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Abstract

This paper focuses on subword-based Neural Machine Translation (NMT). We hypothesize that
in the NMT model, the appropriate subword units for the following three modules (layers) can
differ: (1) the encoder embedding layer, (2) the decoder embedding layer, and (3) the decoder
output layer. We find the subword based on Sennrich et al. (2016) has a feature that a large vocab-
ulary is a superset of a small vocabulary and modify the NMT model enables the incorporation
of several different subword units in a single embedding layer. We refer these small subword fea-
tures as hierarchical subword features. To empirically investigate our assumption, we compare
the performance of several different subword units and hierarchical subword features for both the
encoder and decoder embedding layers. We confirmed that incorporating hierarchical subword
features in the encoder consistently improves BLEU scores on the IWSLT evaluation datasets.
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1 Introduction

The approach of end-to-end Neural Machine Translation (NMT) continues to make rapid progress. A
simple encoder-decoder model was proposed by Sutskever et al. (2014), and an attentional mechanism
was added to better exploit the encoder-side information (Luong et al., 2015; Bahdanau et al., 2015).
Compared to traditional Statistical Machine Translation (SMT), NMT has relatively simple architecture,
which only uses a large single neural network, but its accuracy surpasses SMT (Junczys-Dowmunt et al.,
2016).

A conventional NMT uses a limited vocabulary and a decoder generates a “word” in the vocabulary at
each time step, but a problem occurs when it encounters an out-of-vocabulary word. Since NMT cannot
correctly encode and generate such out-of-vocabulary words, the task performance is degraded. To solve
this problem, Sennrich et al. (2016) proposed a method that expresses a word by combining “subwords.”

*His current affiliation is Tohoku University.
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A subword is a fraction of a word, determined by Byte Pair Encoding (BPE) operations. By the BPE
operation, a word that appears frequently can be one unit, and rare or uncommon words can be expressed
by the combination of several subword units. Thus we can express any words by the combination of
small subword vocabularies to alleviate the out-of-vocabulary problem. Several similar works exist to
make subword units (e.g., (Schuster and Nakajima, 2012; Kudo, 2018)), but in the following, we denote
the units segmented by BPE as subword units unless otherwise noted.

The primary reason why we use subword units is to generate rare or unknown words on the decoder
side. In other words, our purpose is to change the vocabulary at the decoder output layer into subwords.
Once we decide the vocabulary in the decoder output layer, it is natural to use the same vocabulary in the
decoder embedding layer. We also use subword units in the encoder side to maintain consistency with
the decoder. As described, NMT has three layers that are related to subwords: the encoder embedding
layer, the decoder embedding layer, and the decoder output layer. However, we generally use the same
operations to make subword units.

We hypothesize that the optimal subword units can be different among these three layers. Since these
layers play different roles in the model, the subword units should be determined based on each role.
To validate this hypothesis, we modify the model to simultaneously deal with several different subword
units.

We focus on the property that the large subword vocabulary is always a superset of the small subword
vocabulary. By taking advantage of this, we propose the model uses these small subword vocabularies
as additional features of an embedding layer. We name these small subword vocabulary features as
hierarchical subword features. We simply use the sum of the embeddings of each hierarchical subword
features to represent each embedding. This simple approach is GPU friendly and does not increase the
computational time.

We empirically investigate our assumption and find that incorporating several different subword units
for encoder embedding layers consistently improves the BLEU scores on the IWSLT 2012, 2013, and
2014 evaluation datasets.

2 Neural Machine Translation with Subword Units

Among many options for a model architecture of NMT models, our baseline’s model architecture was
introduced in Luong et al. (2015) with a global attention mechanism and a bi-directional encoder (Bah-
danau et al., 2015).

2.1 Formulation

In general, the NMT model receives an input sentence and returns a corresponding (translated) output
sentence. Here, to concisely explain the NMT model, its input and output are both sequences of one-
hot vectors X and Y that respectively correspond to input and output sentences. This conversion can
be performed straightforwardly without loss of generality since each token (word) has a one-to-one
correspondence to a one-hot vector.

Let V, and V; respectively represent the vocabulary sizes of the input and the output. Let 2; € {0,1}"*
represent the one-hot vector of the i-th token in X. Similarly, let y; € {0, 1}"* represent the one-hot
vector of the j-th token in Y. We introduce notation x;.; to represent a list of one-hot vectors, i.e.,
(x1,...,2x5), as a short notation where I represents the length (the number of instances) of the list.
Then the NMT model approximates the following conditional probability:

J+1

p(Y|X) = [] p(y;lyo;-1, X), (1)
j=1

where vy is a one-hot vector of a special begin-of-sentence (BOS) token and y sy is a one-hot vector of
a special end-of-sentence (EOS) token. Moreover, X = x1.; and Y = yg.741.

Our baseline NMT model consists of three primary components (modules): encoder, attention, and
decoder. The following briefly explains these three components. Hereafter, we assume that the number
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of tokens in the input sentence is I, the number of tokens in the output sentence is J, the dimensions of
the embedding vectors are D, and the dimensions of the hidden vectors are H.

Encoder: The encoder generates a list of hidden vectors hi.; given an input sequence of one-hot
vectors z1.7. Let E € RP*Vsl represent an (encoder) embedding matrix. Then Enc(-), which denotes a
function that returns a list of encoded vectors h1.7, is calculated:

hi.; = Enc(ey.;), where e; = FEx; foralli. 2)

Finally, the encoder outputs h1.;.

Decoder and attention mechanism: The decoder estimates the probability of the output sentence
given the encoded information generated by the encoder: hy.;. The attention mechanism allows the
decoder to directly incorporate h;.; at each decoder time step j.

Let F' € RP*Vtl represent an (decoder) embedding matrix. Let Dec_Attn(-) be a function that returns
the final hidden vector at decoder time step j, namely, z;, which is calculated based on f;, z;_1, and
hq.r for all j5:

zj = Dec,Attn(Zj_h £ h1;1), where f; = Fy;_1. 3)

Here we assume that both y; and z; are zero-vectors if j = 0.

Then let W € RIV{*H and b € RVl be a weight matrix and a bias term in the decoder’s output layer.
Finally, the decoder calculates the probability of y; at each time step j, which is p(y;|yo:j—1, X ) from
Eq. 1:

exp(0;) - yj
|01, X) = ——— 2
p(yj‘yO-J 1, ) GXp(Oj) -1

, where o; =Wgz;+b, @)
where 1 is a vector whose elements are all 1.

In the generation (test) phase, we generally use a K -best beam search to generate output sentences
with the (approximated) K -highest probability given input sequence X .

2.2 Subword Units Based on Byte-Pair Encoding

Several approaches have been proposed to obtain a set of subword units based on statistics, e.g., (Schuster
and Nakajima, 2012; Sennrich et al., 2016). The scheme based on Byte-Pair Encoding (BPE) (Sennrich
et al., 2016) is one of the most frequently used methods in current NMT researches. Following this trend,
this paper focuses only on a method based on BPE to obtain a set of subword units and refers to Sennrich
et al. (2016)’s method as SubWgpg to distinguish it from others for clarity.

The following briefly describes the SubWgpg procedure for building a set of subword units given a
set of training data. SubWppg first splits the input sentences into character units and then combines the
two frequently appearing consecutive (character or subword) units into one subword unit. SubWgpg
repeats this merge operation predefined m times. For splitting sentences into obtained subword units, we
straightforwardly apply merge operations in the obtained order of the above procedure.

Here we revisit several interesting properties of SubWppg. For example, generated subword units
become identical to the character units if and only if we set the number of merge operations m to zero
(m=0). All the subword units always recover and match the original word units if we set m to co (m=
o0). These two properties imply that SubWgpg naturally involves the methods using either character or
word units in a single unified framework in terms of using subword units. Therefore, using SubWgprg,
we are not required to distinguish the methods of using character or word units since they are respectively
just a special case of SubWppg with certain hyperparameters m = 0 and m = co. From this perspective,
this paper does not explicitly distinguish among character, subword, and word units and treats all of them
as subword units.

Another interesting property of SubWgpg is that every subword unit obtained by m = m’ can be
represented as a series of subword units obtained by m = m” if m’ > m”. This property is easily
provable. SubWgpg, consists only of a merge operation of two consecutive subwords during the subword
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input sentence: A record ...

Figure 1: Overview of hierarchical subword features

unit construction, and thus, subword units with m are always identical to a subword with m — 1 except
the merged subwords as the m-th merge operation. Therefore, there is a relation where a subword unit
obtained by a larger m is always a concatenation of (several) subword units obtained by a smaller m.
This relation is always satisfied by any m’ and m” pairs, indicating a hierarchical subword in subword
structure for all m from 1 to co.

Generally, the number of merge operations (m) is a hyperparameter that is empirically derived. Recent
NMT researches usually set this m within a range from 1,000 to 100,000: apparently never less than
1,000 or over 100,000. This is because a set of subword units obtained with few merge operations
resembles character units, and therefore the sentence becomes too long to process' On the other hand,
since a set of subword units obtained with relatively large merge operations becomes nearly identical to
the original word units, it lacks the advantage of using subword units. Hence, it is intuitively reasonable
to set m in a range from 1,000 to 100,000.

3 Hierarchical Subword Features

Fig. 1 shows an overview of our proposed method. In it, we extend the encoder’s and the decoder’s
embedding layers by modifying our model to work with several subwords units at once.

To formally explain our modification, we first introduce distinct ) encoder embedding matrices
and IR decoder embedding matrices. Let E, represent the g-th encoder embedding matrix, where
qg € {1,...,Q}. Similarly, let F, represent the r-th decoder embedding matrix, where € {1,..., R}.
Then we modify the operations to obtain encoder and decoder embedding vectors, which are shown
respectively in Egs. 2 and 3. For the encoder embedding vectors, we introduce the following operator:

€; = ZEq¢q(xi)a (5)
q

where ¢,(x;) is a mapping function that returns a binary vector that corresponds to x;. For the decoder
embedding vectors, we obtain f; by the following equation:

=Y F(yj-1), (6)

where 1,.(y;—1) is a mapping function that returns a binary vector that corresponds to previously esti-
mated result y;_1. For example, if we get record as an estimation result of BPE(m =16k), mapping

'NMT lacks the ability to translate longer sentences (Koehn and Knowles, 2017).
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DE-EN FR-EN
Tokens Sentences Tokens Sentences
train 3,496,036 189,318 | 3,800,613 208,323
tst2012 (development) 30,900 1,700 21,653 1,124
tst2013 (test) 21,037 993 21,894 1,024
tst2014 (test) 24,950 1,305 24,950 1,305

Table 1: Cleaned corpora statistics on IWSLT datasets. Number of tokens is English side.

Configurations Values Configurations Values
Embedding dimension D 512 Optimizer SGD
Hidden dimension H 512 Initial learning rate 1.0
Attention dimension 512 Gradient clipping 5.0
Encoder layer 2 Dropout rate 0.3
Decoder layer 2 Mini-batch size 128 sent

Table 2: Model and optimization configurations

function 1), (y;—1) returns a binary vector that corresponds to the subwords with smaller merge opera-
tions (e.g., rec and ord). As we described in Section 2.2, every subword unit obtained with m = m/
can be represented as a series of subword units obtained with m = m” if m” < m/, and the series of
subword units are uniquely determined. Thus, our modification can be interpreted as adding features
of smaller subword units, which were derived from previously estimated output y;_1. We refer to our
method that incorporates smaller subword features as hierarchical subword features.

Note that we use different embeddings for each hierarchical subword feature?. This means that NMT
can learn different features for each hierarchical subword.

The hierarchical subword features slightly increased the number of model parameters (see Section
4.2.1 for more detail). However, increasing the memory requirement and runtime is limited, which
allows us to run almost the same speed and memory requirement as the baseline system?>.

We can simultaneously use several subword features. In Fig. 1, we use both BPE (m =1k) and BPE
(m=300) for the encoder side. By adding several subword features, the model can use more information
with which we expect to improve the task performance.

4 Experiments

4.1 Setup

In this paper, we focused on from/to English (EN) to/from French (FR), German (DE) translations. We
carried out our experiments on the IWSLT evaluation campaign dataset (Cettolo et al., 2012), which is
based on a TED talk that has been translated into several languages. We used the IWSLT 2016 training
set for the training models, tst2012 as the development set, and tst2013 and tst2014 as the test sets.
For preprocessing, we used the Moses tokenizer* and the truecaser®. For the training set, we removed
sentences over 50 words to clean the corpus. Table 1 shows the cleaned corpora statistics on the IWSLT
datasets. To split words into subwords, we used the scripts® provided by Sennrich et al. (2016).

As an NMT framework, we used almost the same structure as Luong et al. (2015), except for our
proposed embedding layers. Detailed NMT configurations are shown in Table 2. We set the initial

2We also tested using the same embeddings. However, we found through preliminary experiments that it is more effective
to use different embeddings.

3The number of model parameters and size of the memory requirement largely depend on the vocabulary size. However,
we use a smaller m (e.g., 1k or 300) for the hierarchical subword features, and since these features only affect the embedding
layer, its effect on computational cost is limited.

*nttps://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/
tokenizer.perl

Shttps://github.com/moses—smt/mosesdecoder/blob/master/scripts/recaser/truecase.
perl

Snttps://github.com/rsennrich/subword-nmt
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Encoder Decoder

Unit Feature Unit Feature Description
(a) | 16k | 16k 16k | 16k baseline, conventional setting
(b) | 1k 1k 16k | 16k smaller vocabulary setting for encoder side
(c) | 300 | 300 16k | 16k smaller vocabulary setting for encoder side
(d) | 16k | 16k, 1k 16k | 16k (a) + Encoder side BPE 1k feature
(e) | 16k | 16k, 300 16k | 16k (a) + Encoder side BPE 300 feature
(£f) | 16k | 16k, 1k, 300 | 16k | 16k (a) + Encoder side BPE 1k, 300 features
(g) | o0 00 16k | 16k substituting Encoder side BPE 16k in (a) to word
(h) | oo 00, 16k 16k | 16k (g) + Encoder side BPE 16k feature
(1) | oo 00, 1k 16k | 16k (g) + Encoder side BPE 1k feature
(3) | o0 00, 300 16k | 16k (g) + Encoder side BPE 300 feature
(k) | oo oo, 1k, 300 16k | 16k (g) + Encoder side BPE 1k, 300 features
(1) | 16k | 16k 16k | 16k, 1k (a) + Decoder side BPE 1k feature
(m) | 16k | 16k 16k | 16k, 300 (a) + Decoder side BPE 300 feature
(n) | 16k | 16k 16k | 16k, 1k, 300 | (a) + Decoder side BPE 1k, 300 features
(o) | 16k | 16k, 1k, 300 | 16k | 16k, 1k,300 | (£) + (n)
(p) | o0 oo, 1k, 300 16k | 16k, 1k, 300 | (k) + (n)

Table 3: Compared experimental settings

learning rate to 1.0, but after 30 epochs we multiplied it by 0.8 for every epoch and continued training
until 40 epochs. For decoding, we performed a beam search with a beam size of 20. To prevent the model
from outputting short sentences, we applied the length normalization technique by dividing the negative
log-likelihood by the sentence length (Cromieres et al., 2016; Morishita et al., 2017). As evaluation
metrics, we used case-sensitive’ BLEU scores (Papineni et al., 2002) using multi-bleu.perl?.

To fix the experimental settings, we carried out a preliminary analysis to find the relation between
the sentence length and the vocabulary size (~ the number of BPE merge operations). Fig. 2 shows the
results on the English sentences of the IWSLT 2016 German-English training set. When we reduce the
vocabulary size, the average sentence length rapidly increases. Unfortunately, longer sentences require
more computational cost and are time-consuming. Thus in our experiments, we set the baseline system’s
vocabulary size to 16,000, which balances the sentence length without affecting the advantage of the
subwords.

The experimental settings are compared in Table 3. Our experiments answer the following questions:

e Does the hierarchical subword feature improve the model?
e Which part of the model should we use it? The encoder side, decoder side or both?
e How does it affect the translation results?

4.2 Results

Tables 4 and 5 show the experimental results with various word units and hierarchical subword features.
All the scores are averages of four independently trained models. We used different parameter initial-
ization and random seeds to train them. The score differences between the baseline system (a) and the
proposed system are shown in the brackets.

(b) and (c) show some improvements using smaller subword units. However, as mentioned in
Section 4.1 and shown in Fig. 2, these units are too small and lengthen the sentences. Thus computational
time is also extended (see Table 6).

Then we added hierarchical subword features to the encoder side. From (d), (e), and (f), we
confirmed that these features improved the model. System (f) uses both BPE (m =1k) and (m = 300)

"For a reference, we used a true-cased test set.
$https://github.com/moses—smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.
perl
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DE-EN EN-DE
tst2012 tst2013 tst2014 tst2012 tst2013 tst2014

31.64 33.68 29.18 26.24 28.22 24.17

32.23 (4+0.59)[34.24 (+0.56)|29.52 (4+0.34)|26.18 (—0.06)|28.09 (—0.13)|24.46 (+0.29)
32.48 (4+0.84)[34.60 (+0.92)|29.91 (4+0.73)]26.39 (+0.15)|28.75 (+0.53)|24.70 (+0.53)
32.18 (+0.54)[34.49 (+0.81)|29.60 (+0.42)]26.50 (+0.26)|28.92 (+0.70)|24.74 (+0.57)
32.15 (+0.51)[34.83 (+1.16)]29.69 (+0.51)|26.78 (4+0.54)|28.90 (+0.68)[24.79 (+0.61)
32.45 (+0.82)[34.67 (+0.99)|29.92 (+0.74)|27.07 (+0.83)[29.10 (+0.88)|24.88 (+0.70)
30.37 (—1.27)|32.58 (—1.10)|27.53 (—1.65)|25.86 (—0.38)|28.28 (+0.06)|24.28 (+0.11)
30.79 (—0.85)[33.14 (—0.54)|28.18 (—1.00)|26.06 (—0.18)|28.30 (+0.08)|24.31 (+0.14)
32.30 (+0.75)[34.76 (+1.09)|29.93 (+0.75)|26.61 (+0.37)|29.13 (4+0.91)|24.73 (+0.56)
32.43 (+0.80)|34.63 (+0.95)|29.78 (+0.60)|26.90 (+0.66)|29.25 (+1.03)|25.15 (+0.98)
32.71 (+1.07)[34.71 (+1.03)|30.06 (+0.88)|26.99 (+0.75)|29.16 (+0.94)|25.28 (+1.11)
31.62 (—0.02)[33.60 (—0.08)|29.11 (—0.07)|26.11 (—0.13)|28.38 (+0.16)|24.22 (+0.05)
31.55 (—0.08)[33.65 (—0.03)|29.21 (4+0.03)|26.17 (—0.07)|28.26 (+0.04)|24.15 (—0.03)
31.65 (+0.01)[33.51 (—0.17)|29.00 (—0.18)|25.93 (—0.31)|28.37 (+0.15)|24.13 (—0.04)
32.84 (+1.20)[34.76 (+1.09)|29.99 (+0.81)]27.27 (+1.03)[29.14 (+0.92)[24.97 (+0.79)
32.80 (+1.17)[34.95 (+1.27)|30.11 (4+0.93)|27.11 (+0.87)|29.64 (+1.42)[25.20 (+1.03)
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Table 4: BLEU scores on IWSLT German-to-English and English-to-German experiments. All scores
are averages of four independently trained models.

as hierarchical subword features and shows more improvement than using a single feature. Since these
models use BPE(m =16k) as a unit, the computational cost is almost the same as the baseline system
(a).

In (d), (e),and (f), we used BPE (/m =16Kk) as a unit, but it is more natural to use “word” (BPE
(m = o0)) as a unit. For the comparison, we did experiments from word to BPE translation without
hierarchical subword features (g). As we expected, that step degraded the accuracy more than the
baseline with BPE. This is because its vocabulary contains many rare words, and thus it is difficult to
train these word embeddings well. However, by adding hierarchical subword features ( (h) to (k) ), the
accuracy improved at the same level as the system with BPE units. Hierarchical subword features helped
the model correctly encode the rare words and improved the accuracy.

For system (h), we saw no improvement, perhaps because large subword units (e.g., BPE (m =16k))
seem too similar to the word units, so it did not help the model very much. Fig. 3 shows the relation
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FR-EN EN-FR
tst2012 tst2013 tst2014 tst2012 tst2013 tst2014

42.35 39.61 36.79 43.65 40.09 37.32

42.84 (40.49)|39.53 (—0.08)|36.86 (40.07)|43.72 (+0.07)|40.43 (40.34)|37.69 (40.37)
43.54 (4+1.19)|39.42 (-0.19)|37.16 (40.37)|43.86 (+0.21)|40.11 (+40.02)|37.54 (+0.22)
43.13 (40.78)|39.93 (+0.32)|37.29 (40.50) |44.59 (+0.94)|40.75 (40.67)|37.82 (40.51)
43.18 (40.83)|39.42 (—0.19)|37.34 (40.55)|44.76 (+1.11)|41.25 (+1.16)|38.29 (40.97)
43.60 (41.25)|40.01 (4-0.40)|37.42 (40.62)|45.07 (+1.42)|41.15 (+1.06)|38.50 (+1.18)
41.70 (—=0.65)|38.36 (—1.26)|35.83 (—0.96)|43.13 (—0.52)|39.38 (—0.70)|36.54 (—0.78)
42.04 (-0.31)|38.56 (—1.05)|36.19 (—0.60)|42.88 (—0.77)]39.40 (—0.69)|36.54 (—0.78)
43.31 (40.96)|40.13 (4-0.52)|37.17 (40.38)|44.84 (+1.19)|41.07 (+0.98)(38.11 (+0.79)
43.34 (40.99) |40.27 (+0.65)|37.44 (40.65)|45.01 (+1.36)|41.43 (+1.35)|38.61 (+1.29)
43.82 (+1.47)|40.38 (40.77)|37.94 (4+1.15)|45.32 (+1.67)|41.58 (+1.50) [38.51 (+1.20)
42.47 (40.12) [39.19 (-0.42)|36.63 (—0.16)|43.86 (4+0.21)|40.22 (40.13)|37.25 (—0.07)
42.34 (—0.01)|39.52 (—-0.09)|36.96 (40.17)|43.79 (4+0.14)|39.85 (—0.24)[37.14 (—0.18)
42.55 (40.20)|39.09 (—0.52)|36.87 (40.08)|43.54 (—0.11)|39.84 (—0.24)|37.20 (—0.12)
43.62 (4+1.27)|40.12 (40.51)|37.73 (4+0.94)|45.22 (4+1.57)|41.32 (+1.23)[37.98 (+0.66)
43.63 (4+1.28)[39.93 (40.31)|37.22 (40.43)|45.43 (+1.78)|41.50 (+1.42)[38.34 (+1.03)
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Table 5: BLEU scores on IWSLT French-to-English and English-to-French experiments. All scores are
averages of four independently trained models.

Model parameters | Training times for an epoch

(a) | 38.9M 1050s
(b) | 31.3M 1075s
(c) | 30.9M 1101s
(d) | 39.7TM 981s

(e) | 39.2M 992s

(£) | 40.0M 1002s
(g) | 88.8M 1053s
(h) | 97.1M 1069s
(1) | 89.5M 1029s
(3) | 89.1M 976s

(k) | 89.8M 1015s
(1) | 39.7M 987s

(m) | 39.2M 967s

(n) | 39.9M 1004s
(o) | 41.1M 1019s
(p) | 90.8M 1083s

Table 6: Number of model parameters and required training times for an epoch (DE-EN). We used a
single NVIDIA GeForce GTX 1080 Ti GPU for training. Required training time might vary due to
server condition.

between the (sub-)word frequency and its rank on the English sentences of the German-English training
set. The word’s graph follows Zipf’s law, and thus these word embeddings that appear a few times in
the training set are relatively hard to train. The graph shows that BPE (m =16k) is almost the same as
the word, because the frequently appearing subword pairs are connected until a subword to be a word.
On the other hand, since each subword in BPE (m = 300) appears in the training set more frequently, its
embedding layer is trained well. Perhaps the number of merge operations for the hierarchical subword
features should be smaller than the one we commonly use. Our method can use both small and large
subword features at once, thus we can cherry pick an advantage of small subword with maintaining the
sentence length.

For systems (1), (m), and (n), we also added features to the decoder side, but we did not find as
much improvement as the encoder side. A possible reason for this observation is that our method works
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DE-EN EN-DE
tst2012 tst2013 tst2014 tst2012 tst2013 tst2014

34.98 37.52 32.54 28.67 30.73 26.51

35.03 (+0.05)|37.08 (—0.44)|31.97 (=0.57)|28.79 (+0.12)|30.67 (—=0.06)|26.52 (+0.01)
35.27 (+0.29)|37.20 (—0.32)|32.60 (40.06)|28.67 (+0.00)|30.94 (40.21)|26.66 (+0.15)
35.44 (+0.46) | 37.62 (+40.10)|33.28 (40.74)|28.87 (40.20)|31.21 (+0.48)[27.00 (+0.49)
35.02 (+0.04)|37.53 (40.01)|32.99 (40.45)|29.13 (40.46)|31.12 (+0.39)(26.72 (+0.21)
35.46 (+0.48)|37.88 (+0.36)|33.07 (+0.53)|29.04 (+0.37)]30.99 (+0.26)|26.94 (+0.43)
3249 (—2.49)|34.98 (—2.54)|29.24 (—3.30)|28.13 (—0.54)|30.59 (—0.14)[25.95 (—0.56)
34.59 (-0.39)|37.59 (40.07)|32.23 (—-0.31)|29.11 (40.44)|31.20 (+0.47)(27.01 (+0.50)
35.08 (+0.10)|37.64 (40.12)|32.62 (4-0.08)|29.01 (40.34)|31.23 (+0.50)[26.71 (+0.20)
35.12 (+0.14)|37.80 (4+0.28)[32.69 (40.15)|28.90 (+0.23)|31.46 (40.73)|26.74 (+0.23)
35.08 (+0.10)|37.86 (+0.34)|32.69 (40.15)29.26 (40.59)|31.17 (+0.44)[26.73 (+0.22)
34.90 (—0.08)|37.29 (-0.23)|32.71 (40.17)|28.77 (40.10)|30.89 (40.16)|26.41 (—0.10)
34.62 (—0.36)|37.61 (40.09)|32.77 (40.23)|28.84 (40.17)|30.35 (—0.38)(26.11 (—0.40)
34.92 (-0.06)|36.79 (—0.73)|32.10 (—0.44)|28.71 (40.04)|31.21 (+0.48)(26.37 (—0.14)
35.64 (+0.66) | 37.85 (40.33)]32.99 (40.45)|29.24 (40.57)|31.12 (+0.39)[26.67 (+0.16)
35.25 (4+0.27)|37.78 (4+0.26)|32.60 (40.06)|29.03 (+0.36)|31.62 (4-0.89)|26.72 (+0.21)
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Table 7: BLEU scores on IWSLT German-to-English and English-to-German experiments. All scores
are ensembles of four independently trained models.

as a regularizer of the model and might degrade the decoder’s language modeling ability: in other words,
its ability to predict the next token given previous tokens.

Even though (o) and (p) systems showed slight improvements from (f) and (k), such insignifi-
cant improvements suggest that the usefulness of (o) and (p) is limited.

Our results suggest the following conclusions: (1) add hierarchical subword features to the encoder
side but not to the decoder side and (2) use fewer merge operations, e.g., m =300 and m =1k.

4.2.1 Number of Parameters and Required Training Time

Table 6 shows the number of parameters and required training times per epoch. The number of model
parameters significantly increases if we add word-level features ((g), (h), (i), (J), (k),and (g)).
In contrast, adding subword-level features does not significantly increase the number of parameters.

We also checked the required training times for each setting. The training time with hierarchical
subword features is comparable to the baseline NMT. These results revealed that our methods do not
require further computational costs and can be easily applied to any existing systems.

4.2.2 Model Ensembling Results

Tables 7 and 8 show the BLEU scores of ensembling four independently trained models. Hierarchical
subword features consistently improved the BLEU scores even for ensembling. This means that our
method can be applied to highly tuned systems such as the one submitted to WMT.

4.2.3 Example of Improved Translation

Table 9 shows an example of an improved translation from French to English. The input includes a rare
combination of two words, “Britney Spears”, which is a proper noun that is hard to translate. Table 10
shows an example of how the words “Britney Spears” were segmented into subwords. These words have
been split into small bits of subwords. The subwords are slightly different based on the number of merge
operations.

On the one hand, the baseline system with BPE 16k for both the encoder and decoder side cannot
correctly translate the two words. On the other hand, our proposed system with hierarchical subword
features did correctly translate them. One significant reason is that the embedding layer of subwords
with large merge operations is not trained well, as described in Section 4.2. In contrast, our proposed
model can make use of both large and small features for correct translations of such rare words.
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FR-EN EN-FR
tst2012 tst2013 tst2014 tst2012 £st2013 tst2014

47.46 43.72 40.48 46.13 12.86 39.79

46.07 (—1.39)|41.94 (—1.78)|39.62 (—0.86)|47.19 (+1.06)|43.57 (+0.71)|40.87 (+1.08)
46.47 (—0.99)|42.38 (—1.34)|39.51 (—0.97)|46.97 (+0.84)[42.94 (+0.08)|40.71 (+0.92)
4872 (+1.26)]4359 (—0.13)[40.98 (+0.50)|46.91 (+0.78)[43.02 (+0.16)|40.07 (+0.28)
48.16 (+0.70)|43.86 (+0.14)|41.53 (+1.05)|46.41 (+0.28)]42.66 (—0.20)|40.38 (+0.59)
48.18 (4+0.72)|43.96 (+0.24)|41.10 (+0.62)|47.40 (+1.27)]43.30 (+0.44)|40.37 (+0.58)
47.61 (+0.15)|42.50 (—1.22)[40.00 (—0.48)]44.88 (—1.25)]41.85 (—1.01)|38.53 (—1.26)
45.95 (—1.51)]42.22 (=1.50)|39.54 (—0.94)|47.51 (+1.38)|43.54 (+0.68)|40.39 (+0.60)
48.52 (+1.06)|44.24 (+0.52)|40.67 (+0.19)|46.79 (+0.66)|43.32 (+0.46)|39.82 (+0.03)
48.61 (+1.15)|43.85 (+0.13)|41.17 (+0.69)|46.24 (+0.11)[42.85 (—0.01)|39.89 (+0.10)
48.49 (+1.03)|44.33 (+0.61)|40.92 (+0.44)|46.76 (+0.63)|42.90 (+0.04)|40.18 (+0.39)
4847 (+1.01)]43.99 (10.27)[40.43 (—0.05)]|46.14 (+0.01)|42.86 (+0.00)[39.67 (—0.12)
48.11 (40.65)|43.32 (—0.40)|40.68 (+0.20)|46.10 (—0.03)|42.49 (—0.37)|39.92 (+0.13)
47.94 (+0.48)|43.25 (—0.47)|40.83 (+0.35)|46.62 (4+0.49)|42.77 (—0.09)|39.77 (—0.02)
48.38 (4+0.92)]44.09 (10.37)[40.90 (+0.42)|47.14 (+1.01)|42.98 (+0.12)[40.68 (+0.89)
48.24 (4+0.78)|44.32 (+0.60)|41.00 (+0.52)|46.86 (+0.73)]42.76 (—0.10)|39.96 (+0.17)
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Table 8: BLEU scores on IWSLT French-to-English and English-to-French experiments. All scores are
ensembles of four independently trained models.

Input J’ai répondu, “Je ne suis pas Britney Spears, mais tu peux peut-étre me 1’apprendre a moi.
Reference I was like, “Well I'm not Britney Spears, but maybe you could teach me.

(a) Baseline | Isaid, “I’'m not British Speney Spears, but maybe you can teach me.
(k) Proposed | Isaid, “I'm not Britney Spears, but maybe you can teach me.

Table 9: Example translation from French to English. Proposed method correctly translated rare words:
“Britney Spears.”

Merge operations | Subword segmentation

16k Bri t ney S pe ars
1k Britney Spears
300 Britney Spears

Table 10: Example segmentation of “Britney Spears”

5 Related Work

Sennrich and Haddow (2016) added linguistic features to NMT embedding layer and achieved significant
improvement. They modified the embedding layer to exploit several features, such as part-of-speech
tags and syntactic dependency labels. This method resembles our work in terms of providing more
information to the embedding layer. However, to use these linguistic features, since we need to prepare
a morphological analyzer and/or a dependency parser, applicable languages are limited. In our method,
BPE features are language independent and applicable to all languages.

Our method can also be interpreted as a regularizer to the embedding layer. Recently, Kudo (2018)
proposed a subword regularization method that uses different subword segmentation based on its seg-
mentation probability. This method increases NMT’s robustness to noise and segmentation errors. Their
experiments showed that the subword regularization method is significantly effective when testing ac-
curacy with a different dataset than the training set. This means that their method is effective with
open-domain settings. Our method might have a similar tendency, but we will investigate in future work.
It might be interesting to verify the effect of combining our method and the subword regularization
method.

Several studies incorporated the Recurrent Neural Network (RNN) or the Convolutional Neural Net-
work (CNN) into the embedding layer for encoding character-, subword-, or morpheme-level informa-
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tion (Luong and Manning, 2016; Lee et al., 2017). Comparing with these approaches, our work has a
significant advantage in terms of the fast computation since our method increases negligible computa-
tional cost as clarified in Section 4.2.1.

6 Conclusion

In this paper, we focused on neural machine translation with subword units and experimented with hier-
archical subword features. Our experiments confirmed that adding hierarchical subword features to the
encoder side consistently improved the BLEU scores. Our method, which is quite simple and easy to
adapt to any models that use subwords as a unit (such as text summarization and language modeling), has
the potential to be a de-facto standard in the future. Our codes and scripts are available for reproduction
and further experiments®.

In this paper, we just experimented with an RNN-based NMT, even though recently several new NMT
architectures have been proposed, including an attentional-based (Vaswani et al., 2017) and a CNN-based
NMT (Gehring et al., 2017). As future work, we want to try our method with these new NMT models
and see whether it is effective. Future work will also apply hierarchical subword features to a larger
dataset.

Acknowledgements

We thank three anonymous reviewers for their insightful comments.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation by jointly learning to
align and translate. In Proceedings of the 3rd International Conference on Learning Representations (ICLR).

Mauro Cettolo, Christian Girardi, and Marcello Federico. 2012. WIT3: web inventory of transcribed and trans-
lated talks. In Proceedings of the 16th Annual Conference of the European Association for Machine Translation
(EAMT), pages 261-268.

Fabien Cromieres, Chenhui Chu, Toshiaki Nakazawa, and Sadao Kurohashi. 2016. Kyoto university participation
to WAT 2016. In Proceedings of the 3rd Workshop on Asian Translation (WAT), pages 166—174.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann Dauphin. 2017. Convolutional sequence to
sequence learning. In Proceedings of the 34th International Conference on Machine Learning ICML), pages
1243-1252.

Marcin Junczys-Dowmunt, Tomasz Dwojak, and Hieu Hoang. 2016. Is neural machine translation ready for
deployment? a case study on 30 translation directions. In Proceedings of the International Workshop on Spoken
Language Translation IWSLT).

Philipp Koehn and Rebecca Knowles. 2017. Six challenges for neural machine translation. In Proceedings of the
1st Workshop on Neural Machine Translation (WNMT), pages 28-39.

Taku Kudo. 2018. Subword regularization: Improving neural network translation models with multiple subword
candidates. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (ACL).

Jason Lee, Kyunghyun Cho, and Thomas Hofmann. 2017. Fully character-level neural machine translation with-
out explicit segmentation. Transactions of the Association for Computational Linguistics (TACL), 5:365-378.

Minh-Thang Luong and Christopher D. Manning. 2016. Achieving open vocabulary neural machine transla-
tion with hybrid word-character models. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 1054—-1063.

Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1412-1421.

‘nttps://github.com/nttcslab-nlp/hierarchical_subword

628



Makoto Morishita, Jun Suzuki, and Masaaki Nagata. 2017. NTT neural machine translation systems at WAT 2017.
In Proceedings of the 4th Workshop on Asian Translation (WAT), pages §9-94.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a method for automatic evaluation
of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics (ACL), pages 311-318.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese and korean voice search. In Proceedings of the
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 5149-5152.

Rico Sennrich and Barry Haddow. 2016. Linguistic Input Features Improve Neural Machine Translation. In
Proceedings of the 1st Conference on Machine Translation (WMT), pages 83-91.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural machine translation of rare words with subword
units. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL),
pages 1715-1725.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning with neural networks. In
Proceedings of the 28th Annual Conference on Neural Information Processing Systems (NIPS), pages 3104—
3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and
[llia Polosukhin. 2017. Attention is all you need. In Proceedings of the 31st Annual Conference on Neural
Information Processing Systems (NIPS), pages 6000-6010.

629



