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Abstract

Semantic parsers critically rely on accurate and high-coverage lexicons. However, traditional
semantic parsers usually utilize annotated logical forms to learn the lexicon, which often suffer
from the lexicon coverage problem. In this paper, we propose a graph-based semi-supervised
learning framework that makes use of large text corpora and lexical resources. This framework
first constructs a graph with a phrase similarity model learned by utilizing many text corpora and
lexical resources. Next, graph propagation algorithm identifies the label distribution of unlabeled
phrases from labeled ones. We evaluate our approach on two benchmarks: WEBQUESTIONS

and FREE917. The results show that, in both datasets, our method achieves substantial improve-
ment when comparing to the base system that does not utilize the learned lexicon, and gains
competitive results when comparing to state-of-the-art systems.

Title and Abstract in Chinese

基于半监督词典学习的语义解析技术研究

语义解析器的性能往往依赖于词典的准确度和覆盖度。传统语义解析器利用标注好的句
子-逻辑表达式对来学习词典，这通常会面临词典覆盖度不足的问题。本文提出了一种
基于图的半监督学习框架，该框架能够充分利用容易获取的大量文本语料和词典资源来
进行词典扩充学习。该词典扩充学习方法首先利用大量文本语料和词典资源来学习词语
与词语之间的相似度，并构建用于图传播的图；接着使用图传播算法从少量标注的词汇
中学习新的词汇。本文在两个公开数据集上进行了实验，实验结果表明：本文系统相比
未使用新词汇的基准系统取得了显著提升，相比当前最好的系统，也取得了具有竞争力
的结果。

1 Introduction

Semantic parsing aims to map natural language sentences into formal meaning representations, e.g.,
Figure 1 shows an example of semantic parsing. Semantic parsing plays an important role in natural
language understanding, and has attracted increasing attention in recent years (Zelle and Mooney, 1996;
Wong and Mooney, 2007; Lu et al., 2008; Liang et al., 2011; Kwiatkowski et al., 2011; Artzi and
Zettlemoyer, 2013; Krishnamurthy and Mitchell, 2014; Li et al., 2015; Chen et al., 2016; Xiao et al.,
2016; Jia and Liang, 2016; Reddy et al., 2016; Liang et al., 2017).

The performance of semantic parsers critically depends on the quality of lexicon, including accuracy
and coverage. Specifically, in order to construct the logical form from a sentence, we first need to learn a
lexicon,1 which contains the mappings from natural language phrases (e.g., “born”) to logical predicates
(e.g., PlaceOfBirth). From the example in Figure 1, we can see that lexicon is the foundation of
parsing, and lexicon learning plays an important role in semantic parsing.

Traditional semantic parsers are usually domain-specific, which only contains a limited number of
logical predicates (Zettlemoyer and Collins, 2005; Kwiatkowksi et al., 2010; Artzi et al., 2014). In this

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

1We follow the lexicon style defined in Berant et al. (2013).
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Which        city         was         barack obama          born    in ?

Type.City Barack_Obama

Type.city PlaceOfBirth.Barack_Obama

PlaceOfBirth

PlaceOfBirth.Barack_Obama

Lexicon Lexicon Lexicon

Grammar

Grammar

Figure 1: An example of semantic parsing, which uses lexicons to map phrases to predicates, and applies
grammars to construct the logical form.

case, the mappings for each predicate can be learned relatively easily from training corpus. Recently,
a growing body of research has scaled up semantic parsers to open domain (Cai and Yates, 2013a; Cai
and Yates, 2013b; Berant et al., 2013; Krishnamurthy and Mitchell, 2012; Kwiatkowski et al., 2013) ,
where the number of predicates has increased substantially, making it hard to learn a lexicon with high
coverage.

To resolve the lexicon coverage problem, there have been several papers on lexicon learning for se-
mantic parsing. Cai and Yates (2013a) learns lexicons by pattern matching. Berant et al. (2013) learns
lexicons by aligning Freebase 2 predicates with relations from ClueWeb 3, and then the alignments are
used as lexicons. However, the lexicon coverage of these alignment-based methods highly depends on
entity co-occurrences, and they mostly can only learn predicates which indicating relations between
entities. It is still hard to cover all expressions and all predicates using alignment-based methods.

In this paper, we propose a semi-supervised lexicon learning algorithm for semantic parsing, which
can increase the lexicon coverage by exploiting easily obtained text corpora and lexical resources. 4 The
intuition behind our approach is that similar phrases should map to similar predicates, thus the phrase
similarity can be used to propagate known predicate mappings to unknown mappings. For example,
assuming we have a seed mapping: “currency” :: currency, and we know “money” is strongly related
to “currency”, we then can predict “money” should also map to currency. To achieve the above
goal,we employ a graph-based semi-supervised learning framework, which learns lexicons not only used
the alignments between Freebase and text, but also the semantic relatedness between phrases in the text
side. Specifically, we use the abundant lexical resources for high coverage lexicon learning (Figure 2
shows the difference). There are three main tasks in this process. (1) we need a seed lexicon; (2) we
need to measure the similarity between words; (3) we need to smooth the mappings to unlabeled words.
For the similarity measure between words, we learn them from large text resources. This similarity
plays two roles in our lexicon learning: (1) it is used for label propagation; (2) the similarity is used as a
constraint on smoothing. That is, since we assume similar words will map to similar labels, the similarity
can then strengthen the correct mapping and weaken the wrong mapping. Once we have seed lexicons
and similarities between words, we smooth the lexicon by using a graph-based semi-supervised learning
framework.

2https://en.wikipedia.org/wiki/Freebase
3https://www.lemurproject.org/clueweb12.php/
4We use text corpora to refer text resources from web, e.g., Wikipedia and WikiAnswers, and lexical resources to refer

organized resources related to lexical items, e.g., WordNet and PPDB.
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Figure 3: The framework of lexicon learning for semantic parsing in this paper. We can utilize large
amount of text corpora and lexical resources to extend the lexicon for wide-open semantic parsing.

Currency_usedcurrency

Currency_usedcurrency

moneymone

Mapping score: 2.0

Mapping score: 1.5
Similarity: 0.86

Mapping score: 2.0

Using alignment between Freebase and texts

Word vector: 0.23

Paraphrase alignment: 0.63

PPDB score: 0.92

Using alignment between Freebase and texts, also relatedness among texts

Figure 2: Example of our approach (the below one) and the previous approach (the above one). The
previous approach only utilizes the alignments between text corpora and Freebase. By contrast, our
approach further makes use of alignments between text and text. In this way, we can learn wide-coverage
lexicon from several labeled lexicon.

The framework of our approach is shown in Figure 3. First, we make use of Freebase and ClueWeb
to gain a coarse lexicon, and then we score these lexicons to gain the seed lexicon for following smooth.
Next, we utilize easily obtained text corpora and text resources to learn the wide-coverage lexicon in a
graph-based semi-supervised learning framework. Finally, we use the extended lexicon in the semantic
parser to evaluate our approach.

We evaluate our lexicon learning algorithm on two benchmark datasets: WEBQUESTIONS and
FREE917. The results show that our method can learn lexicon with higher coverage, and enhance the
performance of semantic parsing system, especially its recall.

The contributions of this paper can be summarized as follows:

1. We propose a new semi-supervised learning framework for wide-coverage lexicon learning. Dif-
ferent to previous work, our approach can improve the lexicon coverage by further exploiting the
easily obtained text corpora and lexical resources.

2. We design a graph-based learning algorithm to learn a wide-coverage lexicon from a seed lexicon.

3. We evaluate our approach on two benchmark datasets. Our system outperforms baseline systems
significantly, and achieves competitive results with state-of-the-art systems.

2 Related Work

Lexicon learning is fundamental for semantic parsing. Traditional semantic parsers usually utilize an-
notated logical forms to learn the lexicon (Zettlemoyer and Collins, 2005; Kwiatkowksi et al., 2010;
Kwiatkowski et al., 2011; Krishnamurthy and Mitchell, 2012; Berant et al., 2013; Krishnamurthy, 2016).
Zettlemoyer and Collins (2005) utilizes the alignment between phrases in sentences and predicates in
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annotated logical forms, and then assigned a confidence score to each lexical entry. Obviously, these
approaches are limited by the annotated data.

Recently, many researchers begin to scale up semantic parsers to open domain. Learning high coverage
lexicon in open domain requires large amount of annotated data, which is quite expensive even they only
use question-answer pairs for supervision. There are several papers that focus on extending the lexicon
for open-domain semantic parsing.

Cai and Yates (2013a) first extend the semantic parser to open domains. They utilize pattern matching
to extend the lexicon. Specifically, they define knowledge patterns from knowledge bases, and text
patterns from a search engine. Then they learn the lexicon based on the assumption that the phrase
between two entities may map to the predicate if these two entities are also found under the predicate in
knowledge bases. Berant et al. (2013) learn the lexicon by similar idea, but they use annotated ClueWeb
corpus as the text side. Besides, they propose what they call a bridge operation, which is in fact a type-
shifting which can bring in a predicate using minimum information. Compared to these approaches, our
approach not only utilizes the alignments between knowledge bases and text corpora, but also makes
use of text corpora and text resources to get the phrase similarity and phrase co-occurrence. In this
way, we can learn more lexicon from little seed lexicon. Krishnamurthy (2016) also learned a lexicon
for semantic parsing. However, they aim to extend the predicate side as they think the predicates have
limited coverage for new sentences. Our aim is to extend the phrase that can trigger the predicates.

Graph-based semi-supervised learning algorithm has been used to resolve the OOV problem in ma-
chine translation (Razmara et al., 2013; Saluja et al., 2014; Zhao et al., 2015; Mehdizadeh Seraj et al.,
2015). frame semantic parsing (Das and Smith, 2011), sentiment lexicon induction (Hamilton et al.,
2016), and morph-syntactic lexicon induction (Faruqui et al., 2016).

3 Graph-based Lexicon Induction

Lexicon learning aims to learn the mapping from natural language phrases to predicates in knowledge
base. There are three types of lexicons, including entity lexicon (e.g., “city” :: Type.City), unary lexi-
con (e.g., “barack obama” :: Barack Obama) and binary lexicon (e.g., “born” :: PlaceOfBirth). In
most cases entity lexicons are learned using entity linking techniques, therefore we usually only consider
unary and binary lexicons in lexicon learning.

In open-domain semantic parsing, it is hard to learn high-coverage lexicon from annotated data for
lexicon learning. In this paper, we use the (phrase, predicate) mappings as seeds, then learn new (phrase,
predicate) mappings by propagating mapping information through similarities between phrases. Specifi-
cally, we propose a graph-based semi-supervised approach to resolve this problem. Our approach makes
use of easily obtained text corpora and lexical resources to learn a similarity between words,5 and then
use a graph-based semi-supervised learning framework to smooth the lexicon graph. In this way, we can
learn a new lexicon from labeled ones. Our method consists of three main steps:

1. Construct seed lexicon using alignments between Freebase and text corpora.

2. Learn similarities between words using both text corpora and text resources.

3. Learn new lexicon using label propagation.

3.1 Seed Lexicon Construction
We propagate information from seed lexicon to unknown ones. However, as we do not have enough
annotated logical forms to learn the lexicon, and the number of predicates is too large, It is impossible
to hand-make the lexicon, To obtain high-quality phrases mappings for each predicate, we construct the
seed lexicon in two steps.

First, we gain a coarse lexicon by aligning Freebase with text corpora, using the lexicon learning
methods as the same as Berant et al. (2013), with a slight difference that we only use unigram. We
do this for two reasons: one is that a word (e.g., born) in a phrase (e.g., born in) can trigger a

5We use phrase and word alternately in this paper, since we use unigram for the lexicon and a phrase contains a single word.
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Figure 4: An example of propagation. This example shows that we need to score the seed lexicon first.
Otherwise, the label propagation will bring more noise to lexicon learning.

predicate (e.g., PlaceOfBirth) if the phrase triggers the predicate. The other is that it is easy to compute
the similarity between unigrams. Although this technique will raise more ambiguity, we use an extra
feature template to handle this.

Next, we select high quality lexicons by scoring each lexical entry. Specifically, we use the lexicon
gained in first step to train a semantic parser, and define several features to measure the quality of each
lexical entry. After training, we can compute the score for each lexical entry. Since the higher the score
of a lexical entry, the better its quality. We pick top K (K=5) lexical entries for each predicates as our
seed lexicon. It is important to assign score to each lexical entry in the seed lexicon. As Figure 4 shows
if we don’t assign score, as there are many incorrect lexical entries in the seed lexicon, and these lexical
entries will bring more noise to the lexicon when doing graph propagation.

3.2 Graph Construction

We construct a graph over all phrases in the seed lexicons and words which occur in the whole data.
Besides, we also consider bridge words, which are both near to labeled node and unlabeled node. There
are three types of nodes in the graph (As Figure 5 shows): Labeled nodes represent words in the seed
lexicon; unlabeled nodes represent words in the whole data; bridge nodes represent the shared nearest
neighbor nodes for the labeled nodes and unlabeled nodes.

U: unlabeled nodes L: labeled nodes

B: bridge nodes

currency

profession

zone

money

who

professional

currency_used: 0.75

profession: 0.8

time_zone: 0.85

timezone

Figure 5: The graph between labeled nodes, unlabeled nodes and bridge nodes. Mapping can propagate
either directly from labeled nodes to unlabeled nodes or indirectly via bridge nodes.

We use three resources to compute similarity for graph construction.
First, we use distributional representations for phrases to compute the similarity. Recently, a fair

amount of research has showed that the word vector is quite useful for natural language process, espe-
cially for tasks related to similarity. Our purpose is to find similar words for the labeled ones, and label
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neighbor words scores
guilder 3.05

coin 3.03
taxa 3.00
les 2.89

exchange 2.85
monetary 2.76

money 2.63

Table 1: Nearest neighbor words for “currency” from PPDB-2.0.

them with the same labels. We use the published word vector (Huang et al., 2012) directly, and use
cosine distance for similarity.

The second resource we used is paraphrase tables. In this part, we want to utilize paraphrase pairs, like
“money” and “currency”. We construct these pairs using the Paralex corpus (Fader et al., 2013). Paralex
is a large question paraphrases corpus from WikiAnswers,6 and each clique questions were tagged as
expressing the same meaning by users. Paraphrase pairs in Paralex are word-aligned using standard
machine translation methods. We use the word alignments to construct a word table by applying the
consistent word pair heuristic to only unigram. This paraphrase tables is suitable for our needs since it
focuses on question paraphrases.

The third resource we used is PPDB. Specifically, we use PPDB-2.0 (Pavlick et al., 2015) to calculate
the similarity between two phrases by utilizing their scores, which consider many aspects. As we argued
before, we only consider single word. So we use the lexical part of PPDB-2.0. Moreover, we pre-process
the PPDB dataset by lemming the words. Table 1 shows several nearest neighbor words for the word
“currency” from PPDB-2.0.

In fact, we can also use lexicon resources like synset from WordNet,7 and Allen (2014) has used the
VerbNet for learning a lexicon for broad-coverage semantic parsing. However, we find that the synsets
for words are almost covered by the resources mentioned before. So we don’t use these resources here.

In order to limit the graph size, we consider the top 10 nearest labeled nodes and top 5 nearest bridge
nodes for each unlabeled one; for the each bridge node, we consider the top 5 nearest labeled nodes.
Moreover, we also consider edges between labeled nodes and labeled nodes.

Finally, the overall similarity score between two given phrases w1 and w2 is computed as follow:

sim(w1, w2) =αsim1(w1, w2) + βsim2(w1, w2) + (1− α− β)sim3(w1, w2) (1)

Before the final computing, we normalize each similarity score which are obtained using three re-
sources separately. The hyperparameters are turned by development training.

3.3 Graph Propagation

Graph propagation is used to propagate the labels from labeled nodes to unlabeled ones by following the
graph’s structure. This approach is based on the smoothness assumption: similar nodes in the graph have
similar labels. This paper utilizes the modified Adsorption algorithm (Talukdar and Crammer, 2009).

min
Ŷ

µ1
∑
v∈VL

p1 ||Yv − Ŷv||22 + µ2
∑
v,u

p2Wv,u ||Ŷv − Ŷu||22 + µ3
∑
v

p3 ||Ŷv −Ru||22 (2)

There are three parts in Formula (2), the first part enforces the labels of the seed nodes to keep un-
changed. The second part enforces the smoothness, making similar nodes have similar labels. The third
part enforces an uniform distribution for the unlabeled nodes. We use the Junto label propagation toolkit8

for label propagation.
6http://www.answers.com/Q/
7https://wordnet.princeton.edu/
8https://github.com/parthatalukdar/junto
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4 Semantic Parsing with Extended Lexicon

After graph propagation, each unlabeled phrase is labeled with a distribution over the set of predicates.
We use SEMPRE (Berant et al., 2013; Berant and Liang, 2015) as our base semantic parser. In order
to use the learned lexicon, we add a feature which indicates the final score for each lexical entry. The
semantic parser will train on the training data with the learned lexicon as its initial lexicon. Following
Berant and Liang (2015), we also use the feature template that conjoins predicates and content lemmas,
and this feature template has been proved very helpful in Berant and Liang (2015).

5 Experiments

We evaluate our method on two benchmark datasets: WEBQUESTIONS and FREE917.
Dataset: WEBQUESTIONS dataset (Berant et al., 2013) contains 5,810 question-answer pairs. These

questions are collected by crawling the Google Suggest API, and the answers are obtained using Amazon
Mechanical Turk. This dataset covers several popular topics and its questions are commonly asked on
the web. In our experiments, we use the standard train-test split (Berant et al., 2013), i.e., 3,778 questions
(65%) for training and 2,032 questions (35%) for testing.

The FREE917 dataset (Cai and Yates, 2013a) contains 917 questions, annotated with logical forms.
This dataset covers a wide range of domains. One example is “what fuel does an internal combustion
engine use”. Following Cai and Yates (2013a), we use the original split of the questions into 70%
questions (641) to train and 30% questions (276) to test.

Setup: In our experiments, we use the Freebase Search API for entity lookup in WEBQUESTIONS

dataset, and build a Lucene index over the 41M Freebase entities to map entities in FREE917 dataset. We
load Freebase using Virtuoso, and execute logical forms by converting them to SPARQL and querying
using Virtuoso. We learn the parameters of our system by making several passes (3 for WEBQUESTIONS

and 6 for FREE917) over the training dataset, with the beam size (200 in WEBQUESTIONS and 500 for
FREE917).

For the similarity computation, we set α = 0.05, β = 0.85. For the parameters in Junto, we set
µ1 = 0.55, µ2 = 0.44, µ3 = 0.01, β = 2.

Comparing systems: To evaluate our method, we mainly compare our system (Base + lexicon)
to the base system (Base) which does not use the learned wide-coverage lexicon, also to system (Base
+ bridge) which utilize bridge operator to serve as lexicon (Berant et al., 2013). We also compare to
several nearly published systems, including semantic parsing based system (Kwiatkowski et al., 2013;
Berant and Liang, 2015), information extraction based systems (Yao and Van Durme, 2014; Yao, 2015),
machine translation based systems (Bao et al., 2014), embedding based systems (Bordes et al., 2014;
Yang et al., 2014), and QA based system (Bast and Haussmann, 2015).

5.1 Experimental Results
Table 2 and Table 3 provide the performances of all baselines9 and our method in WEBQUESTIONS and
FREE917. From Table 2 and Table 3, we can see that:

1. Our method achieves competitive performance: Our system outperforms base system (Base) greatly
and gets a better performance when comparing to the base system with a bridge operator (Base +
bridge).

2. The learned lexicon has wider coverage than the seed one: Our system obtains higher recall than the
Base. By utilizing large amount of text corpora and lexical resources, the extended lexicon improves
the semantic parsing system. For FREE917, our system gains the highest recall. This indicates that
our lexicon really has wider coverage, especially for dataset with more domains like FREE917.

3. The bridge operation from Berant and Liang (2015) is quite powerful. It can resolve the problem of
lexicon coverage to some degree. And our approach, which learns the lexicon directly, can gain a
better performance.

9We collect the results of other systems from https://nlp.stanford.edu/software/sempre/.
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System Prec. Rec. F1 (avg)
Berant et al. (2013) 48.0 41.3 35.7

Yao and Van Durme (2014) 51.7 45.8 33.0
Berant and Liang (2014) 40.5 46.6 39.9

Bao et al. (2014) – – 37.5
Bordes et al. (2014) – – 39.2
Yang et al. (2014) – – 41.3

Bast and Haussmann (2015) 49.8 60.4 49.4
Yao (2015) 52.6 54.5 44.3

Berant and Liang (2015) 50.5 55.7 49.7
Yih et al. (2015) 52.8 60.7 52.5

Base 51.0 47.6 40.5
Base + bridge 50.0 58.5 50.0
Our approach 51.6 59.7 51.2

Table 2: The results of our system and recently published systems on WEBQUESTIONS.

System Prec. Rec. F1
Cai and Yates (2013a) 67.0 59.0 63.0

Kwiatkowski et al. (2013) 76.7 68.0 72.1
Bast and Haussmann (2015) 72.0 67.8 69.8

Base 71.2 59.5 64.8
Base + bridge 69.4 64.4 66.8
Our approach 71.5 67.9 69.6

Table 3: The results of our system and recently published systems on FREE917.

4. Compared to all baselines, our system gets a competitive recall. This result indicates that our parser
can parse more sentences when the lexicon has wider coverage. Interestingly, for WEBQUESTIONS,
both the two systems with the highest recall (Bast and Haussmann, 2015; Yih et al., 2015) rely on
extra-techniques such as entity linking and relation matching.

In Section 3.1, we normalize the seed lexicon using the unigram for the lexeme. By this way, the final
graph for label propagation will not be too large, and it is convenient to compute the similarity between
word and word using text corpora and lexical resources. We design some experiments to evaluate the
new seed lexicon (unigram for lexeme). Table 4 and Table 5 shows the results. We can see that the
system using the new seed lexicon has similar performance to the system using the original seed lexicon.

System Prec. Rec. F1 (avg)
Original seed 40.6 47.5 40.6

New seed 51.0 47.6 40.5

Table 4: The results of using different seed lexicons on WEBQUESTIONS dataset.

System Prec. Rec. F1 (avg)
Original seed 69.8 59.0 63.9

New seed 71.2 59.5 64.8

Table 5: The results of using different seed lexicons on FREE917 dataset.
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System Prec. Rec. F1 (avg)
Only word vector 41.8 45.9 39.7

Only paraphrase table 50.0 46.3 39.4
Only PPDB-2.0 51.2 58.7 50.6

All 51.6 59.7 51.2

Table 6: The results of using different resources for measuring similarities on WEBQUESTIONS dataset.

To evaluate the text corpora and lexical resources we used, we also conduct several experiments on
WEBQUESTIONS. Table 6 shows the results. We can see that:

1. Only using word vector for similarity computation, the final result is not ideal. We think that
the word vector consider many aspects in similarity, and in lexicon learning, what we expect for
similarity is paraphrasing.

2. The paraphrase table pairs help a little. We think that is due to we use simple alignment for scoring.

3. The PPDB-2.0 serves quite well, even only use PPDB-2.0 score for similarity computation. We
think that the PPDB-2.0 was extracted from paraphrase corpus, so the similar lexicon are almost
paraphrase to each other.

4. Using word vector, paraphrase align table pairs and PPDB-2.0 score together achieves the best
performance.

5.2 Analysis
Our aim is to learn a wide-coverage lexicon for semantic parsing. Our approach utilizes text corpora
and lexical resources to extend seed lexicon. Table 7 shows several learned new mappings with the final
score from the semantic parser. We can find that after label propagation, we can obtain new lexical entries
which can improve the coverage of semantic parser. The results proved our intuition, i.e., the unlabeled
phrase maps to the same predicate of its nearest labeled phrases.

Predicate Seed phrase Learned phrase score
Currency currency money 4.91
Education education school 4.75
Religion religion believe 2.30

Profession professional who 2.30

Table 7: Several learned lexical entries with un-normalized scores on WEBQUESTIONS dataset.

The learned new lexicon has wide coverage, however, this means the accuracy for the lexicon will
be influenced. Berant and Liang (2015) added new lexicalized features (lemmaAndBinary) that connect
natural language phrases to binary predicates. For example, given the utterance “What countries have
german as the official language?”, the predicate for phrase “language” can be Language-spoken and
Offical-language. The added feature will conjoin binaries with all content word lemmas. After
observing enough examples, the phrase “language” will map to Offical-language when has “offi-
cal” as its content, because the feature, which corresponds to “offical” and Offical-language, will
be up-weighted. Berant and Liang (2015) have proved this feature is really helpful. In our experiments,
we also use this feature. Table 8 shows the ablation test results. We can see that, this feature improves
our system greatly, especially for precision. We think that as we only use the unigram as our lexeme for
lexical entry, the lexicon has more noise. And the alignments between predicates with content words will
help the parser to choose the right lexicon during parsing.

System Prec. Rec. F1 (avg)
Our system - feature 48.0 48.9 41.8

Our system 51.6 59.7 51.2

Table 8: The results of ablation test for the lemmaAndBinary feature.
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Manual error analysis To better understand our system, we manually inspected the errors our system
made. We found that many errors are due to mistakes in labeling. The rest of the errors are mainly
complicate cases, like N-ary predicate (event in Freebase), superlative, temporal clause etc. We argue
that more attention should be given to these complicated cases.

6 Conclusion

In this paper, we make use of low-cost, easily obtained text corpora and lexical resources in a graph-based
semi-supervised learning framework to learn lexicon for semantic parsing. Experiments demonstrate
that our method improves the semantic parsing system, especially, when the lexicon is not covered in the
training data. Our method can learn wide-coverage lexicon for open-domain semantic parsing.

Traditionally, a semantic parser needs a lexicon first, and then parses the sentence in a bottom-up
way. For these parsers, the lexicon is extremely important, and it is hard to learn lexicon with high
coverage. Currently, some semantic parsers use the knowledge base in advance, and utilize entity linking
and relation matching during parsing, and these methods parse the sentence like a top-down way. As the
knowledge base is huge, the searching space is usually quite large. In future work, We want to design
parsing algorithm which can take advantages from both sides.

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grants no. 61433015,
61572477 and 61772505, and the Young Elite Scientists Sponsorship Program no. YESS20160177.
Moreover, we sincerely thank the reviewers for their valuable comments.

References
James Allen. 2014. Learning a lexicon for broad-coverage semantic parsing. In Proceedings of the ACL 2014

Workshop on Semantic Parsing, pages 1–6, Baltimore, MD, June. Association for Computational Linguistics.

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly supervised learning of semantic parsers for mapping instructions
to actions. Transactions of the Association for Computational Linguistics, 1(1):49–62.

Yoav Artzi, Dipanjan Das, and Slav Petrov. 2014. Learning compact lexicons for ccg semantic parsing. In
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
1273–1283, Doha, Qatar, October. Association for Computational Linguistics.

Junwei Bao, Nan Duan, Ming Zhou, and Tiejun Zhao. 2014. Knowledge-based question answering as machine
translation. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 967–976, Baltimore, Maryland, June. Association for Computational Linguistics.

Hannah Bast and Elmar Haussmann. 2015. More accurate question answering on freebase. In Proceedings of the
24th ACM International on Conference on Information and Knowledge Management, CIKM 2015, Melbourne,
VIC, Australia, October 19 - 23, 2015, pages 1431–1440.

Jonathan Berant and Percy Liang. 2014. Semantic parsing via paraphrasing. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1415–1425,
Baltimore, Maryland, June. Association for Computational Linguistics.

Jonathan Berant and Percy Liang. 2015. Imitation learning of agenda-based semantic parsers. Transactions of the
Association for Computational Linguistics, 3:545–558.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. 2013. Semantic parsing on Freebase from question-
answer pairs. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing,
pages 1533–1544, Seattle, Washington, USA, October. Association for Computational Linguistics.

Antoine Bordes, Sumit Chopra, and Jason Weston. 2014. Question answering with subgraph embeddings. In
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
615–620, Doha, Qatar, October. Association for Computational Linguistics.

Qingqing Cai and Alexander Yates. 2013a. Large-scale semantic parsing via schema matching and lexicon exten-
sion. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 423–433, Sofia, Bulgaria, August. Association for Computational Linguistics.



902

Qingqing Cai and Alexander Yates. 2013b. Semantic parsing freebase: Towards open-domain semantic parsing.
In Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the
Main Conference and the Shared Task: Semantic Textual Similarity, pages 328–338, Atlanta, Georgia, USA,
June. Association for Computational Linguistics.

Bo Chen, Le Sun, Xianpei Han, and Bo An. 2016. Sentence rewriting for semantic parsing. In Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
766–777, Berlin, Germany, August. Association for Computational Linguistics.

Dipanjan Das and Noah A. Smith. 2011. Semi-supervised frame-semantic parsing for unknown predicates. In
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies, pages 1435–1444, Portland, Oregon, USA, June. Association for Computational Linguistics.

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni. 2013. Paraphrase-driven learning for open question answer-
ing. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 1608–1618, Sofia, Bulgaria, August. Association for Computational Linguistics.

Manaal Faruqui, Ryan McDonald, and Radu Soricut. 2016. Morpho-syntactic lexicon generation using graph-
based semi-supervised learning. Transactions of the Association for Computational Linguistics, 4:1–16.

William L. Hamilton, Kevin Clark, Jure Leskovec, and Dan Jurafsky. 2016. Inducing domain-specific sentiment
lexicons from unlabeled corpora. In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, pages 595–605, Austin, Texas, November. Association for Computational Linguistics.

Eric Huang, Richard Socher, Christopher Manning, and Andrew Ng. 2012. Improving word representations via
global context and multiple word prototypes. In Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 873–882, Jeju Island, Korea, July. Association for
Computational Linguistics.

Robin Jia and Percy Liang. 2016. Data recombination for neural semantic parsing. In Proceedings of the 54th An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 12–22, Berlin,
Germany, August. Association for Computational Linguistics.

Jayant Krishnamurthy and Tom Mitchell. 2012. Weakly supervised training of semantic parsers. In Proceedings of
the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 754–765, Jeju Island, Korea, July. Association for Computational Linguistics.

Jayant Krishnamurthy and Tom M. Mitchell. 2014. Joint syntactic and semantic parsing with combinatory cate-
gorial grammar. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1188–1198, Baltimore, Maryland, June. Association for Computational Lin-
guistics.

Jayant Krishnamurthy. 2016. Probabilistic models for learning a semantic parser lexicon. In Proceedings of the
2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pages 606–616, San Diego, California, June. Association for Computational Linguistics.

Tom Kwiatkowksi, Luke Zettlemoyer, Sharon Goldwater, and Mark Steedman. 2010. Inducing probabilistic
CCG grammars from logical form with higher-order unification. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing, pages 1223–1233, Cambridge, MA, October. Association
for Computational Linguistics.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwater, and Mark Steedman. 2011. Lexical generalization in
ccg grammar induction for semantic parsing. In Proceedings of the 2011 Conference on Empirical Methods
in Natural Language Processing, pages 1512–1523, Edinburgh, Scotland, UK., July. Association for Computa-
tional Linguistics.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke Zettlemoyer. 2013. Scaling semantic parsers with on-
the-fly ontology matching. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pages 1545–1556, Seattle, Washington, USA, October. Association for Computational Linguistics.

Junhui Li, Muhua Zhu, Wei Lu, and Guodong Zhou. 2015. Improving semantic parsing with enriched synchronous
context-free grammar. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pages 1455–1465, Lisbon, Portugal, September. Association for Computational Linguistics.

Percy Liang, Michael Jordan, and Dan Klein. 2011. Learning dependency-based compositional semantics. In
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies, pages 590–599, Portland, Oregon, USA, June. Association for Computational Linguistics.



903

Chen Liang, Jonathan Berant, Quoc Le, Kenneth D. Forbus, and Ni Lao. 2017. Neural symbolic machines:
Learning semantic parsers on freebase with weak supervision. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages 23–33, Vancouver, Canada, July.
Association for Computational Linguistics.

Wei Lu, Hwee Tou Ng, Wee Sun Lee, and Luke S. Zettlemoyer. 2008. A generative model for parsing natural
language to meaning representations. In Proceedings of the 2008 Conference on Empirical Methods in Natural
Language Processing, pages 783–792, Honolulu, Hawaii, October. Association for Computational Linguistics.

Ramtin Mehdizadeh Seraj, Maryam Siahbani, and Anoop Sarkar. 2015. Improving statistical machine translation
with a multilingual paraphrase database. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 1379–1390, Lisbon, Portugal, September. Association for Computational
Linguistics.

Ellie Pavlick, Pushpendre Rastogi, Juri Ganitkevitch, Benjamin Van Durme, and Chris Callison-Burch. 2015.
Ppdb 2.0: Better paraphrase ranking, fine-grained entailment relations, word embeddings, and style classifi-
cation. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 425–430,
Beijing, China, July. Association for Computational Linguistics.

Majid Razmara, Maryam Siahbani, Reza Haffari, and Anoop Sarkar. 2013. Graph propagation for paraphrasing
out-of-vocabulary words in statistical machine translation. In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 1105–1115, Sofia, Bulgaria, August.
Association for Computational Linguistics.
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