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Abstract

Answering questions from university admission exams (Gaokao in Chinese) is a challenging
Al task since it requires effective representation to capture complicated semantic relations be-
tween questions and answers. In this work, we propose a hybrid neural model for deep question-
answering task from history examinations. Our model employs a cooperative gated neural net-
work to retrieve answers with the assistance of extra labels given by a neural turing machine
labeler. Empirical study shows that the labeler works well with only a small training dataset and
the gated mechanism is good at fetching the semantic representation of lengthy answers. Exper-
iments on question answering demonstrate the proposed model obtains substantial performance
gains over various neural model baselines in terms of multiple evaluation metrics.

1 Introduction

Teaching a machine to pass admission exams is a hot Al challenge which has aroused a growing num-
ber of research (Guo et al., 2017; Cheng et al., 2016; Clark, 2015; Fujita et al., 2014; Henaff et al.,
2016). Among these studies, deep question-answering (QA) task (Ferrucci et al., 2010; Wang et al.,
2014) is especially difficult, aiming to answer complex questions via deep feature learning from multi-
source datasets. Recently, a highly challenging deep QA task is from the Chinese University Admission
Examination (Gaokao in Chinese), which is a national-wide standard examination for all senior middle
school students in China and has been known as its large scale and strictness. This work focuses on
comprehensive question-answering in Gaokao history exams as shown in Table 1!, which accounts for
the major proportion in total scoring and is extremely difficult in the exams. (Cheng et al., 2016) made
a preliminary attempt to take up the Gaokao challenge, trying to solve multiple-choice questions via re-
trieving and ranking evidence from Wikipedia articles to determine the right choices. Differently, this
task is to solve comprehensive questions and has to be based on knowledge representation and semantic
computation rather than word form matching in the previous work.

Although deep learning methods shine at various natural language processing tasks (Wang et al., 2015;
Zhang et al., 2016b; Qin et al., 2017; Cai et al., 2018; Zhang et al., 2018b; Huang et al., 2018; Zhang
et al., 2018a; He et al., 2018; Zhang et al., 2018c; Li et al., 2018), they usually rely on a large scale of
dataset for effective learning. The concerned task, unfortunately, cannot receive sufficient training data
under ordinary circumstances. Different from previous typical QA tasks such as community QA (Zhang
et al., 2016a) which can enjoy the advantage of holding a very large known QA pair set, the concerned
task is equal to retrieving a proper answer from textbooks organized as plain texts with guidelines of very
limited number of known QA pairs. In addition, the questions are usually given in a quite indirect way
to ask students to dig the exactly expected perspective of the concerned facts. If such kind of perspective
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"These examples are chosen as they are short, the average number of words in questions and answers are 22 and 47.
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fails to fall into the feature representation for either question or answer, the retrieval will hardly be
successful.

Q “RRATHRAI —HRmFEFTHAE, LTRAI—FEASAEIITHOAE . ~ K2
SR REEFNE A

“Peasants may act as an extremely conservative role, or may be highly revolutionary.” Try to analyze
this view in the light of the relevant historical facts.

A RER B ZFHAL RGO REF AT TETRAS—HEAZEETHGAL . XA
KFRBEHAG, AFFIBRFPAAY (RFATTHE) AR BERBET RRNRERE K
HAELAARGBRARZ, RABTHAEGEZGTR . RRHMAGAGEFAOEEGLE
T AL PP 2 M T 9% R 28 Fe | AR 6 HAZ BT R Y

The economic and social conditions of peasants determine that they may act as a highly revolutionary
role. Taking the Taiping Heavenly Kingdom movement as an example, the promulgated regulation
“heavenly land system” reflected the peasant class’s demands and strong desire of abolishing the
system of feudal land ownership, which shows a strong degree of revolution. The dual nature of the
peasant class is also the result of its economic status, that is, under the oppression of the landlord
class and the status of the small producers.

Q:AAW “XTLRX” R—BRELEFH, ReMAEFKF? fTFNEE L

Some people think the Renaissance is a retro campaign. What’s your opinion and how to evaluate its
historic significance?

A LELRAZBHNRBOY L RA, A—HEAATABRT IHNPOY Z . IFRELRGE
H, R—FEEEFH, FEINEREGELE, EHNA—HTRAMBKEH, £—REBAHARLE
HEE.

The Renaissance is seemingly regarded as a retro movement of philosophy, literature and art of ancient
Greece and Rome. However, it is actually an ideological liberation movement and a revolution of
thoughts from a deeper inspection.

Table 1: Comprehensive question examples from Gaokao history exams.

Generally speaking, for the Gaokao challenge, knowledge sources are extensive and no sufficient
structured dataset is available, while most existing work on knowledge representation focused on struc-
tured and semi-structured types (Khot et al., 2017; Khashabi et al., 2016; Vieira, 2016). With regard to
the answer retrieval, most current research focused on the factoid QA (Dai et al., 2016; Yin et al., 2016),
community QA (Zhang et al., 2017; Lu and Kong, 2017) and episodic QA (Samothrakis et al., 2017;
Xiong et al., 2016; Vinyals et al., 2016). Compared with these existing studies, the concerned task is
more compositive and more comprehensive and has to be done from unstructured knowledge sources like
textbooks. Moreover, the answers of our Gaokao challenge QA task are always a group of detail-riddled
sentences with various lengths rather than merely short sentences as focused on in previous work (Yin et
al., 2016; Yih et al., 2014).

Recent research has turned to semi-supervised methods to leverage unlabeled texts to enhance the
performance of QA tasks via deep neural networks (Yang et al., 2017; Lei et al., 2016). This task is
somewhat different from previous ones that the expected extra labels are difficult to be annotated and
the entire unlabeled data is kept in a very small scale, so that semi-supervised methods cannot be con-
veniently applied. Notably, one-shot learning has been proved effective for image recognition with few
samples (Li et al., 2006), which is a strategy similar to people learning concept. As an implementation of
one-shot learning, neural turing machine (NTM) was proposed (Santoro et al., 2016; Vinyals et al., 2016)
and showed great potential by learning effective features from a small amount of data, which caters to
our mission requirements. Inspired by the latest advance of one-shot learning, we train a weakly super-
vised classifier to annotate salient labels for questions using a small amount of examples. For question
answering, we propose a cooperative gated neural network (CGNN) to learn the semantic representation
and corresponding relations between questions and answers. We also release a Chinese comprehensive
deep question answering dataset to facilitate the research.
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Figure 2: Model architecture. Figure 3: CGNN architecture.

The rest of this paper is organized as follows. The next section introduce our models, including
retrieval model, CGNN, and NTM labeler. Task details and experimental results are reported in Section
3, followed by reviews of related work in Section 4 and conclusion in Section 5.

2 Model

The proposed hybrid neural model is composed of two main parts: cooperative gated neural network
(CGNN) for feature representation and answer retrieval, and NTM as one-shot learning module for extra
labeling. As shown in Figure 2, we use NTM to classify the question type and annotate the corresponding
label. Then, the concatenated label vectors and question representation are fed to CGNN for jointly
scoring candidate answers.

2.1 Main framework

For the QA task, the key problem is how to effectively capture the semantic connections between a
question and the corresponding answer. However, the questions and answers are lengthy noisy, resulting
in poor feature extraction. Inspired by the success of the popular gated mechanism (Wang et al., 2017a;
Chen et al., 2016a; Lei et al., 2016) and the gradient-easing Highway Network (Srivastava et al., 2015),
a CGNN is proposed to score the correspondence of inputted QA pairs. The architecture is shown in
Figure 3.

Embedding Our model reads each word of questions and answers as the input. For an input sequence,
the embedding is represented as Ml € R%*™ where d is dimension of word vector and 7 is the maximum
length. When using the NTM module for question type labeling, the question embedding will be refined
as the concatenation of the label vectors and its original embedding. Considering the calculation effi-
ciency, we specialize a max number of words for the input and apply truncating or zero-padding when
needed.

Convolutional Layer Filter matrices [W1, Wy, ..., W;] with several variable sizes [l1,12, ..., ]
are utilized to perform the convolution operations for input embeddings. Via parameter sharing, this
feature extraction procedure is kept the same for questions and answers. For the sake of simplicity, we
will explain the procedure for only one embedding sequence. The embedding will be transformed to
sequences ¢;(j € [1,k]) :

c; = [...;tanh(Wj - M- + b;);...]
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where [i : i+ [; — 1] indexes the convolution window. Additionally, we apply wide convolution operation
between embedding layer and filter matrices, because it ensures that all weights in the filters reach the
entire sentence, including the words at the margins.

Gated Flow To highlight the key information and ignore irrelevant ones during convolution, we adopt
an adaptive gated decay mechanism for gated information flow. Three gates are added to optimize the
feature representation. These gates are only influenced by the original input through different parameters.
Let ¢7 denote n-gram features in ¢;, the gates are formulated as

gr = o(Wyej + by)
8o = 7(Woe" + by)

where o denotes sigmoid function which guarantees the values in the gates are in [0,1] and W;, W,
W, b;, by, b, are model parameters. The transformed inner cell is iteratively calculated by:
& =¢l  0gi+gro €] + Wy

where ® denotes element-wise multiplication and W? is the parameter. Through gated flow, the vector
c; captures the filtered information. The output of our CGNN is h; = tanh(é?) ® go. The gates are
used to route information through the flow. Although these gates are generated independently, they work
cooperatively since they jointly control the information flow of inner-cells. This procedure will help
select salient features. When there is one gate in our network, the model works similarly to the original
highway network (Srivastava et al., 2015).

A one-max-pooling operation is adopted after the gated flow and the current state vector s; is obtained
through concatenating all the mappings for those £ filters, we have s; = max(h;).

For discriminative training, we use a max-margin framework for learning (or fine-tuning) parameters 6.
Specifically, a scoring function ¢(-, -; #) is defined to measure the similarity between the corresponding
representations of questions and answers. In this work, we use cosine similarity for the measurement.
Let p = {p1,...pn} denote the answer corpus and a € p is the answer to the question ¢;, the optimal
parameters 6 are learned by minimizing the max-margin loss:

max{(qi,pi;0) — p(gi, a;60) + 0(pi, a)}

where (., .) denotes a non-negative margin and J(p;, a) is a small constant when a # p; and 0 otherwise.

2.2 Question Type Labeling

Since examinees studying for exams are required to understand the history knowledge from different
sides, we exactly consider using especially-annotated labels as extra indicators for machines to capture
such features. With external memory, NTM has shown great potential for one-shot learning (Santoro
et al.,, 2016). As in Figure 3, an NTM consists of two primary components, controller and memory.
The controller, often implemented as a recurrent neural network, interacts with an external memory
module using soft read heads to retrieve representation from memory and write heads to store memory,
respectively.

Controller The controller of NTMs can be implemented as either a recurrent neural network or a feed-
forward neural network. Our model adopts LSTM cells as the implementation for the best performance
(Graves et al., 2014).

it = o(Wiwe + Wihe_1 +by)

fo = o(W/w, + Wih, | +by)

u; =o(Wiw: + Wphi_1 +by)

ct = ©cio1 + iy © tanh (Wi, w, + Wihy_1 + b,)
hy = tanh(c;) © wy

oy = (hy ® my)
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Figure 3: NTM architecture

where & denotes vector concatenation, and i, fi, u, c¢, hy are the input gates, forget gates, output gates,
cell state and hidden state, respectively.

Given the input sequence, the controller computes the concatenated state sequence o; by applying
the formulation for each time step. Each word of the sequence is represented as word embedding. In
order to simplify the calculation, we apply one-max-pooling to each input. As a result, each sequence is
represented as a vector with the same dimension of word embedding.

Memory Manipulation We use a rectangular matrix M/ € RV*M to denote the memory module.
Given the read vector r¢, the memory m; is retrieved by:

exp(K(k¢, My))
>_; exp(K(ke, My)

where r; is read vector and K is the similarity score. For writing, the memory is updated by

m; = I'tMt,I't =

M; =M;_1 - (1 —wey) + wicy

where wy, e; and c; represent the write vectors, erase vectors and content vectors respectively.

There are two categories for memory addressing mechanism of the original NTM: content-based ad-
dressing comparing each memory locations by some key k; and a location-based addressing by shifting
the heads, akin to running along a tape. However, the location-based addressing is not optimal for con-
junctive coding of information independent of sequence. Following (Santoro et al., 2016), we use an
addressing strategy called the Least Recently Used Access (LRUA).

Addressing The weight u, is defined as follows,
U = YW—1 + Iy + Wy

where + is a decay parameter. The least-used vectors, v;, are boolean variables. For a given time-step,
each element of vy is set to 0 if it is greater than the smallest element of u;, otherwise is 1. The write
weights are obtained by

wi =0(ge)ri—1+ (1 —0(gt))vi—1

where g; is a scalar interpolation in the range (0,1) that blends the weights of previous read weights and
previous least-used weights.

Learning For our labeling task, we define a cost function as the negative log-likelihood:

N
L(@) - ZYNZOQ(Pr(S’n))

n=1
where y,, is the label and ¥,, is the predicted one. After perspective detection, the label is then fed to the
CGNN module as one-hot vectors and concatenated with the question representation.
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Train  Test

# QA pairs 964 965
Avg # words in questions 18 25
Avg # words in answers 46 48

Max # words in questions 478 482
Max # words in answers 4,652 4,387
# Candidate answer set 1,929

# Vocabulary 10,806

Table 2: Data statistics of the comprehensive question-answering corpus.

3 Experiments

Corpus Gaokao challenge is an imitation of open-book examination for computers. Therefore, only
quite a limited number of resources can be used, which makes common semi-supervised methods un-
likely beneficial from large scale unlabeled data. In addition, all our source for the answer should come
from standard textbook which contains unstructured plain texts as we initialized our system building.

The corpus is from the standard history textbook?. First, to compose an answer set, 1,929 text frag-
ments®> were extracted by human experts. Then equal numbers of questions were collected from past
Gaokao exam papers, and their answers were manually assigned from the answer set to give 1,929 an-
notated QA pairs, which were equally split for training and test. All text fragments in either questions or
answers are segmented into words using BaseSeg (Zhao et al., 2006). We publish it to research commu-
nities to facilitate the research #. Data statistics are in Table 2.

Embedding Max number c?f wqrds n =100
Word embedding size | d = 200
Hidden unit number h =200
Initial learning rate Ir =103

CGNN Regularization V=107
Dropout p=0.2
Filter Width k=4
Controller size s =200

NTM Read heads r=4
Memory shape m = (128,100)
Initial learning rate Ir =103

Table 3: Hyper-parameters of our model.

2Standard Middle-school History Textbook (Vol. 1-3), published by the People’s Education Press in May, 2015.
31,929 is the number of all must-to-be-mastered history facts required by national education quality control.
4Our source is available at: https://github.com/cooelf/OneshotQA.
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Class Labels Answers

EREAAERF L Bl - KA T S22 F R %R, 2B LA F
TRA%LE L AREFGKRIT .

# % Background | Using the knowledge learned from ancient poetic proses, operas, and folklores,
exemplify the situation of self-sufficiency of natural economy in ancient China.

A B RSB NG G0 L&, A2 A XFORNE S HNE
B EKEG B @ .

J& A Cause The Spring-autumn and Warring States Period was the historical stage of the vi-
olent social unrest. Why would there be an active ideological and cultural phe-
nomenon in such a period?

ERFENF, XEWAXBTRFXHARTBIREMA 22 41 IAAMT
s AR R o

Z 7% Claim During the Enlightenment, what is the common thought of those enlightening
thinkers? What is the inheritance and development between them?

CRRTRALG —HRERTOAE, LTRAT—FEAZAE FHY
A . RESH XL FIFNZ - A

¥F % Fact “Farmers may act as an extremely conservative role, or may be highly revolution-
ary.” Try to analyze this view in the light of the relevant historical facts.

R oty T U Ae FF e ) LW R ko T ERBERIBESE 2 F Bk
RR&mAE, T ReAx e #eglE R4 #on .

% 3L Influence From the perspective of historical and dialectical materialism, analyze the his-
tory of Athens’s democratic politics and the development of Rome law in ancient
times, and understand their roles and influences on later generations.

Table 4: Examples of Text Fragments of 5 classes.

Setup For the sake of computational efficiency, a maximal length of 100 words for each text fragment
is specialized and truncating or zero-padding will be applied as necessary. Word embedding is trained
by word2Vector (Mikolov et al., 2013) using Wikipedia corpus°.

The diagonal variant of AdaGrad (Duchi et al., 2011) is used for neural network training. Table 3
shows the hyper-parameters of our models. For other neural models, we fine-tune the hyper-parameters
with the following range of values: learning rate € {le — 3, 1le — 2}, dropout probability € {0.1,0.2},
CNN filter width € {2, 3,4}. The hidden dimensions for all the neural networks are 200.

In the following experiments, we use NTM to annotate salient labels for each question. Then, the
question representation and corresponding label vectors are concatenated and fed to CGNN for feature
learning.

Labeling Examinees are required to understand the history knowledge from different sides. Thus,
the solver should also be capable of capturing such kind of features. To specify a key perspective on
historical questions, five classes® (background, cause, claim, fact and influence) are annotated as shown
in Table 4. Note that such kind of annotation is even not easy for human annotators or history teachers
and our complete set for all answers is very small (less than 2,000). At last, we have 80 answers per
class annotated for a total number of 400, in which 50 are selected for training’ and 350 for test. For our
detailed case, our data is too precious to be used too many for training.

One-shot learning is supposed to effectively represent the questions in the feature space with a small
set of training data. To evaluate its performance, we specify a fixed number of training data. At each
epoch, NTM is randomly provided with a specific number (shot) of samples per class from training set
according to the typical training setting of one-shot learning (Santoro et al., 2016). One-shot learning,
in previous practice, usually still took a large candidate training set (i.e., hundreds) as input, though for

Shttps://dumps.wikimedia.org/

SThese classes are determined according to national education quality control who requires every student should clearly

distinguish these specific perspectives about history facts. More details are in Supplementary Materials.
’As our labeling is a five-class classification task, 50 samples therefore allow 10-shot learning per class at most.
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Method 1-shot | 2-shot | 5-shot | 10-shot
Naive Bayes 22.1 25.7 30.1 34.1
K-Means 12.5 15.7 15.8 16.1
SVM 19.1 21.8 30.2 45.2
Feedforward 20.1 22.7 21.3 21.6
LSTM 23.8 28.5 32.5 38.2
NTMs 38.7 49.1 63.9 76.6

Table 5: Accuracy for labeling task.

each class, only a small fixed number of shots (i.e., less than 10) were randomly selected and fed for
learning. However, it is quite different from our data reality and we have to keep a least training set (10
for our case) for one-shot learning.

R Method Precision Recall F1-score
2-shot BM25 8.6 (8.7) 23.2(23.7) | 12.5(12.7)
7] — seshot CNN 9.8(27.0) | 21.1(45.0) | 13.4(33.8)
el GRU 114 (32.9) | 24.1(50.4) | 15.5(39.8)
: LSTM 8.4 (30.6) | 21.2(48.0) | 12.0(37.4)
g os + 22.2 26.8 25.4
g CNN+Highway | 15.8 (33.2) | 30.5(50.6) | 20.8 (40.1)
s CNN+GRU 17.4 (32.4) | 31.1(50.8) | 22.3 (39.6)
CNN+LSTM 12.7 (27.5) | 21.4 (47.0) | 16.0(34.7)
03 CGNN 18.2 (33.7) | 31.6 (51.6) | 23.1 (40.8)
+ 15.5 20.0 17.7
0.2
0 2500 5000 7500 10000 125001150001750020090  Table 6: Answer retrieval performance without and
with NTM labels (in brackets). ”+” means the per-
Figure 4: Labeling accuracy curve. formance gains with the help of NTM labels.

Table 5 compares NTM with traditional classifiers (Naive Bayes, K-Means and SVM) and neural
networks (Feedforward network and LSTM). All the baseline methods are fed the training instances as
the same shot style of NTM and parameters are tuned for best performance.

Figure 4 illustrates NTM learning curves with different shots. The results show that NTM works
effectively on a small amount of samples. With memory cells as well, LSTM is chosen as the baseline.
The hidden layer dimension of the LSTM is 200, which is the same as the NTM controller size. The
LSTMs are fed with the training instances as the same shot style of NTM. Results shown in Table 5
indicate only NTM provides satisfactory performance with the least input instances. The effectiveness
of NTM may attribute to its capability of slowly learning the representations of raw data through weight
updates, and rapidly binding relevant information after a single representation via an external memory.
To that extend, the NTM could generalize the meta features of each question type and distinguish the
perspectives. This indicates one-shot learning is able to lessen over-fitting issues from sparse features of
limited data.

Answer Retrieval For a discriminative training, we add negative QA pairs by randomly selecting 20
false answers for each positive QA pairs in the original training set. For evaluation, all answers in the
corpus are ranked to match each question. NTM labeler is from 10-shot training.

We use baselines including BM25 implemented by a standard search engine Apache Lucene® and
other neural models, Convolutional Neural Network (CNN), LSTM, Gated Recurrent Unit (GRU). Our
evaluation is based on the following metrics: Precision, Recall and F1-score, which are widely used for
relevance evaluation.

Table 6 presents the experimental results of all the models with and without NTM labels. All of the
neural networks greatly outperform BM25 which is purely based on word form matching. In addition,
NTM labeler boosts the performance of all the methods. For instance, our CGNN model has obtained
17.7% gains on the F1-score metric with the assistance of extra labeling. Furthermore, our model using
CGNN and NTM labeler outperforms all the other baselines. This superior performance indicates that
the one-shot learning strategy is competent for our deep QA task with only a small amount of data and

$http://lucene.apache.org/
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Type Proportion  Precision Recall Fl-score

Background 16.0 38.0 56.3 45.4
Cause 8.4 48.6 67.5 56.5
Claim 4.7 47.8 65.1 55.1
Fact 51.0 23.0 42.0 29.7
Influence 19.9 39.0 54.5 45.5

Table 7: Question type distribution and model performance of CGNN.

influence analyze human  productivity development  world market world marcket life impact
/ / / / / / /

, / /
\
label S A% EFp ) HS 5  BEWS MR 2@ B XF Wk BESH BR 08 AX &% % AW BW

Question: please analyze the relationship between human productivity development and world market formation, and evaluate the impact of the
Sformation of global market on human lifestyles.

increases  national communication business mutual complement  world market material ion- triggers
/ / / /

/ / /

© BN T ERRREE 5 & Gl @ AE ) TIMEME H BROH O WA EE T WREE O 3k mh ® RA %6 RE T ER B A0 M &

Answer (extract): the development of human productivity increases the frequency of national communication, strengthens the mutual comple-
ment among nations and business, provides sufficient material preparation for global market formation, triggers the technology revolution of
transportation and stimulates both migration and liquidity among nations.

Figure 5: Visualization for question and answer representation weights after gated flow. The darker color
means the higher weights.

the adoption of gated mechanism is also well-suited to work with CNN, adaptively transforming and
combining local features detected by the individual filters. Table 7 shows question type distribution
and the performance of CGNN. Our model performs well on most types but drops on Fact since these
questions are diverse kinds of facts whose patterns are extremely hard to distinguish, even for human.
This also shows our task is challenging.

Model Analysis The primary motivation of highway network is to ease gradient-based training of
highly deep networks through utilizing gated units. When remaining one gate in our network, our model
works similarly to the highway network. To compare different gated mechanisms, we carry out further
experiments with the same CNN setting. As shown in Table 6, CGNN achieves the best performance
in terms of all evaluation metrics, indicating our gated mechanism is well-suited to work with CNN,
adaptively transforming and combining local features detected by the individual filters.

In order to give an insight into the effectiveness of the gated mechanism on information flow across
neural network layers, we visualize the final weights for each word from question and answer after gated
flow as shown in Figure 5. We can see that the key information (human, productivity, development, world
market, life and influence) of the lengthy questions and answers will be given higher weights, especially
the common words (world market) of the question and corresponding answer. Besides, the label in the
question is also assigned a high attention, indicating the label works essentially.

4 Related Work

4.1 Question Answering

Various neural models have been proposed to tackle the tasks of QA task and related knowledge represen-
tation (Wang et al., 2017b; Chen et al., 2016b; Todor and Anette, 2018; Kundu and Ng, 2018). Previous
work mainly focused on factoid questions, falling into the architecture of knowledge base embedding
and question answering from knowledge base (Khashabi et al., 2016; Angeli et al., 2015). Yang et al.
(2014) proposed a method that transforms natural questions into their corresponding logical forms and
conducted question answering by leveraging semantic associations between lexical representations and
knowledge base properties in the latent space. Yin et al. (2016) proposed an end-to-end neural model that
can generate answers to simple factoid questions from a knowledge base. Nonetheless, the knowledge
base construction requires a lot of human workload, and the related semantic parsing and knowledge
representation will become much more complicated as the scale of the knowledge base increases.
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For non-factoid QA, most work formulized it as a semantic matching task on sentence pairs by vector
modeling. Different from answer retrieval from knowledge bases, this type of studies used vector to
represent QA pairs and compare the distance in vector space to match answer text (Tan et al., 2015; Feng
et al., 2015). However, the performance of these neural models greatly depends on a large amount of
labeled data.

Our concerned task cannot be simply regarded as either factoid or non-factoid. In fact, questions in
our task consist of both factoid and non-factoid ones with purely unstructured corresponding answers.
Conventional networks might not be sufficient to represent these QA pairs and we need to seek more
powerful models. A recent hot comprehensive QA task is the SQuAD challenge (Rajpurkar et al., 2016)
which aims to find a text span from given paragraph to answer the question. However, our task is quite
different from SQuAD. With sufficient learning data, neural models have shown satisfying performance
in the SQuAD challenge. In real world practice, examinees are acquired to learn and comprehend meta-
knowledge from textbooks so as to pass the exams through review and reasoning among the whole
knowledge space instead of simply finding an answer span from a given paragraph, which shows to be
challenging for neural networks.

4.2 Semi-supervised Learning

For real-world applications of specific domains, the datasets are always inadequate. Semi-supervised
Learning methods have been extensively studied to make use of unlabeled data. A batch of models
have been proposed based on representation learning (Yang et al., 2017; Lei et al., 2016). For question
answering, current semi-supervised models generally use auto-encoder framework or generative model
to obtain the representation of unlabeled data. However, these semi-supervised models can not be applied
to generate labels for our raw QA pairs since our task requires diverse types of labels from discourse to
sentence which are difficult to annotate, and it is more serious that the entire unlabeled data is also too
small to support an effective semi-supervised learning. Thus, we must very carefully choose a proper
learning strategy for our task.

Different from the above research line, one-shot learning belongs to a kind of weakly supervised
method (Bordes et al., 2014) that was first proposed to learn information about object categories from
one or only a few training images (Li et al., 2006). Recently, memory-based neural network models have
greatly expanded the ways of storing and accessing information. Two promising neural networks with
external memory have been proposed to connect deep neural network with one-shot learning. One is
Neural Turing Machine (Graves et al., 2014), which can read or write the facts to an external differen-
tiable memory. Santoro et al. (2016) proved it to be an effective method for image recognition. The other
is Memory Network (Vinyals et al., 2016). The crucial difference between them is that the latter does not
have a mechanism to modify the content of the external memory, which lets us choose the former as our
one-shot learning implementation. Compared with previous methods for question answering, our model
is more weakly supervised with a limited amount of training data. As to our best knowledge, this is the
first attempt that adopts one-shot learning for a deep QA task by using NTM as automatic labeler.

5 Conclusion

This paper presents a neural model with NTM for a challenging deep question answering task from his-
tory examinations. Our experimental results show that the adopted CGNN together with other neural
models works much better than BM25. With an NTM labeler, all the deep neural models are further en-
hanced. We also release a Chinese comprehensive deep question answering dataset and have launched a
new research line for the Gaokao challenge and solve more complicated questions using deep neural net-
works to learn semantic representation while the previous work focused on choice questions using simple
information retrieval methods (Cheng et al., 2016). In fact, open-domain questions that can often be dis-
tinguished into different aspects can always benefit from one-shot learnings over a few labeling samples,
which has been verified the effectiveness in this paper by only relying on the least task-dependent as-
sumptions.
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