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Abstract

One main challenge for incremental transition-based parsers, when future inputs are invisible, is
to extract good features from a limited local context. In this work, we present a simple technique
to maximally utilize the local features with an attention mechanism, which works as context-
dependent dynamic feature selection. Our model learns, for example, which tokens should a
parser focus on, to decide the next action. Our multilingual experiment shows its effectiveness
across many languages. We also present an experiment with augmented test dataset and demon-
strate it helps to understand the model’s behavior on locally ambiguous points.

1 Introduction

This paper explores better feature representations for incremental dependency parsing. We focus on a
system that builds a parse tree incrementally receiving each word of a sentence, which is crucial for
interactive systems to achieve fast response or human-like behavior such as understanding from partial
input (Baumann, 2013). The most natural way to achieve incremental parsing is using a transition system
(Nivre, 2008), and for such parsers, the main challenge is to choose an appropriate action with only
the local context information. While some recent transition-based parsers alleviate this difficulty by
exploiting the entire input sentence with recurrent neural networks (Kiperwasser and Goldberg, 2016; Shi
et al., 2017), one possible disadvantage is to require that all inputs are visible from the beginning, which
should be problem when we try more strict incremental conditions such as simultaneous translation.
Therefore there are still demands to explore the effective way to extract better feature representation
from incomplete inputs.

In this paper, we incorporate a simple attention mechanism (Bahdanau et al., 2015) with an incremental
parser and investigate its effectiveness during the feature extraction. Attention mechanism itself has
firstly succeeded in machine translation, capturing relative importances of tokens on a certain step for a
proper output (Bahdanau et al., 2015; Luong et al., 2015). The characteristic to weight on some features
automatically and effectively can be applied to various tasks such as seq-to-seq parsing model (Vinyals
et al., 2015), text summarization (Rush et al., 2015), dialogue generation (Shang et al., 2015), image
captioning (Xu et al., 2015) in which the systems can enjoy performance gain by attending to specific
clues depending on a given situation. We can also expect this behavior is helpful to fix the error which
transition-based parsers often commits due to local ambiguities.

John on Monday introduces advisors.

40nmod 40obl

Figure 1: A locally ambiguous sentence. “Monday” should be analyzed as oblique of “introduce” while
tends to be analyzed as a noun modifier of “John”.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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Figure 1 shows our motivating example, on which the standard transition-based parser fails and at-
taches “Monday” to “John”, since on the POS level and the usual behavior of “on”, this sequence is
misleading as a typical noun phrase. By introducing attention on feature extraction, we expect the model
to attend to important tokens, in this case “Monday”, which is not likely to attach to a person and sug-
gests the parser to anticipate the following predicate. Our technique can be applied to any models with
feed-forward networks on concatenated feature embeddings, and in this work, we apply it on the standard
transition-based parser of Chen and Manning (2014).

On the multilingual experiment on Universal Dependencies (UD) 2.0 (Zeman et al., 2017), we find
our attention brings performance gain for most languages. To inspect the model’s behavior, we also
introduce a controlled experiment with manually created data. For this experiment, we prepare a set of
sentences for which the parser must attend to the key points for correct disambiguation, as in Figure 1,
and see whether the model behaves as expected. There we give detailed error analysis to suggest what
makes it difficult to solve the local ambiguities and how attention achieves it. This type of analysis is
common in psycholinguistics (Levy, 2008), and a similar idea has recently begun to be explored in NLP
neural models (Shekhar et al., 2017).

2 Model

2.1 Base model
Our base model is a transition-based neural parser of Chen and Manning (2014).1 For each step, this
parser first creates feature vectors of words (xw), POS tags (xp), and labels (xl), each of which is a con-
catenation of embeddings around a stack and a buffer. These vectors are transformed with corresponding
weights, i.e., h = Wwxw +Wpxp +Wlxl + b, followed by nonlinearity. A next softmax layer then
provides action probabilities.

Although this method is actually old, the approach which creates the feature vector from independent
embeddings becomes useful in our second experiment inspecting our attention behaviors (See section 3.3
in detail). In addition, UDPipe (Straka et al., 2016) which is the baseline parser in the latest shared task
(Zeman et al., 2017) also adopts this approach and holds good performance compared to others using
recent techniques.

2.2 Attention on local features
We introduce attention in feature computation from the input embeddings to h. Note that three compo-
nents Wwxw, Wpwp, and Wlxl are independent; in the following we focus on just one part, abstracted
by Wx, and describe how attention is applied for this computation.

Our attention calculates the importance of input elements. First, note that x is a concatenation of
embeddings of input elements, and when the number of elements is n, W can also be divided into n
blocks as in Figure 2. When these parts are denoted by Wi and xi, Wx =

∑
iWixi holds. We define

ci = Wixi, which corresponds to the hidden representation for the i-th input element.
Our core idea is to apply attention on decomposed hidden vectors {ci}. Using attention vector a =

(a1, a2, · · · , an), the new hidden representation becomes hg =
∑

i aici. We obtain attention ai using ci
and parameters q as follows:

ai =
exp(σ(q · ci))∑n
i=1 exp(σ(q · ci))

,

where σ is a sigmoid function. We use different attention parameters qw, qp, and ql for word, POS, and
label inputs, respectively.

3 Experiments

Our first experiment is on the multilingual UD treebanks used in CoNLL 2017 shared task (Zeman et
al., 2017). In addition to this, we present another experiment using augmented test data. This is a set of

1As described in Section 3.1 we slightly extend their parser to use additional features. In this section, we first present our
model with the original features for simplicity.
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Figure 2: Our attention mechanism on the decomposed hidden vectors ci, obtained by Wixi.

sentences for which there is a key token for correct disambiguation. We will see whether our model is
capable of disambiguating them by attending to the critical points.

For both experiments, our baselines are our parser without attention, and UDPipe v1.1 (Straka et al.,
2016), which was the state-of-the-art among transition-based parsers with local features on the shared
task.2

3.1 Parser
We extract features from the same positions as Chen and Manning (2014); top three tokens from the stack
and the buffer, the first and second leftmost or rightmost children of the top two tokens on the stack, and
the leftmost or rightmost children of leftmost or rightmost children of the top two tokens on the stack.
However, from each position we extract more information such as LEMMA (see also footnote 1). The
embedding sizes are: 50 dimensions for WORD, 20 dimensions for LEMMA, UPOS, XPOS, FEATS,
and DEPREL. We also extract 32 dimensional character encoding of a token by bi-LSTMs (Ling et al.,
2015), though we do not apply attention on this. The size of the hidden dimension is 200, on which
we apply 50% dropout. We use pre-trained embeddings used in the baseline UDPipe.3 To handle non-
projectivity, we employ the arc-standard swap algorithm (Nivre et al., 2009). We also use beam search
with width 5. To learn the representation for unknown words, we stochastically replace singletons with
the dummy token (Dyer et al., 2015). These hyperparameters are the same across languages except
Kazakh. This is apart from UDPipe, which tunes the setting for each language. For Kazakh, which is
extremely small, we find increasing the model size as 100, 50, and 50 dimensions for WORD, UPOS,
and XPOS embeddings works well so we choose this setting.

3.2 Multilingual evaluation
We use 63 treebanks in 45 languages on Universal Dependencies v2.0 (Nivre et al., 2017), with the same
data split as the setting of official UDPipe.3 We evaluate F1 LAS of each treebank and their macro
average. For the development sets, we use the gold preprocessed data while for the test sets, we parse
the raw text preprocessed by UDPipe.

With respect to the macro averaged score, in the Table 1 below, we can see that our model without
attention (w/o Att.) is comparable to UDPipe; with attention, it outperforms both. When inspecting in
detail, we see that our attention improves the scores on 54 treebanks on the development set and 57 tree-
banks on the test set. We also see that the treebanks for which our attention degrades the performance are
relatively small, e.g., en partut (1,035 sentences) and hu (864 sentences), which indicates our attention
may be more data-hungry.

2There are three systems (Straka and Straková, 2017; Kanerva et al., 2017; Yu et al., 2017) that outperform UDPipe v1.1
but the improvements come not from parsing models but from preprocessing, such as improvements to the POS tagger.

3https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1990
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Development Test
Treebank UDPipe w/o Att. w/ Att. UDPipe w/o Att. w/ Att.
ar 78.11 78.73 79.84 65.30 64.72 65.43
bg 87.56 86.90 87.35 83.64 83.23 83.44
ca 88.35 87.52 88.28 85.39 84.66 85.43
cs 88.19 86.29 87.06 82.87 81.15 82.27
cs cac 86.57 86.13 87.01 82.46 81.48 82.15
cs cltt 78.95 79.96 79.22 71.64 72.08 72.56
cu 79.44 79.46 81.69 62.76 63.19 65.40
da 81.13 80.57 82.01 73.38 73.16 74.22
de 84.06 83.58 84.25 69.11 67.54 68.66
el 83.71 84.59 83.88 79.26 79.56 80.03
en 85.82 84.96 85.29 75.84 74.65 75.06
en lines 80.51 80.40 80.46 72.94 73.75 74.11
en partut 81.29 81.49 79.95 73.64 73.37 73.15
es 86.69 86.17 86.66 81.47 80.55 81.58
es ancora 87.55 86.98 87.89 83.78 83.59 84.39
et 76.37 74.00 75.63 58.79 57.62 58.74
eu 76.88 76.31 77.93 69.15 68.24 70.29
fa 85.16 82.69 83.60 79.24 77.20 78.28
fi 82.12 81.83 83.10 73.75 73.73 74.73
fi ftb 85.14 84.70 86.20 74.03 73.45 74.54
fr 89.02 87.94 88.82 80.75 79.87 80.70
fr partut 80.61 78.81 82.42 77.38 77.62 78.08
fr sequoia 86.66 86.66 86.60 79.98 80.00 80.29
ga 71.09 70.49 72.75 61.52 62.37 62.62
gl 80.55 81.16 82.22 77.31 77.82 78.71
gl treegal 74.48 75.46 75.13 65.82 65.06 65.30
got 76.51 77.32 77.86 59.81 60.16 60.80
grc 61.65 62.80 65.51 56.04 54.83 55.66
grc proiel 75.72 74.58 76.78 65.22 64.80 66.79
he 83.18 81.94 82.87 57.23 55.13 55.07
hi 91.07 91.72 92.15 86.77 86.02 86.46
hr 80.76 79.46 81.17 77.18 76.35 77.59
hu 73.98 75.42 75.36 64.30 64.23 64.01
id 78.43 78.24 79.15 74.61 74.41 75.31
it 88.44 87.27 88.89 85.28 84.47 85.20
it partuta 85.16 84.20 83.85 - - -
ja 95.48 95.28 95.23 72.21 72.68 72.69
kk 34.83 37.08 22.47 24.51 25.14 22.77
ko 62.06 79.28 80.10 59.09 73.52 74.38
la 60.04 61.44 63.11 43.77 43.78 46.51
la ittb 77.91 77.01 79.98 76.98 75.78 76.67
la proiel 74.36 72.48 75.06 57.54 57.11 58.28
lv 72.71 72.58 73.37 59.95 58.65 60.13
nl 82.43 81.85 83.51 68.90 68.02 68.93
nl lassysmall 80.34 79.22 80.61 78.15 76.15 78.86
no bokmaal 88.78 87.54 88.70 83.27 81.61 82.71
no nynorsk 87.99 87.56 88.04 81.56 80.51 80.94
pl 87.35 87.79 86.66 78.78 78.99 78.65
pt 89.45 92.10 92.59 82.11 78.79 78.91
pt br 89.57 88.97 89.58 85.36 84.91 85.35
ro 82.25 81.80 82.59 79.88 78.93 80.07
ru 80.84 81.79 82.53 74.03 74.79 75.36
ru syntagrus 89.63 88.10 89.38 86.76 85.55 86.54
sk 83.83 82.95 84.13 72.75 72.14 73.66
sl 89.15 89.18 90.05 81.15 80.06 81.18
sl sst 67.31 66.81 68.09 46.45 46.05 46.50
sv 80.40 78.94 80.91 76.73 76.11 76.32
sv lines 81.38 81.07 81.73 74.29 73.62 74.07
tr 60.27 59.45 61.48 53.19 54.50 55.50
ug 53.85 58.65 49.04 34.18 36.26 35.62
uk 69.30 70.61 70.68 60.76 60.91 61.13
ur 81.62 85.47 85.68 76.69 76.36 76.98
vi 66.22 68.13 69.27 37.47 37.85 38.10
zh 79.37 77.45 78.21 57.40 56.18 56.22
avg. 79.52 79.65 80.18 70.34 b 70.06 70.79
a The test set of it partut treebank was excluded in the shared task as well.
b The UDPipe’s official score is 68.35 because it includes the scores for extra

treebanks in the shared task, called surprise language.

Table 1: Labeled attachment scores of 63 treebanks in UD v2.0
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3.3 Augmented data evaluation

Why does attention help for disambiguation? To inspect this, now we perform a controlled experiment by
parsing a set of sentences that for correct disambiguation may require attending to some specific points.
We present two different sets on English, which differ in the points where the model should attend.

Oblique vs. noun modifier The first set is related to the difficulty of the left of Figure 3, where as we
discussed the parser may be confused and attach “Monday” to “John” as a noun modifier since the POS
sequence of “John on Monday” and the usual behavior of “on” are typical for a noun phrase. The right
of Figure 3 shows the step where the parser must decide the head of “Monday”; here the correct action
is shift and right-arc leads to the wrong analysis. At this step, though the important token for a typical
NP is “on”, we expect the parser to focus more on “Monday”, which is likely to attach to a subsequent
predicate as oblique.

John on Monday introduces advisors.

40nmod 40obl

  

MondayJohnRoot introduces advisors .

on

stack buffer

Figure 3: Left - An local ambiguous sentence, reprint of Figure 1. Right - The configuration on which
the parser must decide whether “Monday” works as an oblique or a modifier.

To inspect the model’s ability for correctly handling these ambiguities, we prepare 14 pairs of sen-
tences.4 Each pair differs minimally, as in “John on Monday introduces advisors” and “John on a bal-
cony introduces advisors”, in which the former should be analyzed as oblique (obl) while the latter as
a modifier (nmod). Table 2 contrasts the inputs to parsers when gold preprocessing is given, where the
differences always appear at third and forth tokens (“Monday” in obl vs. “a” and “balcony” in nmod).
All words in these items occur at least one in the training corpus, therefore no unknown words are used.

1 2 3 4 5 6 7

obl

John on Monday introduces advisors .
PROPN ADP PROPN VERB NOUN PUNCT

NNP IN NNP VBZ NNS .
Sing Sing Ind Plur

nmod

John on a balcony introduces advisors .
PROPN ADP DET NOUN VERB NOUN PUNCT

NNP IN DT NN VBZ NNS .
Sing Ind Sing Ind Plur

Table 2: Minimal pair in oblique (“John on Monday introduces advisors”) vs. noun modifier (“John on
a balcony introduces advisors”) experiment

The result is summarized in Table 3, where we count the number of sentences on which the parser
outputs are perfect. We can see that nmod sentences are analyzed near perfectly, which is intuitive as
this structure is typical. obl sentences are more difficult, but the system with attention is capable of
handling them. The other systems fail, even assuming gold tags. For pred tags, all systems receive
the same inputs tagged by UDPipe. The accuracy for obl decreases, and we find the errors are due to
incorrect POS tags for the predicate at 5th word, which are sometimes tagged as a noun. This suggests
our attention parser can handle these local ambiguities unless a crucial tag error occurs, while the other
systems cannot at all.

Finally, we show in Figure 4 the attention weights on features at a branching step (The right of Figure
3) for the sample sentences in Table 2. We can see that for the obl sentence the parser attends more

4All items are shown in Appendix A.
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Gold tags Pred tags
obl nmod obl nmod

UDPipe 0 / 14 14 / 14 0 / 14 13 / 14
w/o Att. 0 / 14 14 / 14 0 / 14 13 / 14
w/ Att. 12 / 14 14 / 14 6 / 14 13 / 14

Table 3: # of correct analysis for obl vs. nmod pairs.

Figure 4: Attention weights on obl sentence (above) and nmod sentence (below). si and bi are the i-th
top-most position on the stack and buffer, respectively. lci and rci are their (inward) i-th left and right
child.

on the key tokens of “Monday” on the stack and “introduces” on the buffer. This suggests the attention
mechanism works as we expected and its behavior matches our intuition.

Object complement vs. that clause The second set is about different ambiguities from the previous
experiment; an example pair is shown in the left of Figure 5, where to correctly parse the lower one, the
parser must recognize the implicit that clause (that), rather than an object-complement (oc). The right
of the figure shows the configuration on which the parser must choose the structure, by shift or right-arc.
The key token for correct analysis is at the last, which can be accessed as the second token on the buffer.

John found it ignored before.

40obj

40xcomp

John found it ignored comments.

40nsubj

40ccomp

  

foundRoot ignored before .

John

stack buffer

it

Figure 5: The representative pair for the second set: object-complement (left above) vs. that clause (left
below) and the branching configuration (right).

We prepare 24 pairs of sentences. Table 4 shows an example of differences of a pair. In these sentences,
tokens from third to fifth differ. Note that contrary to Table 2 these two condition are distinctive with



791

POS tags (e.g., VBN or VBD), so the main challenge is whether the model can attend to the key tokens
when the predicted noisy tags are used.

1 2 3 4 5 6

oc

John found it ignored before .
PROPN VERB PRON VERB ADV PUNCT

NNP VBD PRP VBN RB .
Sing Ind Acc Past

that

John found it ignored comments .
PROPN VERB PRON VERB NOUN PUNCT

NNP VBD PRP VBD NNS .
Sing Ind Nom Ind Plur

Table 4: Minimal pair in object-complement (“John found it ignored before”) vs. that-clause experiment
(“John found it ignored comments”)

Table 5 summarizes the results. As we expected, all systems succeed with gold tags, but perform badly
in particular on that sentences, with predicted tags. Inspecting errors, we find that this is due to error
propagation from an incorrect tag for it (3rd token), on which UDPipe assigns Acc(suative) feature due
to that-omission. By this error, another error is induced on the POS tag of the next token (e.g., ignored),
which becomes participle or adjective. These erroneous tags make it hard for parsers to recognize an
implicit that.

Though all models fail, we notice that for 30% of sentences (7/24), our attention parser recognizes the
existence of that-clause, by wrongly analyzing the last noun (e.g., comments) as the head of the clause (it
becomes nsubj of the noun). Inspecting the attention weights for succeeded and failed cases (Figure 6),
we find the last noun is slightly attended more in the succeeded case (above), which may lead the parser
to predict a ccomp arc (but to a wrong word).

Gold tags Pred tags
oc that oc that

UDPipe 23 / 24 24 / 24 19 / 24 0 (0) / 24
w/o Att. 24 / 24 24 / 24 16 / 24 1 (2) / 24
w/ Att. 23 / 24 24 / 24 18 / 24 1 (7) / 24

Table 5: # of correct sentences for oc vs. that. Numbers in brackets mean the cases where that-omission
is correctly predicted but other errors exist (see body).

Figure 6: Attention weights on that sentences when that-omission is predicted (above) or failed (below).
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4 Conclusion

We have presented an simple attention mechanism for dynamic feature selection, which can be applied
to any feed-forward networks on concatenated feature embeddings. When applying to an incremental
parser, the parser performance increased across many languages. Also our augmented-data experiment
showed that the parser successfully learns where to focus on each context, and becomes more robust to
erroneously tagged sentences.
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Jonathan North Washington, Zdeněk Žabokrtský, Amir Zeldes, Daniel Zeman, and Hanzhi Zhu. 2017. Uni-
versal dependencies 2.0. LINDAT/CLARIN digital library at the Institute of Formal and Applied Linguistics
(ÚFAL), Faculty of Mathematics and Physics, Charles University.

Joakim Nivre. 2008. Algorithms for deterministic incremental dependency parsing. Computational Linguistics,
34(4):513–554.

Alexander M. Rush, Sumit Chopra, and Jason Weston. 2015. A neural attention model for abstractive sentence
summarization. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing,
pages 379–389, Lisbon, Portugal, September. Association for Computational Linguistics.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neural responding machine for short-text conversation. In
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 1577–1586, Beijing,
China, July. Association for Computational Linguistics.
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Ojala, Anna Missilä, Christopher D. Manning, Sebastian Schuster, Siva Reddy, Dima Taji, Nizar Habash, Her-
man Leung, Marie-Catherine de Marneffe, Manuela Sanguinetti, Maria Simi, Hiroshi Kanayama, Valeria de-
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A Experiment Items

No. Type Sentence
1 obl John on Monday agrees friends.

nmod John on a table agrees friends.
2 obl John on Monday needs colleagues.

nmod John on a chair needs colleagues.
3 obl John on Tuesday introduces advisors.

nmod John on a balcony introduces advisors.
4 obl John on Tuesday calls leaders.

nmod John on a bike calls leaders.
5 obl John on Wednesday employs people.

nmod John on a ship employs people.
6 obl John on Wednesday meets relatives.

nmod John on a bus meets relatives.
7 obl John on Thursday sees workers.

nmod John on a stage sees workers.
8 obl John on Thursday praises owners.

nmod John on a roof praises owners.
9 obl John on Friday believes teachers.

nmod John on a seat believes teachers.
10 obl John on Friday hits professors.

nmod John on a car hits professors.
11 obl John on Saturday protects soldiers.

nmod John on a tank protects soldiers.
12 obl John on Saturday supports doctors.

nmod John on a hill supports doctors.
13 obl John on Sunday worries visitors.

nmod John on a mountain worries visitors.
14 obl John on Sunday contacts managers.

nmod John on a plane contacts managers.

Table 6: Items in the oblique vs. noun modifier
experiment.

No. Type Sentence
1 oc John found it ignored before.

that John found it ignored comments.
2 oc John found it ignored again.

that John found it ignored opinions.
3 oc John found it contained before.

that John found it contained layers.
4 oc John found it contained again.

that John found it contained plants.
5 oc John considered it classified before.

that John considered it classified species.
6 oc John considered it classified again.

that John considered it classified words.
7 oc John considered it involved before.

that John considered it involved issues.
8 oc John considered it involved again.

that John considered it involved changes.
9 oc John felt it abandoned before.

that John felt it abandoned soldiers.
10 oc John felt it abandoned again.

that John felt it abandoned people.
11 oc John felt it protected before.

that John felt it protected ideas.
12 oc John felt it protected again.

that John felt it protected students.
13 oc John guessed it reccommended before.

that John guessed it reccommended graphics.
14 oc John guessed it reccommended again.

that John guessed it reccommended services.
15 oc John guessed it employed before.

that John guessed it employed officials.
16 oc John guessed it employed again.

that John guessed it employed relatives.
17 oc John understood it infected before.

that John understood it infected computers.
18 oc John understood it infected again.

that John understood it infected animals.
19 oc John understood it pasted before.

that John understood it pasted pictures.
20 oc John understood it pasted again.

that John understood it pasted posters.
21 oc John believed it transmitted before.

that John believed it transmitted signals.
22 oc John believed it transmitted again.

that John believed it transmitted images.
23 oc John believed it replaced before.

that John believed it replaced lights.
24 oc John believed it replaced again.

that John believed it replaced positions.

Table 7: Items in the object complement vs.
that clause experiment.


