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Abstract

Neural machine translation (NMT) systems are usually trained on a large amount of bilingual
sentence pairs and translate one sentence at a time, ignoring inter-sentence information. This
may make the translation of a sentence ambiguous or even inconsistent with the translations of
neighboring sentences. In order to handle this issue, we propose an inter-sentence gate model that
uses the same encoder to encode two adjacent sentences and controls the amount of information
flowing from the preceding sentence to the translation of the current sentence with an inter-
sentence gate. In this way, our proposed model can capture the connection between sentences
and fuse recency from neighboring sentences into neural machine translation. On several NIST
Chinese-English translation tasks, our experiments demonstrate that the proposed inter-sentence
gate model achieves substantial improvements over the baseline.

1 Introduction

In NMT systems (Bahdanau et al., 2015; Cho et al., 2014; Sutskever et al., 2014), an encoder first reads
variable-length source sentences and encodes them into a sequence of vectors, then a decoder gener-
ates a target translation from the sequence of source vectors. Although NMT is an emerging machine
translation approach, the translation process of a document in NMT is similar to conventional statistical
machine translation (SMT), treating the document as a bag of sentences and ignoring cross-sentence
dependencies.

Sentences are the constituent elements of paragraphs. Harper (1965) argues that sentences possess two
attributes: continuity that maintains consistency with other sentences and development that introduces
new information. For any adjacent sentences of a well-formed text, they tend to have considerable degree
of continuity, which is usually described and measured at two levels: cohesion at the surface level and
coherence at the underlying level. These two continuity metrics are two well-known means to estalish
such inter-sentence links within a text. Harper (1965) finds that word recurrence, as the most common
device of cohesion, occurs in 70% of adjacent sentence pairs. Xiong et al. (2015) show that about 60%
of sentences have the same topics (coherence) as those of the documents where these sentences occur.

Such inter-sentence dependencies can and should be used to help document-level machine translation.
In the literature, a variety of models have been proposed to capture these dependencies in the context
of SMT, such as cache-based language and translation models (Tiedemann, 2010; Gong et al., 2011),
topic-based coherence model (Xiong and Zhang, 2013) and lexical cohesion model (Xiong et al., 2013).
However, integrating inter-sentence information into an NMT system is still an open problem.

In this paper, we propose a simple yet effective approach to model the inter-sentence information for
NMT. In order to capture the connection between two adjacent sentences, i.e. the preceding sentence
and current sentence, we first use the same encoder to encode the two adjacent sentences at the same
time to form a context vector a for the preceding sentence and a context vector b for current sentence.
Then, we introduce a gate mechanism to combine a and b into the final context vector, which is further
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used to update the hidden states of the decoder. In this way, we can model the links and dependencies
between adjacent sentences. To some extent, our approach models the inter-sentence relationship from
the underlying semantic coherence perspective.

On the NIST Chinese-English translation tasks, our experimental results show that the proposed ap-
proach can achieve significant improvements of up to 2.0 BLEU points over the NMT baseline.

2 Related Work

In the literature, a series of document-level translation models have been proposed for conventional SMT.
Just to name a few, Gong et al. (2011) propose a cache-based approach to document-level translation,
which includes three caches, a dynamic cache, a static cache and a topic cache to capture various kind
of document-level information. Hardmeier et al. (2012) present a beam search decoding procedure for
phrase-based SMT with features modeling cross-sentence dependencies. Xiong and Zhang (2013) pro-
pose a topic-based coherence model to produce discourse coherence for document translation. Xiong et
al. (2013) present a lexical cohesion model to capture lexical cohesion for document-level translation.

In neural language models, inter-sentence connections can be captured in a contextual model. For
example, Lin et al. (2015) propose a hierarchical recurrent neural network (HRNN) language model for
document modeling, consisting of a sentence-level and word-level language model, and use the proposed
model to model sentence-level coherence. In speech recognition, as input speech signals can contain
thousands of frames, Chan et al. (2016) employ Bidirectional Long Short Term Memory with a pyramidal
structure to capture the context of a large number of input time steps. Wang and Cho (2016) introduce a
late fusion method to incorporate corpus-level discourse information into recurrent language modeling.

In neural conversation systems, links between multi-turn conversations are usually modeled with hi-
erarchical neural networks. Serban et al. (2015) use a hierarchical recurrent encoder-decoder(HRED) to
model the dialogue into two-level hierarchy: a sequence of utterances and a sequence of words. The pro-
posed model can track states over many utterances to generate context-aware multiple rounds of dialogue.
Serban et al. (2016) further propose a HRED model with an additional component: a high-dimensional
stochastic latent variable at every dialogue turn to sample a vaussian variable as input to the decoder.

It is natural to adapt the HRED model to document-level NMT. However, document boundaries are
usually missing in bilingual training corpora, indicating that we do not have sufficient data to train the
sentence-level hierarchy. In our proposed gate model, we do not need entire documents to train the
NMT model. We only use pairs of two adjacent sentences to train the gate. Furthermore, each sentence
in a sentence pair can be used twice: one as a preceding sentence and the other as a current sentence.
Additionally, in order to reduce the number of extra parameters, we use the same encoder to encode the
adjacent sentences, which can also keep the semantic consistency for the same source sentence.

3 Neural Machine Translation

In this section, we briefly describle the atttention-based NMT model proposed in (Bahdanau et al., 2015).
In their framework, the encoder encodes a source sentence as a sequence of vectors with bi-directional

RNNs. The forward RNN reads the source sentence x = (x1, x2, ..., xT ) from left to right and the
backward RNN reads the source sentence in an inverse direction. The hidden states

−→
h = (

−→
h1,
−→
h2, ...,

−→
hT )

in the forward RNN can be computed as follows:

−→
hj = f(

−−→
hj−1, xj), (1)

where f is a non-linear function, here defined as a gated recurrent unit (GRU) (Chung et al., 2014).
Similarly, Hidden states of the backward RNN can be calculated. The forward and backward hidden
states are concatenated into the final annotation vectors h = (h1, h2, ..., hT ). The decoder is also an
RNN that predicts the next word yt given the context vector ct , the hidden state st−1 and the previously
generated word sequence y<t = [y1, y2, ..., yt−1]. The probability of the next word yt is calculated as
follows:

p(yt|y<t;x) = g(ct, yt−1, st), (2)
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Figure 1: Architecture of NMT with the inter-sentence gate.

where g is a softmax layer, st is the state of decoder RNN at time step t computed as

st = f(st−1, yt−1, ct). (3)

where f is a function, the same as function used in the encoder. The context vector ct is calculated as a
weighted sum of all hidden states of the encoder as follows:

ct =

Tx∑
i=1

αtjhj , (4)

αtj =
exp(etj)∑Tx
k=1 exp(etk)

, (5)

etj = a(st−1, hj). (6)

where αtj is the weight of each hidden state hj computed by the attention model, a is a feedforward
neural network with a single hidden layer.

We also implement an NMT system which adopts feedback attention (Wang et al., 2016b; Wang et al.,
2016a), which will be referred to as RNNSearch in this paper. In the feedback attention, etj is computed
as follows:

etj = a(s̃t−1, hj), (7)

where s̃t−1 = GRU(st−1, yt−1). The hidden state of the decoder is updated as follows:

st = GRU(s̃t−1, ct) (8)

In this paper, our proposed model is implemented on the top of RNNSearch system.

4 The Inter-Sentence Gate Model

In this section, we will elaborate the proposed inter-sentence gate model, which we refer to asNMTISG.
Figure 1 shows the entire architecture of our NMT with the inter-sentence gate. For notational conve-
nience, we denote two adjacent sentences as A and B: A for the preceding sentence and B for the current
sentence.

4.1 Encoder

We employ the same encoder to encode the adjacent sentence A and B into hidden vector representations
[ha1, h

a
2, ......, h

a
m] and [hb1, h

b
2, ......, h

b
n] respectively. We then use the attention network described in

Equation (4) of Section 3 to compute their context representations cat and cbt .
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Figure 2: The framework of updating the decoding state using the proposed gate model.

4.2 Inter-Sentence Gate Model
When we translate the current sentence B, we have to make sure that the decoder is provided with suffi-
cient information from sentence B, and at the same time, with helpful imformation from the preceding
sentence A. In other words, we need a mechanism to control the scale of information flowing from the
sentence A and sentence B to the decoder. Inspired by the success of gated units in RNN (Chung et al.,
2014), we propose an inter-sentence gate to control the amount of information flowing from A and B.
Formally, we employ a sigmoid neural network layer and an element-wise multiplication operation, as
illustrated in Figure 2. Similarly, Tu et al. (2016) also propose a gating mechanism to combine source
and target contexts. The gate framework assigns element-wise weights z to the input signals, calculated
by

zt = σ(Uzst−1 +Wzyt−1 + Cbc
b
t + Cac

a
t ) (9)

here σ is a logistic sigmoid function, and Uz , Wz , Cb, Ca are the parameter matrix.

4.3 Decoder
Next, we integrate the inter-sentence gate into the decoder to decide the amount of context information
used in producing the decoder hidden state at each time step. In this way, we want the hidden states of the
decoder to store the inter-sentence context information. The framework of updating the hidden state of
the decoder at time step t is illustrated in Figure 2. The decoder hidden state st is computed as follows:

st = GRU(Ust−1 +Wyt−1 + C1c
a
t ∗ zt + C2c

b
t ∗ (1− zt)) (10)

where ∗ is an element-wise multiplication, U,W,C1, C2 is the parameter matrix, and zt is the inter-
sentence gate computed by Equation (10).

The conditional probability of the next word yt is calculated as follows:

p(yt|y<t, x) = g(f(st, yt−1, c
b
t)) (11)

where cbt is the context vector of the current sentence B.
Our aim is to translate the current sentence B with the additional information from the preceding

sentence A. We do not want to have the excessive impact of the preceding sentence on the translation
output of the current sentence. Therefore, in the stage of generating the next word, we just use the context
cbt .

5 Experiments

We carried out a series of Chinese-to-English translation experiments to evaluate the effectiveness of
the proposed inter-sentence gate model on document-level NMT and conducted in-depth analyses on
experiment results and translations.

5.1 Experimental Settings
We selected corpora LDC2003E14, LDC2004T07, LDC2005T06, and LDC2005T10 as our bilingual
training data, where document boundaries are kept. We also used all data from the corpus LDC2004T08
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Model NIST05 NIST02 NIST03 NIST04 NIST06 NIST08 Avg
Moses 29.52 31.52 31.68 32.73 29.57 23.09 29.72

RNNSearch 32.56 36.18 34.85 36.36 30.57 23.69 32.37
NMTISG 34.58‡ 36.68‡ 36.29‡ 38.15‡ 31.83‡ 24.67‡ 33.7

Table 1: Experiment results on the NIST Chinese-English translation task. We adopted the RNNSearch,
an in-house NMT system, as our baselines. NMTISG is the proposed model without replacing UNK
words. The BLEU scores are case-insensitive. Avg means the average BLEU score on all the test sets.
“‡”: statistically better than RNNSearch (p <0.01).

(Hong Kong Hansards/Laws/News). In total, our training data contain 103,236 documents and 2.80M
sentences. Averagely, each document consists of 28.4 sentences. We chose NIST05 dataset as our devel-
opment set, and NIST02, NIST03, NSIT04, NIST06, NIST08 as our test sets. We used case-insensitive
BLEU-4 as our evaluation metric. We compared our NMTISG with the following two systems:

• Moses (Koehn et al., 2007): an open phrase-based translation system with its default setting.

• RNNSearch: our new implementation of NMT system with the feedback attention as described in
Section 3.

For Moses, we used the full training data (parallel corpus) to train the model. Word alignments were
produced by GIZA++ (Och and Ney, 2000). We ran GIZA++ on the corpus in both directions, and
merged alignments in two directions with “grow-diag-final” refinement rule (Koehn et al., 2005). We
trained a 5-gram language model on the Xinhua portion of the Gigaword corpus using SRILM Toolkit
with a modified Kneser-Ney smoothing.

For RNNSearch, we used the parallel corpus to train the attention-based NMT model. The encoder of
RNNSearch consists of a forward (1000 hidden unit) and backward (1000 hidden unit) recurrent neural
network. The maximum length of sentences that we used to train NMT in our experiments was set to
50 for both the Chinese and English sides. We used the most frequent 30K words for both Chinese and
English, covering approximately 99.0% and 99.2% of the data in the two languages respectively. We
replaced rare words with a special token“UNK”. We also adopted the dropout technique. Dropout is
applied only on the output layer and the dropout rate was set to 0.5. All the other settings are the same
as the setting up described by Bahdanau et al. (2015). Once the NMT model was trained, we employed a
beam search algorithm to find possible translations with high probabilities. We set the beam width to 10.

For the proposed NMTISG model, we implemented it on the top of RNNSearch. We used tuples (x,
before-x, y) as input of NMTISG, where x and y are a parallel sentence pair, before-x is the previous
sentence of source sentence x in the same document1. As the first sentence of a document does not have
before-x, we used the stop symbol to form the sentence s = (eos, eos, eos) as the before-x. We used
a simple pre-training strategy to train our NMTISG model: training the regular attention-based NMT
model using our implementation of RNNSearch, and then using its parameters to initialize the parameters
of the proposed model, except for those related to the operations of the inter-sentence gate.

We used the stochastic gradient descent algorithm with mini-batch and Adadelta (Zeiler, 2012) to train
the NMT model. The mini-batch was set to 80 sentences and decay rates ρ and ε of Adadelta were set to
0.95 and 10−6, respectively.

5.2 Experimental Results

Table 1 shows the results of different NMT systems measured in terms of BLEU score. From the table,
we can find that our implementation RNNSearch using the feedback attention and dropout outperforms

1We obtain tuples (x, before-x, y) from the training corpus. During the acquisition of these tuples, we follow two constraints.
First, we discard the tuple (x,before-x,y) if there is a big difference in the length of the sentence x and before-x. For example,
sentence x or before-x is a date expression at the end of a document or an organization name at the beginning of a document.
Second, the length of any element in a tuple (x, before-x, y) is not longer than 50.
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Model NIST02 NIST03 NIST04 NIST05 NIST06 NIST08
RNNSearch 32.56 36.18 34.85 36.36 30.57 23.69

RNNSearch + concat 21.81 18.72 19.44 16.11 16.60 9.81

Table 2: The BLEU scores of RNNSearch + concat model which uses the concatenation of two neigh-
boring sentence as input of RNNSearch.

Model NIST05 NIST02 NIST03 NIST04 NIST06 NIST08 Avg
RNNSearch 32.56 36.18 34.85 36.36 30.57 23.69 32.37
NMTISG 34.58 36.68 36.29 38.15 31.83 24.67 33.7
+NULL 33.22 36.46 35.27 37.11 30.77 23.80 32.77

+z=0 30.49 31.71 31.05 35.10 29.89 22.10 30.06
+RV 31.88 36.21 34.51 35.93 29.96 22.99 31.91

Table 3: Effect of the inter-sentence gate and information of before-x. BLEU scores in the table are
case-insensitive. [+NULL] is set the before-x to a NULL sentence. [+z=0] is set the gate vector to all-
zero vector. And [+RV] is set the context vector of before-x to a random vector which value of vector is
between -1 and 1. Avg meaning the average BLEU score on all the test sets.

Moses by 2.65 BLEU points. The proposed model NMTISG achieves an average gain of 1.33 BLEU
points over RNNSearch on all test sets. And it outperforms Moses by 3.98 BLEU points.

One might use the concatenation of two neighboring source sentences as input of RNNSearch to
explore the information of the preceding sentence. However, this will degenerate translation quality as
shown in Table 2. The main reason is that the conventional NMT has difficulties in translating long
sentences (Pougetabadie et al., 2014). Thus，we conclude that the information of preceding sentences
cannot be directly explored via concatenation.

5.3 Effect of the Inter-Sentence Gate
In order to examine the effectiveness of the proposed inter-sentence gate and inter-sentence information
from before-x, we also conducted three additional validation experiments in the test sets: (1) we set all
before-x to NULL (the before-x sentence consists of only stop symbols). (2) we set zt to the fixed vector
value 0 for NMTISG to block the inter-sentence gate mechanism. (3) we set the context vector cat of
before-x to a random vector, the purpose of which is to test whether the information of the preceding
sentence has bad influence on the translation of the current sentence when the preceding sentence is not
quite related with the current sentence, for example, a topic change happens between x and before-x.
The results are shown in Table 3, from which can find that:

• When we set before-x as NULL (+NULL in Table 3), the performance has an obvious decline
comparing with that of NMTISG, but is still better than RNNSearch in term of BLEU score. We
conjecture that the reasons for this are twofold. First, in the training process, when before-x dose
not exist for the first sentence of a document, we set before-x to a NULL sentence, which makes
NMTISG model learn the relevant capabilities. That is to say, NMTISG treats all sentences in
the test sets as the first sentences of documents, where some sentences are correctly handled while
others not. Second, the gate mechanism assigns a pretty low rate for NULL before-x during context
combination.

• When we set the gate weight vector z to a fixed all-zero vector (+z=0 in Table 3), NMTISG blocks
the inter-sentence information from before-x. From the Table 3, we find a huge loss in performance.
The NMTISG (+z=0) is even worse than RNNSearch by 2.31 BLEU points. Although the preced-
ing sentence information is not used, this NMTISG (+z=0) is not exactly the baseline RNNSearch.
There are two groups of parameters in NMTISG: one group of parameters (new parameters) are
related with the inter-sentence gate and the other group of parameters (old parameters) are from
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Figure 3: The entropy curve for a NULL preceding sentence. This is a sample generated by NMTISG
in one test set. The horizontal axis represents the translation of a current sentence x. The vertical axis
represents the entropy of the preceding sentence before-x obtained from the inter-sentence gate model
when translating x.

RNNSearch but have been optimized towards the maximum usage of inter-sentence information.
When the inter-sentence gate is closed, old parameters are not able to guide the decoder to generate
translations that best use the current sentence information. That is the reason why this result is even
worse than RNNSearch.

• When we set the context vector cat of before-x to a random vector (+RV in Table 3), sampled from
a uniform distribution between -1 and 1, the performance is worse than the baseline RNNSearch by
0.46 BLEU points. Setting the cat to a random vector, the information from the pseudo preceding
sentence becomes meaningless, and even has a bad or uncorrelated impact on the translation of the
current sentence. However, the drop of the performance is not as big as that of NMTISG (+z=0).
This suggests that the gate mechanism is able to effectively shield these useless and counteractive
information from a pseudo and random preceding sentence.

The three experiments further demonstrate that the proposed inter-sentence gate is able to detect useful
information for translation and block unrelated information and reconfirm that inter-sentence information
is useful for translation.

5.4 Analysis on Inter-Sentence Attention
Many studies (Bahdanau et al., 2015; Luong et al., 2015) on attention-based NMT have proved that
attention networks are able to detect alignments between parallel sentence pairs. In ourNMTISG model,
we use two attention networks: the first is built for the correspondences between the current source
sentence and its target translation and the second for the correspondences between the preceding sentence
and the target translation of the current sentence. We are interested in what correspondences the second
attention network detect.

We use the entropy as the evaluation criterion to measure how attention weights distribute over words
in the preceding sentence before-x for a target word in the translation of the current sentence x. If the
attention distribution is even, the entropy will be large. Otherwise, the entropy is small, it suggests
that the attention distribution is uneven and that the decoder pays attention to one or several particular
words in the preceding sentence when generating a target word for the current sentence. The entropy is
computed as follows:

H = −
n∑

j=1

αjlogαj (12)

We calculated entropy values in two cases:

• The before-x is a NULL sentence, being composed of stop symbols.

• The before-x is an ordinary sentence.
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Figure 4: The entropy curve for a normal preceding sentence.

Before-x 进入新世纪后，经济全球化成为 非洲国家面临的一个重大而严
峻的挑战。

X 非洲国家领导人越来越清楚地认识到,非洲再也不能坐失良机 , 应
奋起寻求应对之策。

NMTISG the leaders of the african countries have become more and more clearly aware
that africa can no longer be able to UNK and take the initiative to pursue coun-
termeasures.

Table 4: Example translation genereted by NMTISG, before-x is the preceding sentence of x.

If before-x is NULL, it cannot provide useful information except for the indicator of being the first
sentence of a document. The attention weight distribution over stop symbols in before-x when generating
a target word is supposed to be uniform. Figure 3 exactly visualizes such a case when translating the first
sentence in a document. The entropy value in Figure 3 ranges from 1.44 to 1.58 while the entire curve is
quite smooth.

Figure 4 demonstrates the second case with an example (in Table 4) where some words in the preceding
sentence reoccur in the current sentence. When the NMTISG model generates the target translation
for “非洲国家(feizhou guojia)” and “非洲(feizhou)”, the entropy significantly drops as these words
have occurred both in the preceding and current sentence. This indicates that the attention network
in NMTISG successfully captures this word repetition (the most common lexical cohesion device) and
convey such an inter-sentence relation collectively with the proposed inter-sentence gate to the prediction
of target words via hidden states of the decoder.

5.5 Analysis on Translation Coherence
We want to further study how the proposed inter-sentence gate model influence coherence in document
translation. For this, we follow Lapata and Barzilay (2005) to measure coherence as sentence similarity.
First, each sentence is represented by the mean of the distributed vectors of its words. Second, the
similarity between two sentences is determined by the cosine of their means.

sim(S1, S2) = cos(µ( ~S1), µ( ~S2)) (13)

where µ(~Si) = 1
|Si|

∑
~w∈Si

~w, and ~w is the vector for word w.
We use Word2Vec2 to obtain the distributed vectors of words and English Gigaword fourth Edition as

training data to train Word2Vec. We consider that embeddings from word2vec trained on large monolin-
gual corpus can well encode semantic information of words. We set the vectors of words to 400.

Table 5 shows the average cosine similarity of adjacent sentences in test sets. From the table, we can
find that the NMTISG model produces better coherence in document translation than RNNSearch in
term of cosine similarity.

2https://code.google.com/p/word2vec/
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Model NIST02 NIST03 NIST04 NIST05 NIST06 NIST08
RNNSearch 0.4536 0.4510 0.4761 0.4677 0.3982 0.3716
NMTISG 0.4744 0.4656 0.4849 0.4816 0.4072 0.3825

Human Reference 0.5090 0.4367 0.5100 0.5073 0.3804 0.3911

Table 5: The average cosine similarity of adjacent sentences in test sets.

before-x 自从上个月巴勒斯坦强人阿拉法特去逝后 ,国际社会重新继续恢复
中东和平政策的推动 ,以期早日结束以巴之间多年的流血冲突。

x 中东新闻社说 ,官员预测「准备工作将会进行到七月 ,然后再展开
政治动作」

RNNSearch the UNK news agency said that the officials forecast that “preparations will be
made in july and then political moves will be taken again.”

NMTISG the middle east news agency said, the officials forecast that “preparations will be
made in july and then another political action will be taken.”

before-x 美军第八军团司令康贝尔中将发表声明 ,此一冻结调防军令旨在确
保驻南韩美军实力。

x 根据南韩与美国签订的协防条约 ,目前驻南韩美军人数约三万七
千人 ,自去年十二月北韩发展核子计画野心曝光以来 ,驻韩美军一
直保持警戒。

RNNSearch according to the UNK treaty signed between south korea and the united states,
the number of us troops in south korea is about UNK, and the us troops stationed
in the rok since december last year have been kept alert.

NMTISG according to the UNK treaty signed between south korea and the united states,
the number of us troops stationed in south korea is about UNK. the us troops
stationed in south korea have been maintaining vigilance since last december
last year when north korea’s nuclear plan was exposed.

Table 6: Example translations genereted by NMTISG.

In order to better reflect the performance of the model about coherence, we also provide two exam-
ples displayed in Table 6 to verify the impact of inter-sentence information on document-level NMT.
In the first example, source x does not have enough context information to correctly translate word “动
作(dongzuo)”. Fortunately, the before-x provides extra information: the background is about politices,
which guide the decoder to select a better translation “action” for “动作(dongzuo)”. In the second
example, RNNSearch generates different translations for “驻韩(zhuhan)” and “驻南韩(zhunanhan)”.
NMTISG generates consistent translations for these two different words but with the same meaning.

6 Conclusion and Future Work

In this paper, we have presented a novel inter-sentence gate model for NMT to deal with document-
level translation. Experimental results show that theNMTISG model achieves consistent and significant
improvements in translation quality over strong NMT baselines. In-depth analyses further demonstrate
that the proposed model inter-sentence gate is able to capture cross-sentence dependencies and lexical
cohesion devices.

The proposed inter-sentence gate model only uses source-side information to capture document-
level information for translation. In the future, we would like to integrate target-side information into
document-level NMT.
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