings for 3M words and
phrases trained on Google News?, a corpus of ~10'! tokens, using word2vec CBOW (Mikolov et al.,
2013). Word2vec learns a vector representation for each word using a neural network language model. It
also allows to learn complex semantic relationships using simple vectorial operators, such as vec(king)—
vec(man) + vec(woman) =~ vec(queen). Stemming is not performed to make the word embeddings
discover the linguistic regularities of words with the same root.

Lexical Resource-based Word Embeddings: We use WordNet (Fellbaum, 1998) to measure the
lexico-semantic similarity between the input and its summary. Since the constraints of WordNet lexi-
cal resource can be formalized as constraints on embeddings, we can use embeddings of non-word data
types (i.e., senses). Specifically, we compute the embedding of a word by averaging the embeddings of
its senses in WordNet. For example, the vector of the word suit is modeled as the average of a vector
representing lawsuit and a vector representing business suit.

We obtain the sense embeddings using the pre-trained model by Rothe and Schiitze (2015), that lives
in the same vector space as the pre-trained word2vec by Mikolov et al. (2013). Their model is an
autoencoder neural-network that takes word embeddings and learns sense embeddings based on the fol-
lowing intuitions: (i) a word’s embedding is the sum of the embeddings of its senses; and (ii) the senses
related by WordNet relations (e.g., hypernymy, antonymy, similarity) have similar embeddings. Consid-
ering WordNet relations also helps to compute embeddings for senses in WordNet which are not in the
word2vec vocabulary.

We further assume that the probability of a word sense is in proportion to its frequency in WordNet.
Hence, the probability that a sense S;; is the meaning of the word wy, is the ratio of the frequency of that
sense freq(S;;) to the total frequency of the word. If the frequency of a word sense is 0 in WordNet,
we set it to 1. Finally, the embedding of word w; is computed’ as a weighted average of its senses
Sij, 1 < j < n, where the weights represent the probability of senses:

- ZSijGSyn(wi) freCI(Sij) X S;'j
- (1)
Sij)

Ww; =
N2 esyn(uws) JTed(
4.1 Distributional Semantic Similarity

A good summary must satisfy both coverage and diversity properties. For clarity, summary sentences
should cover a sufficient non-redundant amount of information from the original input text. Diversity

*https://code.google.com/p/word2vec/
3Words were stemmed before inferring their embeddings.
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property is also fundamental especially for multi-document summarization. Moreover, one would expect
good summaries to be characterized by low distance between probability distributions of words in the
input and summary, and by high similarity with the input. Hence, we design this feature based on the
geometric meaning of the centroid vector of a document using the compositional properties of the word
embeddings (Mikolov et al., 2013). The main idea is to give a distributed representation of words/senses
in the input and its summary, and compare their centroid vectors to realize how much the summary
content works as a pseudo-input and condenses the meaningful information of the input.

The centroid embedding T ofatextT = {t1,ta,...,tn}, is the sum of the embeddings of tokens of
T divided by the number of tokens n. Based on the problem, we can also assign a weight WV to each
token in 7" (Figure 1). Accordingly, the centroid embedding for each summary sentence §; is computed
by averaging the embeddings of all words comprising the sentence (Radev et al., 2004). Similarly,
we construct a centroid vector for each document, ci;, in the input document set. To better assess the
informativeness of the summary content, we assign higher weights to specialized words in a document
by considering the Inverse Document Frequency (IDF) scores of words:

(f _ ijedi ’u_jj X TF(wjudl) X IDF<w])
! nzwjedi TF(ZUj,di) XIDF(’wj)

2

where 7 is the number of words in document d;, and w; is the embedding of word w;. T'F'(wj, d;) stands
for the term frequency of w; in d;. The IDF scores are computed on the whole document set.

t

Figure 1: The weighted centroid embedding of text T' = {¢1, ta, ..., tn }

Finally, we compare summary sentences and the input documents using the Word Mover’s Distance
(WMD) algorithm (Kusner et al., 2015). WMD measures the total distance the centroid embeddings of
summary sentences and the input documents have to travel to become identical. Accordingly, we measure
the dissimilarity degree between two sets of embedding vectors, D = {cfl, s cfn} and S = {81, ..., 5},
by calculating the minimum amount of summing up individual distances (travel costs) that centroid
embeddings of the documents in D need to travel to reach the embeddings of sentences in S

WMD(D, S) = min YD Fig xdist(di,s)) 3)
dieD Sj€S
subject to,
1 1 -
2 Fig = E,vsj €8, Z Frs = E,Vdi €D
d;eD sj€8
where I € RV*V with V as the vocabulary size, is a flow matrix which indicates how much probability

mass should flow (or travel) from document centroid embedding d_; in set D to sentence embedding s
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in set S, and vice versa. dist(cﬁ, s;) denotes the individual distance (or travel cost) between d: and sj:
dist(ds, 57) = ||di — 55|5-

4.2 Topical Relevance

Topic features serve as a basis for evaluating topical relevance of a summary to the input documents.
Herein, we aim to find the distribution of the most probable topics embodied in the input document set,
and their relevance to the summary sentences. To this end, we use Latent Dirichlet Allocation (LDA)
algorithm (Blei et al., 2003; Arora and Ravindran, 2008) to determine the topics that characterize every
document set. LDA is a generative model for documents to determine topic compositions of words and
document mixtures of topics (represented by a probability distribution over topics), by assigning words
to topics within documents. Hence, in the context of text modeling, the topic distribution provides an
underlying semantic representation of the documents and can be useful in evaluating the summaries.
Using weighted topic compositions, we measure the similarity of summary sentences with the most
important topics identified in the document set.

We use Gibbs sampling (Griffiths, 2002) for inference in the topic model with concentration parame-
ters « = 0.1 and 8 = 0.01. We also set the number of topics X = 10 for each document set. Formally,
each topic is defined as 7; = {p1, p2, ..., pn}, Where p; is the probability distribution of word w;. We
consider top m = 30 words and their probabilities to build a centroid as the representative of each
topic. The embedding vector for word w; is then multiplied with its normalized probability P;, and the
weighted vectors are averaged to build a topic centroid representation:

1

i =

m . i
Piw;, where P; = —=7— “4)
; JWj J ST i

Finally, we use WMD to measure the dissimilarity degree between the centroid embeddings of sum-
mary sentences and those of the topics for evaluating topical relevance of the summary content.

3=

4.3 Query Relevance

To measure the relevance degree of the summary content to the given query, we calculate the query
embedding vector @ by averaging the embeddings of all words in the query narrative. Similarly, the
centroid embedding vector for each summary S is also constructed. We further measure the cosine
similarity between these vectors to formulate query relevance:

sim(S, Q) = 55 5)

4.4 Coherence

Coherence measures the degree to which a sequence of summary sentences represents a logical flow of
thought. We compute the similarity between embeddings of adjacent summary sentences using cosine
similarity. It results in n—1 comparisons for a summary of n sentences. While similarity between
sentences is beneficial for coherence, very high similarity reflects redundancy in the summary. Given
that, we combine the mean and standard deviation of the cosine similarity scores by training a simple
linear regression model on our development set. In this way, we measure the trade-off between continuity
and redundancy as the coherence feature.

4.5 Novelty

We would like our evaluation model to move beyond assessing initial summaries by giving a simple fea-
ture of Novelty to better evaluate update summaries. This feature rewards the update summary consisting
novel words that do not exist in initial document set D 4, but are semantically related to update document
set Dp. The relevancy of these words in update summary S;, to the documents in set B, is measured
using the cosine similarity between the embeddings of novel words and the centroid embedding of the
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whole document set B. We use the bag-of-words representation of the summary and the document sets
while defining novel words. We finally measure the degree of novelty (\) as:

N(S)) = > sim(ii;, Dp) (6)

151 es e
leS]lwlgDA

where |S}| is the total number of unique words in the update summary S;. For S; without any novel
words, N'(S;) = 0.

5 Feature Combination with SVR

We combine all the above features using a Support Vector Regression (SVR) model to predict the sum-
mary quality. We first transform the proposed features into a standard vector notation. Each summary
S; is represented by a feature vector X = {1, z2,...,x,} where n is the number of features. SVR
model aims to learn a function f : R” — R, which will be used to predict the content evaluation score
for each summary y € R given a feature vector X € R". In particular, given [ training instances
(X1,v1)s .-, (X1, 41), the SVR model is learnt by solving the following optimization problem (Vapnik,
1999); W is a vector of feature weights; ¢ is a function that maps feature vectors to a new vector space
of higher dimensionality to allow non-linear functions to be learnt in the original space; C' > 0 and € > 0
are given.

1
min —
Wb 2

l l
WI?P+C> &+C) ¢ (7
=1 =1

subject to (fori =1, ...,1):

W o(Xi)+wo—y < e+§
yi— W' 9(Xi) —wy < e+ ¢
& > 0
& >0

The goal is to learn a linear (in the new space) function, whose prediction (value) wT. d(X;) + wo
for each training instance X; will not to be farther than ¢ from the target (correct) value y;. Since this
is not always feasible, two slack variables &; and & are used to measure the prediction’s error above
or below the target y;. The objective (7) jointly minimizes the total prediction error and |||, to avoid
overfitting. The utilized SVR is implemented in Scikit-learn (Pedregosa et al., 2011). We use the default
parameter settings, (kernel="rbf’, degree=3, gamma="auto’, coef0=0.0, tol=0.001, C=1.0, epsilon=0.1,
shrinking=True, cache_size=200, verbose=False, max_iter=-1) without further optimization.

6 Experiments and Results

Reporting correlations with manual evaluation metrics is the norm for validating automatic metrics. We
use Spearman correlation metric to study the predictive power of our automatic features in replicating
manual correlations of pyramid and responsiveness. Hence, we compare the rankings of systems against
the human scores assigned to systems. The correlations* of our metrics are reported at two levels of
granularity:

System Level (MACRO): The average score for a system is computed over the entire set of test inputs
using both manual and automatic evaluations. The correlations between ranks assigned to systems by
these average scores are indicative of the strength of our features to predict overall system rankings on
the test set.

Analyzing the macro level results on TAC 2008 (Table 1), we find that the variants of distributional
similarity and the topical relevance features produce system rankings very similar to those produced by

*Significance values for the correlations are produced using the AS 89 algorithm (Best and Roberts, 1975).
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QUERY - MACRO QUERY - MICRO UPDATE - MACRO  UPDATE - MICRO

Features Pyr. Resp. Pyr. Resp. Pyr. Resp. Pyr. Resp.
Corpus-based Dist. Similarity -0.887 -0.748 75.0 72.9 -0.833 -0.761 717.1 70.8
LexRes-based Dist. Similarity -0.871 -0.723 72.9 68.8 -0.828 -0.755 77.1 68.8
Corpus-based Topical Relevance  -0.803 -0.696 72.9 70.8 -0.777 -0.720 75.0 72.9
LexRes-based Topical Relevance  -0.799 -0.705 70.8 70.8 -0.759 -0.735 72.9 70.8
LexRes-based Query Relevance 0.624 0.590 58.3 58.3 0.599 0.576 62.5 56.3
Corpus-based Query Relevance 0.615 0.547 56.3 52.1 0.613 0.576 60.4 56.3
LexRes-based Novelty - - - - 0.537 0.502 54.2 50.0
Corpus-based Novelty - - - - 0.530 0.500 58.3 45.8
Corpus-based Coherence 0.361 0.375 37.5 39.6 0.352 0.358 41.7 354
LexRes-based Coherence 0.353 0.362 35.4 37.5 0.349 0.358 37.5 37.5
Support Vector Regression 0.895 0.786 79.2 75.0 0.872 0.808 87.5 77.1
SIMetrix JS divergence -0.880 -0.736 72.9 72.9 -0.827 -0.764 85.4 75.0
SIMetrix regression 0.867 0.705 77.1 66.7 0.789 0.605 81.3 58.3
ROUGE-1 recall (4 models) 0.859 0.806 97.9 95.8 0912 0.865 97.9 95.8
ROUGE-2 recall (4 models) 0.905 0.873 100 91.7 0.941 0.884 100 91.7

Table 1: Input-summary evaluation on the query focused and update summarization tasks from TAC
2008 data: MACRO level Spearman correlations, all results are significant (p < 0.05); MICRO level
percentage of inputs with significant correlations (p < 0.05).

human. Other features, on the other hand, are less predictive of content quality. Distributional similarities
also outperform SIMetrix, which proves the importance of semantic representation of the input and sum-
mary for comparison purposes in summary content evaluation. Overall, our feature regression obtains
the best correlations with both types of manual scores, and even outperforms ROUGE-1 regarding pyra-
mid for query-focused task. The usefulness of novelty feature is also reflected in high SVR correlation
results for the update summarization task.

Overall ROUGE correlation is evidence that the model summaries provide information that is unlikely
to ever be approximated by exploring the input alone. However, our features can provide reliable es-
timates of system quality when averaged over a set of test inputs. We also observe that corpus-based
models mostly outperform their corresponding lexical resource-based models. A possible reason is the
higher coverage of Google News word2vec model comparing to the WordNet-based sense embedding
model. For example, some words like proper nouns (e.g., 'Barak Obama’) are not covered in WordNet.
However, replacing a word’s embedding by the sum of the embeddings of its senses could generally
improve the quality of embeddings (Rothe and Schiitze, 2015). That is why our SVR performs well by
leveraging WordNet senses for more precise word embeddings, and involving Google News to comple-
ment the WordNet coverage.

Input Level (MICRO): For each individual input, we compare the rankings for the system summaries
using manual and automatic evaluations. Micro-level analysis highlights the ability of an evaluation
metric to assess the quality of system summaries produced for a specific input. This task is bound to be
harder than system level predictions. For clarity, even with wrong prediction of rankings on a few inputs,
the average scores (macro-level) for a system might not be affected.

To be in line with SIMetrix, we report the percentage of inputs for which significant correlations were
obtained (Table 1). We observe that feature combination with SVR gives the best results overall, similar
to our findings for the macro level. The implication is that no single feature can reliably predict good
content for a particular input. Moreover, our feature regression outperforms SIMetrix. This is because
our approach depends not merely on the distribution of terms in the input, and therefore provides better
representation for a set of documents each describing different opinion on a given issue. For example,
our topical relevance feature gives a representative vector for every important aspect of the document
set. However, superiority of ROUGE performance to the rest of measures shows that model summaries
generated for specific input would still give better indication of important information in the input.
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6.1 Error Analysis:

In this study, we aim to assess the reliability of our metric for evaluation in the absence of human model
summaries, where ROUGE cannot be used. It is noteworthy that we do not intend to directly compare the
performance of ROUGE with our metric. Thereupon, we provide an error analysis to understand if our
SVR and ROUGE are making errors in ordering the same systems or whether their errors are different.
Since at the macro level, the correlations between our regression and pyramid scores is close to those
of ROUGE-2, we further analyze their errors. We considered pairs of systems and identified the better
system in each pair according to the pyramid scores. Afterwards, we recorded how often ROUGE-2 and
the SVR provided the correct judgment for the pairs as indicated by the pyramid evaluation. Table 2
provides the results for all 1,653 pairs of systems at the macro level.

SVR correct SVRincorrect

ROUGE-2 correct 1,355(82.0%) 97(5.9%)
ROUGE-2 incorrect 100(6.0%) 101(6.1%)

Table 2: Error analysis: Overlap between ROUGE-2 and SVR predictions for the best system in a pair
(TAC 2008, 1,653 pairs). The gold-standard judgment for a better system is computed using pyramid.

A large majority (82%) of the same pairs are correctly predicted by both ROUGE and the SVR. Another
6% of the pairs are such that both metrics do not provide the correct judgment. Therefore, ROUGE and
our SVR appear to agree on a large majority of the system pairs. There is a small percentage (12%) that
is correctly predicted by only one of the metrics.

6.2 Evaluation on the Test Set:

Our SVR was trained on the TAC 2008 data with pyramid scores as the target. Herein, we evaluate
this metric using the TAC 2009 data (Table 3). We report the correlations obtained by ROUGE-SU4 as
the official baseline measure at TAC 2009 for comparison of automatic evaluation metrics. The results
indicate that the correlations are lower than on our development set. This might be caused by the different
characteristics of inputs in two year’s data (Louis and Nenkova, 2013). However, the SVR is consistently
predictive across two years, and outperforms SIMetrix.

QUERY - MACRO QUERY - MICRO UPDATE - MACRO  UPDATE - MICRO

Metric Pyr. Resp. Pyr. Resp. Pyr. Resp. Pyr. Resp.
Support Vector Regression  0.80 0.75 87.5 77.1 0.77 0.65 79.2 75.0
SIMetrix JS divergence -0.74 -0.71 84.1 75.0 -0.72 -0.61 77.3 72.7
SIMetrix Regression 0.77 0.67 81.8 65.9 0.71 0.54 75.0 52.3
ROUGE-SU4 (4 models) 0.92 0.79 95.5 81.8 0.85 0.69 100 86.4

Table 3: Input-summary evaluation on the query focused and update summarization tasks from TAC
2009 data: MACRO level Spearman correlations, all results are significant (p < 0.05); MICRO level
percentage of inputs with significant correlations (p < 0.05).

Overall results also show that correlations with pyramid scores are higher than those with responsive-
ness. The reason is that our features mainly evaluate summary content. Responsiveness judgments, on
the other hand, are based on both content and linguistic quality. Nevertheless, our SVR performs better
than SIMetrix in replicating responsiveness scores. This might be advantaged by considering coher-
ence as a linguistic quality feature. Hence, a natural extension of our work would be considering more
linguistic quality features along with content evaluations.
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7 Conclusion and Future Work

We have presented an effective model-free summary content evaluation approach that exploits the com-
positional properties of word and sense embeddings to develop a variety of features for input-summary
comparisons. The results show that the strength of different features varies considerably, and their combi-
nation provides reliable estimates of summary content quality when model summaries are not available.
This lends further support to our proposal to use semantic representation of the input and summary
contents for the model-free summary content evaluation.

Our ongoing work includes considering distributional and relational semantics together (Fried and
Duh, 2014; Verga and McCallum, 2016; Rossiello, 2016) for different sentence representations, and us-
ing more complex neural language models (Le and Mikolov, 2014; Zhang and LeCun, 2015; Jozefowicz
et al., 2016) for the comparison.
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