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Abstract

Entity Linking aims to link entity mentions in texts to knowledge bases, and neural models have
achieved recent success in this task. However, most existing methods rely on local contexts to re-
solve entities independently, which may usually fail due to the data sparsity of local information.
To address this issue, we propose a novel neural model for collective entity linking, named as
NCEL. NCEL applies Graph Convolutional Network to integrate both local contextual features
and global coherence information for entity linking. To improve the computation efficiency, we
approximately perform graph convolution on a subgraph of adjacent entity mentions instead of
those in the entire text. We further introduce an attention scheme to improve the robustness of
NCEL to data noise and train the model on Wikipedia hyperlinks to avoid overfitting and domain
bias. In experiments, we evaluate NCEL on five publicly available datasets to verify the linking
performance as well as generalization ability. We also conduct an extensive analysis of time com-
plexity, the impact of key modules, and qualitative results, which demonstrate the effectiveness
and efficiency of our proposed method.

1 Introduction

Entity linking (EL), mapping entity mentions in texts to a given knowledge base (KB), serves as a fun-
damental role in many fields, such as question answering (Zhang et al., 2016), semantic search (Blanco
et al., 2015), and information extraction (Ji et al., 2015; Ji et al., 2016). However, this task is non-trivial
because entity mentions are usually ambiguous. As shown in Figure 1, the mention England refers to
three entities in KB, and an entity linking system should be capable of identifying the correct entity as
England cricket team rather than England and England national football team.

Entity linking is typically broken down into two main phases: (i) candidate generation obtains a set
of referent entities in KB for each mention, and (ii) named entity disambiguation selects the possible
candidate entity by solving a ranking problem. The key challenge lies in the ranking model that computes
the relevance between candidates and the corresponding mentions based on the information both in texts
and KBs (Nguyen et al., 2016). In terms of the features used for ranking, we classify existing EL models
into two groups: local models to resolve mentions independently relying on textual context information
from the surrounding words (Chen and Ji, 2011; Chisholm and Hachey, 2015; Lazic et al., 2015; Yamada
et al., 2016), and global (collective) models, which are the main focus of this paper, that encourage the
target entities of all mentions in a document to be topically coherent (Han et al., 2011; Cassidy et al.,
2012; He et al., 2013b; Cheng and Roth, 2013; Durrett and Klein, 2014; Huang et al., 2014).

Global models usually build an entity graph based on KBs to capture coherent entities for all identi-
fied mentions in a document, where the nodes are entities, and edges denote their relations. The graph
provides highly discriminative semantic signals (e.g., entity relatedness) that are unavailable to local
model (Eshel et al., 2017). For example (Figure 1), an EL. model seemly cannot find sufficient disam-
biguation clues for the mention England from its surrounding words, unless it utilizes the coherence
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information of consistent topic “cricket” among adjacent mentions England, Hussain, and Essex. Al-
though the global model has achieved significant improvements, its limitation is threefold:

o ‘ Essex County
- b Cricket Club

Entity Graph

Husséin, considered surplus to Engﬁvlan'a.’s one-day require.mi...,.-s, étruck 158, his first championship century
of the season, as Essex reached 372 and took a first innings lead of 82.

Figure 1: Illustration of named entity disambiguation for three mentions England, Hussain, and Essex.
The nodes linked by arrowed lines are the candidate entities, where red solid lines denote target entities.

1. The global approach suffers from the data sparsity issue of unseen words/entities, and the failure to
induce underlying discriminative features for EL.

2. The joint inference mechanism in the global approach leads to expensive computations, especially
when the entity graph may contain hundreds of nodes in case of long documents.

3. The annotated EL training data is usually expensive to obtain or only available in narrow domains,
which results in possible overfitting issue or domain bias.

To mitigate the first limitation, recent EL studies introduce neural network (NN) models due to its
amazing feature abstraction and generalization ability. In such models, words/entities are represented by
low dimensional vectors in a continuous space, and features for mention as well as candidate entities are
automatically learned from data (Nguyen et al., 2016). However, existing NN-based methods for EL are
either local models (Yamada et al., 2017; Gupta et al., 2017) or merely use word/entity embeddings for
feature extraction and rely on another modules for collective disambiguation, which thus cannot fully
utilize the power of NN models for collective EL (Globerson et al., 2016; Guo and Barbosa, 2017; Phan
et al., 2018).

The second drawback of the global approach has been alleviated through approximate optimization
techniques, such as PageRank/random walks (Pershina et al., 2015), graph pruning (Hoffart et al., 2011),
ranking SVMs (Ratinov et al., 2011), or loopy belief propagation (LBP) (Globerson et al., 2016; Ganea
and Hofmann, 2017). However, these methods are not differentiable and thus difficult to be integrated
into neural network models (the solution for the first limitation).

To overcome the third issue of inadequate training data, (Gupta et al., 2017) has explored a massive
amount of hyperlinks in Wikipedia, but these potential annotations for EL contain much noise, which
may distract a naive disambiguation model (Chisholm and Hachey, 2015).

In this paper, we propose a novel Neural Collective Entity Linking model (NCEL), which performs
global EL. combining deep neural networks with Graph Convolutional Network (GCN) (Defferrard et
al., 2016; Kipf and Welling, 2017) that allows flexible encoding of entity graphs. It integrates both
local contextual information and global interdependence of mentions in a document, and is efficiently
trainable in an end-to-end fashion. Particularly, we introduce attention mechanism to robustly model
local contextual information by selecting informative words and filtering out the noise. On the other
hand, we apply GCNs to improve discriminative signals of candidate entities by exploiting the rich
structure underlying the correct entities. To alleviate the global computations, we propose to convolute
on the subgraph of adjacent mentions. Thus, the overall coherence shall be achieved in a chain-like way
via a sliding window over the document. To the best of our knowledge, this is the first effort to develop
a unified model for neural collective entity linking.
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In experiments, we first verify the efficiency of NCEL via theoretically comparing its time complexity
with other collective alternatives. Afterwards, we train our neural model using collected Wikipedia hy-
perlinks instead of dataset-specific annotations, and perform evaluations on five public available bench-
marks. The results show that NCEL consistently outperforms various baselines with a favorable gen-
eralization ability. Finally, we further present the performance on a challenging dataset WW (Guo and
Barbosa, 2017) as well as qualitative results, investigating the effectiveness of each key module.

2 Preliminaries and Framework

We denote M = {m;} as a set of entity mentions in a document D = (z1,...,;,..., 2 p|), where ;
is either a word w; or a mention m;. G = (E, R) is the entity graph for document D derived from the
given knowledge base, where £ = {e;} is a set of entities, R = {7“; € (0, 1]} denotes the relatedness
between (e;, €;) and higher values indicate stronger relations. Based on G, we extract a subgraph G% for
ej € ®(m;), where ®(m;) denotes the set of candidate entities for m;. Note that we don’t include the
relations among candidates of the same mention in G* because these candidates are mutually exclusive
in disambiguation.

Formally, we define the entity linking problem as follows: Given a set of mentions M in a document
D, and an entity graph G, the goal is to find an assignment' I : M — E.

To collectively find the best assignment, NCEL aims to improve the discriminability of candidates’
local features by using entity relatedness within a document via GCN, which is capable of learning a
function of features on the graph through shared parameters over all nodes. Figure 2 shows the framework
of NCEL including three main components:

1. Candidate Generation: we use a pre-built dictionary to generate a set of entities as candidates to
be disambiguated for each mention, e.g., for mention England, we have ®(m;) = {e}, e, et}, in
which the entities refer to England national football team, England and England cricket team in
Figure 1, respectively.

2. Feature Extraction: based on the document and its entity graph, we extract both local features
and global features for each candidate entity to feed our neural model. Concretely, local features
reflect the compatibility between a candidate and its mention within the contexts, and global features
are to capture the topical coherence among various mentions. These features, including vectorial
representations of candidates and a subgraph indicating their relatedness, are highly discriminative
for tackling ambiguity in EL.

3. Neural Model: given feature vectors and subgraphs of candidates, we first encode the features to
represent nodes (i.e., candidates) in the graph, then improve them for disambiguation via multiple
graph convolutions by exploiting the structure information, in which the features for correct candi-
dates that are strongly connected (i.e., topical coherent) shall enhance each other, and features for
incorrect candidates are weakened due to their sparse relations. Finally, we decode the features of
nodes to output a probability indicating how possible the candidate refers to its mention.

Example As shown in Figure 2, for the current mention England, we utilize its surrounding words as
local contexts (e.g., surplus), and adjacent mentions (e.g., Hussian) as global information. Collectively,
we utilize the candidates of England ej- € ®(m;),j = 1,2,3 as well as those entities of its adjacencies
®(m;—1) U ®(m;41) to construct feature vectors for eé and the subgraph of relatedness as inputs of our
neural model. Let darker blue indicate higher probability of being predicted, the correct candidate €}
becomes bluer due to its bluer neighbor nodes of other mentions m;_1,m;41. The dashed lines denote
entity relations that have indirect impacts through the sliding adjacent window , and the overall structure
shall be achieved via multiple sub-graphs by traversing all mentions.
Before introducing our model, we first describe the component of candidate generation.

"Normally, an entity linking system outputs NIL for a mention when no assignment score is higher than a threshold. This is
application-specific and thus outside of the scope of this work.
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2.1 Candidate Generation

Similar to previous work (Ganea and Hofmann, 2017), we use the prior probability p(e;|m;) of entity
e; conditioned on mention m; both as a local feature and to generate candidate entities: ®(m;) =
{ei|p(e;|m;) > 0}. We compute p(-) based on statistics of mention-entity pairs from: (i) Wikipedia
page titles, redirect titles and hyperlinks, (ii) the dictionary derived from a large Web Corpus (Spitkovsky
and Chang, 2012), and (iii) the YAGO dictionary with a uniform distribution (Hoffart et al., 2011). We
pick up the maximal prior if a mention-entity pair occurs in different resources. In experiments, to
optimize for memory and run time, we keep only top n entities based on p(e;|m;). In the following two
sections, we will present the key components of NECL, namely feature extraction and neural network
for collective entity linking.

... yorkshire ,, _ Entity Graph Feature Extraction Neural Model
... Hussain, «ge=
considered
m; surplusto
== England’s
one-day
requirements
, struck 158,
his first
championshi

p century of FGI(t)baI
_— eatures ind
the séeason, Mit1 Candidate
rzzCthdex = Generation
surrey ...

Chris Lewis

9]
elo €2 @

Local
Features —

Encoder Graph Convolution Decoder

Figure 2: Framework of NCEL. The inputs of a set of mentions in a document are listed in the left
side. The words in red indicate the current mention m;, where m;_;, m;41 are neighbor mentions, and
®(m;) = {e], 5, e4 } denotes the candidate entity set for m;.

3 Feature Extraction

The main goal of NCEL is to find a solution for collective entity linking using an end-to-end neural
model, rather than to improve the measurements of local textual similarity or global mention/entity re-
latedness. Therefore, we use joint embeddings of words and entities at sense level (Cao et al., 2017) to
represent mentions and its contexts for feature extraction. In this section, we give a brief description of
our embeddings followed by our features used in the neural model.

3.1 Learning Joint Embeddings of Word and Entity

Following (Cao et al., 2017), we use Wikipedia articles, hyperlinks, and entity outlinks to jointly learn
word/mention and entity embeddings in a unified vector space, so that similar words/mentions and enti-
ties have similar vectors. To address the ambiguity of words/mentions, (Cao et al., 2017) represents each
word/mention with multiple vectors, and each vector denotes a sense referring to an entity in KB. The
quality of the embeddings is verified on both textual similarity and entity relatedness tasks.

Formally, each word/mention has a global embedding w;/m;, and multiple sense embeddings
S(z;) = {s;}. Each sense embedding s; refers to an entity embedding e;, while the difference be-
tween s; and e; is that s; models the co-occurrence information of an entity in texts (via hyperlinks) and
e; encodes the structured entity relations in KBs. More details can be found in the original paper.

3.2 Local Features

Local features focus on how compatible the entity is mentioned in a piece of text (i.e., the mention and
the context words). Except for the prior probability (Section 2.1), we define two types of local features
for each candidate entity e; € ®(m;):
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String Similarity Similar to (Yamada et al., 2017), we define string based features as follows: the edit
distance between mention’s surface form and entity title, and boolean features indicating whether they
are equivalent, whether the mention is inside, starts with or ends with entity title and vice versa.

Compatibility We also measure the compatibility of e; with the mention’s context words C(m;) by
computing their similarities based on joint embeddings: sim(e;,Cpm, ;) and sim(s;, Cm, ;). Where
Cim;.e; 18 the context embedding of m; conditioned on candidate e; and is defined as the average sum of
word global vectors weighted by attentions:

Cmi,ej = § QWi

Wi EC(ml)

where ay; is the k-th word’s attention from e;. In this way, we automatically select informative words
by assigning higher attention weights, and filter out irrelevant noise through small weights. The attention
ayj is computed as follows:

ayj o< sim(wy, e;)

where sim is the similarity measurement, and we use cosine similarity in the presented work. We
concatenate the prior probability, string based similarities, compatibility similarities and the embeddings
of contexts as well as the entity as the local feature vectors.

3.3 Global Features

The key idea of collective EL is to utilize the topical coherence throughout the entire document. The
consistency assumption behind it is that: all mentions in a document shall be on the same topic. However,
this leads to exhaustive computations if the number of mentions is large. Based on the observation that
the consistency attenuates along with the distance between two mentions, we argue that the adjacent
mentions might be sufficient for supporting the assumption efficiently.

Formally, we define neighbor mentions as ¢ adjacent mentions before and after current mention m;:
N(m;) = {mi_q,...,mi—1,miy1,...,misq}, where 2q is the pre-defined window size. Thus, the
topical coherence at document level shall be achieved in a chain-like way. As shown in Figure 2 (¢ = 1),
mentions Hussain and Essex, a cricket player and the cricket club, provide adequate disambiguation clues
to induce the underlying topic “cricket” for the current mention England, which impacts positively on
identifying the mention surrey as another cricket club via the common neighbor mention Essex.

A degraded case happens if ¢ is large enough to cover the entire document, and the mentions used for
global features become the same as the previous work, such as (Pershina et al., 2015). In experiments,
we heuristically found a suitable ¢ = 3 which is much smaller than the total number of mentions. The
benefits of efficiency are in two ways: (i) to decrease time complexity, and (ii) to trim the entity graph
into a fixed size of subgraph that facilitates computation acceleration through GPUs and batch techniques,
which will be discussed in Section 5.2.

Given neighbor mentions N (m;), we extract two types of vectorial global features and structured
global features for each candidate e; € ®(m;):

Neighbor Mention Compatibility Suppose neighbor mentions are topical coherent, a candidate entity
shall also be compatible with neighbor mentions if it has a high compatibility score with the current
mention, otherwise not. That is, we extract the vectorial global features by computing the similarities
between e; and all neighbor mentions: {sim(e;, m;)|m; € N'(m;)}, where m,; is the mention embed-
ding by averaging the global vectors of words in its surface form: m; = Z’lUlET(mj) wy, where T (m;)
are tokenized words of mention m;.

Subgraph Structure The above features reflect the consistent semantics in texts (i.e., mentions). We
now extract structured global features using the relations in KB, which facilitates the inference among
candidates to find the most topical coherent subset. For each document, we obtain the entity graph G by
taking candidate entities of all mentions ® (M) as nodes, and using entity embeddings to compute their
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similarities as edges R = {r}|r} = sim(e;, e;)}. Then, we extract the subgraph structured features g**
for each entity ¢! € ®(m;), m; € M for efficiency. _
Formally, we define the subgraph as: G* = (el |J®(N(m;)), R™), where R™* = {T?};ki €
®(m;),j € [i —q,i + ¢] \ i}. For example (Figure 1), for entity England cricket team, the sub-
graph contains the relation from it to all candidates of neighbor mentions: England cricket team,
Nasser Hussain (rugby union), Nasser Hussain, Essex, Essex County Cricket Club and Essex, New
York. To support batch-wise acceleration, we represent G** in the form of adjacency table based vectors:
g = [ri* ol ,rfian]T € R24", where n is the number of candidates per mention.
Finally, for each candidate eé, we concatenate local features and neighbor mention compatibility scores

as the feature vector £/, and construct the subgraph structure representation g/ as the inputs of NCEL.

4 Neural Collective Entity Linking

NCEL incorporates GCN into a deep neural network to utilize structured graph information for collec-
tively feature abstraction, while differs from conventional GCN in the way of applying the graph. Instead
of the entire graph, only a subset of nodes is “visible” to each node in our proposed method, and then the
overall structured information shall be reached in a chain-like way. Fixing the size of the subset, NCEL
is further speeded up by batch techniques and GPUs, and is efficient to large-scale data.

4.1 Graph Convolutional Network

GCNs are a type of neural network model that deals with structured data. It takes a graph as an input and
output labels for each node. As a simplification of spectral graph convolutions, the main idea of (Kipf
and Welling, 2017) is similar to a propagation model: to enhance the features of a node according to its
neighbor nodes. The formulation is as follows:

Hl+1 — U(AHZWZ)
where A is a normalized adjacent matrix of the input graph with self-connection, H' and W' are the
hidden states and weights in the [-th layer, and o(+) is a non-linear activation, such as ReLu.

4.2 Model Architecture

As shown in Figure 2, NCEL identifies the correct candidate ¢! for the mention m; by using vecto-
rial features as well as structured relatedness with candidates of neighbor mentions ®(m;_1), ®(m;11).
Given feature vector f/ € R% and subgraph representation g/ € R2?" of each candidate eé € ®(my),

we stack them as inputs for mention? m;: f = [fi1,- - ,fm]T e R™*d and the adjacent matrix
A=[gl,- g7 € R*Cantl) where g7 = [g7,1]7 € R?®*! denotes the subgraph with self-
connection. We normalize A such that all rows sum to one, denoted as A, avoiding the change in the
scale of the feature vectors.

Given f and A, the goal of NCEL is to find the best assignment:

I'*(m;) = argmax P(§; f, A, w)
9

where ¢ is the output variable of candidates, and P(-) is a probability function as follows:

P(j;f, A,w) x exp(F(£, A, j;w))

where F/(f, A, §j;w) is the score function parameters by w € R“. NCEL learns the mapping F'(-) through
a neural network including three main modules: encoder, sub-graph convolution network (sub-GCN) and
decoder. Next, we introduce them in turn.

Encoder The function of this module is to integrate different features by a multi-layer perceptron (MLP):

bt = o(fW! +bh)
2For clarity, we omit the superscripts indicating the mention.
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where h' is the hidden states of the current mention, W' € R%*%1 and ! € R are trainable parameters
and bias. We use ReLu as the non-linear activation o (-).

Sub-Graph Convolution Network Similar to GCN, this module learns to abstract features from the
hidden state of the mention itself as well as its neighbors. Suppose hfnk is the hidden states of the

neighbor my, we stack them to expand the current hidden states of m; as ht € R@an+1)xd: guch that
each row corresponds to that in the subgraph adjacent matrix A. We define sub-graph convolution as:

Wt = o(Ah'W?)
where Wt € R%*%+1 is a trainable parameter.

Decoder After T iterations of sub-graph convolution, the hidden states integrate both features of m; and
its neighbors. A fully connected decoder maps h!*! to the number of candidates as follows:

F = pTH T+
where WT+1 ¢ R”,

4.3 Training

The parameters of network are trained to minimize cross-entropy of the predicted and ground truth y9:

Ly == yllog(P(§ = ej; £, A,w))
j=1

Suppose there are D € D documents in training corpus, each document has a set of mentions M,
leading to totally M € M mention sets. The overall objective function is as follows:

D S o

MeMmeM
5 Experiments

To avoid overfitting with some dataset, we train NCEL using collected Wikipedia hyperlinks instead of
specific annotated data. We then evaluate the trained model on five different benchmarks to verify the
linking precision as well as the generalization ability. Furthermore, we investigate the effectiveness of
key modules in NCEL and give qualitative results for comprehensive analysis>.

5.1 Baselines and Datasets
We compare NCEL with the following state-of-the-art EL methods including three local models and
three types of global models:

1. Local models: He (He et al., 2013a) and Chisholm (Chisholm and Hachey, 2015) beat many
global models by using auto-encoders and web links, respectively, and NTEE (Yamada et al., 2017)
achieves the best performance based on joint embeddings of words and entities.

2. Iterative model: AIDA (Hoffart et al., 2011) links entities by iteratively finding a dense subgraph.

3. Loopy Belief Propagation: Globerson (Globerson et al., 2016) and PBoH (Ganea et al., 2016)
introduce LBP (Murphy et al., 1999) techniques for collective inference, and Ganea (Ganea and
Hofmann, 2017) solves the global training problem via truncated fitting LBP.

4. PageRank/Random Walk: Boosting (Kulkarni et al., 2009), AGDISTISG (Usbeck et al., 2014), Ba-
belfy (Moro et al., 2014), WAT (Piccinno and Ferragina, 2014), xLisa (Zhang and Rettinger, 2014)
and WNED (Guo and Barbosa, 2017) performs PageRank (Page et al., 1999) or random walk (Tong
et al., 2006) on the mention-entity graph and use the convergence score for disambiguation.

30ur codes can be found in https://github.com/TaoMiner/NCEL
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For fairly comparison, we report the original scores of the baselines in the papers. Following these
methods, we evaluate NCEL on the following five datasets: (1) CoNLL-YAGO (Hoffart et al., 2011):
the CoNLL 2003 shared task including testa of 4791 mentions in 216 documents, and testb of 4485
mentions in 213 documents. (2) TAC2010 (Ji et al., 2010): constructed for the Text Analysis Conference
that comprises 676 mentions in 352 documents for testing. (3) ACE2004 (Ratinov et al., 2011): a subset
of ACE2004 co-reference documents including 248 mentions in 35 documents, which is annotated by
Amazon Mechanical Turk. (4) AQUAINT (Milne and Witten, 2008): 50 news articles including 699
mentions from three different news agencies. (5) WW (Guo and Barbosa, 2017): a new benchmark with
balanced prior distributions of mentions, leading to a hard case of disambiguation. It has 6374 mentions
in 310 documents automatically extracted from Wikipedia.

5.2 Training Details and Running Time Analysis

Training We collect 50,000 Wikipedia articles according to the number of its hyperlinks as our training
data. For efficiency, we trim the articles to the first three paragraphs leading to 1,035,665 mentions
in total. Using CoNLL-Test A as the development set, we evaluate the trained NCEL on the above
benchmarks. We set context window to 20, neighbor mention window to 6, and top n = 10 candidates
for each mention. We use two layers with 2000 and 1 hidden units in MLP encoder, and 3 layers in
sub-GCN. We use early stop and fine tune the embeddings. With a batch size of 16, nearly 3 epochs
cost less than 15 minutes on the server with 20 core CPU and the GeForce GTX 1080Ti GPU with 12Gb
memory. We use standard Precision, Recall and F1 at mention level (Micro) and at the document level
(Macro) as measurements.

Complexity Analysis Compared with local methods, the main disadvantage of collective methods is
high complexity and expensive costs. Suppose there are k£ mentions in documents on average, among
these global models, NCEL not surprisingly has the lowest time complexity O(T * kn?) since it only
considers adjacent mentions, where 7" is the number of sub-GCN layers indicating the iterations until
convergence. AIDA has the highest time complexity k£3n? in worst case due to exhaustive iteratively
finding and sorting the graph. The LBP and PageRank/random walk based methods achieve similar high
time complexity of O(T * k?n?) mainly because of the inference on the entire graph.

5.3 Results on GERBIL

GERBIL (Usbeck et al., 2015) is a benchmark entity annotation framework that aims to provide a unified
comparison among different EL. methods across datasets including ACE2004, AQUAINT and CoNLL.
We compare NCEL with the global models that report the performance on GERBIL.

Datasets AGDISTIS | AIDA | Babelfy | WAT | xLisa | PBoH | WNED || NCEL
0.66 0.80 0.61 0.76 | 081 | 0.9 0.81 0.88
ACE2004 0.78 0.89 076 | 0.85 | 0.88 | 0.86 0.90 0.89
0.73 0.57 070 | 075 | 079 | 084 0.83 0.87
AQUAINT 0.59 0.56 070 | 076 | 077 | 0.83 0.83 0.88
0.56 0.74 074 | 078 | 052 | 0.80 0.79 0.79
CoNLL-Test A 0.49 071 | 068 | 076 | 048 | 077 | 076 0.77
0.55 0.77 076 | 0.80 | 054 | 0.80 0.79 0.80
CoNLL-Test B 0.54 0.78 0.70 0.80 | 053 | 0.79 0.79 0.80
Aver 0.63 0.72 070 | 0.77 | 067 | 081 0.81 0.84
verage 0.60 0.74 0.71 079 | 067 | 081 0.82 0.84

Table 1: Micro F1 (above) and Macro F1 (bottom) on GERBIL.

As shown in Table 1, NCEL achieves the best performance in most cases with an average gain of 2%
on Micro F1 and 3% Macro F1. The baseline methods also achieve competitive results on some datasets
but fail to adapt to the others. For example, AIDA and xLisa perform quite well on ACE2004 but
poorly on other datasets, or WAT, PBoH, and WNED have a favorable performance on CoNLL but lower
values on ACE2004 and AQUAINT. Our proposed method performs consistently well on all datasets that
demonstrates the good generalization ability.
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5.4 Results on TAC2010 and WW

In this section, we investigate the effectiveness of NCEL in the “easy” and “hard” datasets, respectively.
Particularly, TAC2010, which has two mentions per document on average (Section 5.1) and high prior
probabilities of correct candidates (Figure 3), is regarded as the “easy” case for EL, and WW is the “hard”
case since it has the most mentions with balanced prior probabilities (Guo and Barbosa, 2017). Besides,
we further compare the impact of key modules by removing the following part from NCEL: global
features (NCEL-local), attention (NCEL-noatt), embedding features (NCEL-noemb), and the impact of
the prior probability (prior).

mmm NCEL @ NCEL-noatt [ Prior
Table 2: Precision on WW = NCEL-ocal 1 NCEL-noemb
AIDA | Ganea | WNED || NCEL-local | NCEL 0.95
0.63 0.78 0.84 0.81 0.86
0.90 —
Prec | Micro F1 | Macro F1
Chisholm 0.81 - -
He 0.81 . - g08
NTEE 0.88 - - 'g
NCEL-local | 0.89 0.89 0.88 & 080
AIDA - 0.55 0.51
Babelfy - 0.63 0.62 0.75
WAT - 0.75 0.73
Globerson - 0.84 - 0.70 ﬂ
Boosting - 0.86 0.85 TAC2010
NCEL 091 0.91 0.92

Table 3: Results on TAC2010

Figure 3: Impacts of NCEL modules

The results are shown in Table 2 and Table 3. We can see the average linking precision (Micro)
of WW is lower than that of TAC2010, and NCEL outperforms all baseline methods in both easy and
hard cases. In the “easy” case, local models have similar performance with global models since only
little global information is available (2 mentions per document). Besides, NN-based models, NTEE and
NCEL-local, perform significantly better than others including most global models, demonstrating that
the effectiveness of neural models deals with the first limitation in the introduction.

Impact of NCEL Modules

As shown in Figure 3, the prior probability performs quite well in TAC2010 but poorly in WW. Com-
pared with NCEL-local, the global module in NCEL brings more improvements in the “hard” case than
that for “easy” dataset, because local features are discriminative enough in most cases of TAC2010, and
global information becomes quite helpful when local features cannot handle. That is, our propose col-
lective model is robust and shows a good generalization ability to difficult EL. The improvements by
each main module are relatively small in TAC2010, while the modules of attention and embedding fea-
tures show non-negligible impacts in WW (even worse than local model), mainly because WW contains
much noise, and these two modules are effective in improving the robustness to noise and the ability of
generalization by selecting informative words and providing more accurate semantics, respectively.

5.5 Qualitative Analysis

Hussain, considered surplus to Englands one-day requirements, struck 158, his first championship century of the season,
as Essex reached 372 and took a first innings lead of 82.

NCEL NCEL-local
England 0.23 England 0.42
England cricket team 0.72 England cricket team 0.20
Essex County Cricket Club 0.99 Essex County Cricket Club 0.97

Table 4: Qualitative Analysis of the Example England.

The results of example in Figure 1 are shown in Table 4, which is from CoNLL testa dataset. For
mention Essex, although both NCEL and NCEL-local correctly identify entity Essex County Cricket
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Club, NCEL outputs higher probability due to the enhancement of neighbor mentions. Moreover, for
mention England, NCEL-local cannot find enough disambiguation clues from its context words, such as
surplus and requirements, and thus assigns a higher probability of 0.42 to the country England according
to the prior probability. Collectively, NCEL correctly identifies England cricket team with a probability
of 0.72 as compared with 0.20 in NCEL-local with the help of its neighbor mention Essex.

6 Conclusion

In this paper, we propose a neural model for collective entity linking that is end-to-end trainable. It ap-
plies GCN on subgraphs instead of the entire entity graph to efficiently learn features from both local and
global information. We design an attention mechanism that endows NCEL robust to noisy data. Trained
on collected Wikipedia hyperlinks, NCEL outperforms the state-of-the-art collective methods across five
different datasets. Besides, further analysis of the impacts of main modules as well as qualitative results
demonstrates its effectiveness.

In the future, we will extend our method into cross-lingual settings to help link entities in low-
resourced languages by exploiting rich knowledge from high-resourced languages, and deal with NIL
entities to facilitate specific applications.
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