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Abstract

Most previous research in text simplification has aimed to develop generic solutions, assuming
very homogeneous target audiences with consistent intra-group simplification needs. We argue
that this assumption does not hold, and that instead we need to develop simplification systems that
adapt to the individual needs of specific users. As a first step towards personalized simplification,
we propose a framework for adaptive lexical simplification and introduce Lexi, a free open-source
and easily extensible tool for adaptive, personalized text simplification. Lexi is easily installed
as a browser extension, enabling easy access to the service for its users.

1 Introduction

Many a research paper on text simplification starts out by sketching the problem of text simplification as
rewriting a text such that it becomes easier to read, changing or removing as little of its informational
content as possible (Zhu et al., 2010; Coster and Kauchak, 2011; De Belder and Moens, 2010; Paetzold
and Specia, 2015; Bingel and Søgaard, 2016). Such a statement may describe the essence of simplifica-
tion as a research task, but it hides the fact that it is not always easy to decide what is easy for a particular
user. This paper discusses why we need custom-tailored simplifications for individual users, and argues
that previous research on non-adaptive text simplification has been too generic to unfold the full potential
of text simplification.

Even when limiting ourselves to lexical substitution, i.e. the task of reducing the complexity of a
document by replacing difficult words with easier-to-read synonyms, we see plenty of evidence that,
for instance, dyslexics are highly individual in what material is deemed easy and complex (Ziegler et
al., 2008). Lexi, which we introduce in this paper, is a free, open-source and easily extensible tool for
adaptively learning what items specific users find difficult, using this information to provide better (lex-
ical) simplification. Our system initially serves Danish, but is easily extended to further languages. For
surveys of text simplification, including resources across languages, see Siddharthan (2014), Shardlow
(2014b) and Collins-Thompson (2014).

1.1 There is no one-size-fits-all solution to text simplification
Text simplification is a diverse task, or perhaps rather a family of tasks, with a number of different target
audiences that different papers and research projects have focused on. Among the most prominent tar-
get audiences are foreign language learners, for whom various approaches to simplifying text have been
pursued, often focusing on lexical (Tweissi, 1998) but also sentence-level simplification (Liu and Mat-
sumoto, 2016). Other notable groups that have been specifically targeted in text simplification research
include dyslexics (Rello et al., 2013), and the aphasic (Carroll et al., 1998), for whom particularly long
words and sentences, but also certain surface forms such as specific character combinations, may pose
difficulties. People on the autism spectrum have also been addressed, with the focus lying on reducing the
amount of figurative expressions in a text or reducing syntactic complexity (Evans et al., 2014). Reading
beginners (both children and adults) are another group with very particular needs, and text simplification
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creativecommons.org/licenses/by/4.0/



246

research has tried to provide this group with methods to reduce the amount of high-register language and
non-frequent words (De Belder and Moens, 2010).

Evidently, each target group has its own simplification needs, and there is considerable variation as to
how well the specifics of what makes a text difficult is defined for each group and simplification strategy.
While difficult items in a text may be identified more easily and generally for problems such as resolving
pronoun reference, questions such as what makes a French word difficult for a native speaker of Japanese,
or what dyslexic children consider a difficult character combination or an overly long sentence, are much
harder to answer. Nevertheless, there is a vast body of work (Yatskar et al., 2010; Biran et al., 2011;
Horn et al., 2014) that ventures to build very general-purpose simplification models from simplification
corpora such as the Simple English Wikipedia corpus (Coster and Kauchak, 2011), which has been edited
by amateurs without explicit regard to a specific audience, and with rather vague guidelines as to what
constitutes difficult or simple language.

Other work in simplification attempts to answer the above questions by inducing models from specifi-
cally compiled datasets, which for instance may have been collected by surveying specific target groups
and asking them to indicate difficult material in a text. Yet even those approaches often cannot live up
to the real challenges in simplification, seeing that we find very heterogeneous simplification needs also
within target groups. Foreign language learners with different linguistic backgrounds (pertaining both to
their native and second languages) will find very different aspects of the same foreign language difficult.
Young readers in different school grades will quickly advance their reading habits and skills, and also
within the same class or age reading levels may differ greatly. Likewise, people with autism exhibit
very different manifestations of the type and degree of their condition (Alexander et al., 2016), also with
respect to reading (Evans et al., 2014), just as there exist many different forms of cognitive impairments
affecting literacy, including many different forms of dyslexia (Watson and Goldgar, 1988; Bakker, 1992;
Ziegler et al., 2008). In fact, while there is a relatively strong agreement on the existence of some typolo-
gies of dyslexia or autism, specific typologies that have been proposed are heavily debated, such that it
would not even be straightforward to create simplification tools for specific subtypes of these conditions.

From this it becomes apparent that in order to build simplification systems that truly help specific
individuals, those systems have to be personalized or personalizable. Further, due to the frequent lack of
insight into what an individual’s specific reading problems are (and because any introspection is difficult
to verify), such systems need to be able to learn themselves what those individual challenges are, and
ultimately adapt to those.

1.2 Obtaining individual data

In order to learn specific reading challenges for an individual person, a simplification system needs
individual data for this person, from which a personalized model can then be induced. This brings up the
question of how best to obtain such data. A straightforward approach would be to ask each individual
to provide ratings for some number of stimuli as they start using a simplification system. However, this
would pose a relatively unnatural reading scenario, which might introduce a certain bias in the data and
thus distort the induced model. Further, it might create a dissatisfying user experience, and users might
not be willing to invest much time into such a calibration phase, especially when they perceive reading
as a particularly strenuous activity. Yet perhaps most importantly, the model will not necessarily be
well-adapted to the specific domains and genres that a specific user typically consumes text from.

As an alternative, we propose to collect data as the system is used, and to continuously update the
system with feedback it collects from the user. In this way, the system can base its model on exactly
those text types the user consumes. We discuss how feedback can be incorporated into a system in
Section 3 and provide details on how this is implemented in our proposed system in Section 4.

1.3 Contributions

We present Lexi, an open source and easily extensible tool for adaptive, personalized text simplification.
Lexi is based on an adaptive framework for lexical simplification that we also describe in this paper. This
framework incorporates feedback from users, updating personalized simplification models such as to
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meet their individual simplification needs. Lexi is made publicly available under a CC-BY-NC license1

at https://www.readwithlexi.net.

2 Related Work

Perhaps the earliest contribution that focuses on on-demand lexical simplification is the work of Devlin
and Unthank (2006), who present HAPPI, a web platform that allows users to request simplified versions
of words, as well as other “memory jogging” pieces of information, such as related images.

Another example is the work of Azab et al. (2015), who present a web platform that allows users to
select words they do not comprehend, then presents them with synonyms in order to facilitate compre-
hension. Notice that their approach does not simplify the selected complex words directly, it simply
shows semantically equivalent alternatives that could be within the vocabulary known by the user.

The recent work of Paetzold and Specia (2016a) describes Anita, yet another web platform of this
kind. It allows users to select complex words and then request a simplified version, related images,
synonyms, definitions and translations. Paetzold and Specia (2016a) claim that their approach outputs
customized simplifications depending on the user’s profile, and evolves as users provide feedback on the
output produced. However, they provide no details of the approach they use to do so, nor do they present
any results showcasing its effectiveness.

Therefore not counting Paetzold and Specia (2016a) as work in personalized simplification, we are not
aware of any previous approaches that address this. We further refer to related work on specific aspects
of text simplification as they become relevant in the course of this paper.

3 Adaptive text simplification

As we mapped out in the introduction, we devise a simplification system that continuously learns from
user feedback and adapts to the user’s simplification needs. This section discusses how such feedback
can be incorporated into a lexical simplification model via online learning, and where in the lexical
simplification pipeline it is sensible to implement adaptivity.

3.1 Adaptivity in the lexical simplification pipeline
Lexical simplification, i.e. replacing single words with simpler synonyms, classically employs a pipeline
approach illustrated in Figure 1 (Shardlow, 2014a; Paetzold and Specia, 2015). This pipeline consists of
a four-step process, the first step of which is to identify simplification targets, i.e. words that the model
believes will pose a difficulty for the user. This step is called Complex Word Identification (CWI) and
has received a great deal of attention in the community, including two shared tasks (Paetzold and Specia,
2016b; Yimam et al., 2018). In a second step, known as Substitution Generation, synonyms are retrieved
as candidate replacements for the target These are then filtered to match the context, resolving word
sense ambiguities or stylistic mismatches, in Substitution Selection. Finally, those filtered candidate are
ranked in order of simplicity in what is known as Substitution Ranking (SR).

Out of these four steps, we consider CWI and SR as the most natural ones to make adaptive, whereas
generation and selecting candidates can be regarded as relatively independent from a specific user. In
order to implement adaptivity, we propose to make use of online learning methods as discussed below
and, departing from a seed model, train and maintain user-specific models as we collect feedback.

3.1.1 Adaptive CWI
Complex Word Identification is usually approached as a binary classification task, where the goal is to
decide for some word in context whether or not it poses a difficulty to a reader. Existing datasets, for
instance the ones used at previous CWI shared tasks (Paetzold and Specia, 2016b; Yimam et al., 2018),
therefore provide a sentence and a target word (or multi-word expression) together with a binary label.

A model trained on this data with a learning algorithm based on gradient descent on t examples can
now easily integrate newly collected data points into its parameters θ using an update rule such as

θ(t+1) = θ(t) − η∇θ(t)J(θ
(t);x, y), (1)

1https://creativecommons.org/licenses/by-nc/4.0/
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where x is a representation of a target word in context and y is a binary complexity label we receive from
user feedback. As an alternative to gradient descent based algorithms, we can use other online learning
models, e.g. the Perceptron algorithm. CWI datasets are typically not very large (between 2,500 and
5,500 positive examples per dataset in the mentioned shared tasks), such that data points sampled from
users can quickly have an impact on a generic base model.2

3.1.2 Adaptive Substitution Ranking
Substitution Ranking has received relatively little attention in the community compared to CWI. Most
lexical simplifiers rank candidates using unsupervised approaches. The earliest example is the approach
of Carroll et al. (1998), who rank candidates according to their Kucera-Francis coefficients, which are
calculated based on frequencies extracted from the Brown corpus (Rudell, 1993). Other unsupervised
approaches, such as those of Ligozat et al. (2012) and Glavaš and Štajner (2015), go a step further and
use metrics that incorporate multiple aspects of word complexity, including context-aware features such
as n-gram frequencies and language model probabilities. But even though unsupervised rankers perform
well in the task, they are incapable of learning from data, which makes them unsuitable for adaptive SR.

Our approach to adaptive SR is similar to our approach to adaptive CWI, namely to train an initial
model over manually produced simplicity rankings, then continuously update them with new knowledge
as Lexi users provide feedback on the simplifications they receive. The feedback in this scenario is
composed of a complex word in context, a simplification produced by Lexi, and a binary rank provided
by the user determining which word (complex or simplification) makes the sentence easier to understand.
For that purpose, we need a supervised model that (i) supports online learning so that it can be efficiently
updated after each session, and (ii) can learn from binary ranks.

Paetzold and Specia (2017) offer some intuition on how this can be done. They exploit the fact
that one can decompose a sequence of elements {e1, e2, ..., en} with ranks {r1, r2, ..., rn} into a ma-
trix m ∈ Rn×n, such that m(i, j) = f(ri, rj), and function f(ri, rj) estimates a value that describes the
relationship between the ranks of elements ei and ej . For example, f could be described as:

f(ri, rj)


1 if ri < rj
−1 if ri > rj
0 otherwise

(2)

The ranker of Paetzold and Specia (2017) uses a deep multi-layer perceptron that predicts each value of
m individually. It takes as input feature representations of ei and ej , and produces a function f similar to
the one depicted in Equation 2. Their approach would be perfectly capable of learning from the feedback
produced by Lexi users, but it would be very difficult to train it through online learning, given that deep
multi-layer perceptrons are characterized by a large number of parameters that are costly to optimize in
an on-demand basis. We instead propose to employ an online learning model that has fewer parameters,
e.g. logistic regression.

4 Implementation

Lexi consists of a client-side frontend and a server-side backend that communicate with each other via a
RESTful API (Fielding, 2000), exchanging requests and responses as described further in 4.3. The client-
server architecture allows for easy portability of the software to users, minimizing user-side installation
efforts, hardware usage and dependencies on other libraries. It also centralizes the simplification engine,
such that amendments to and maintenance of the latter need only be implemented on the server side.

Lexi is currently limited to performing lexical simplification. Note, however, that this is merely a
limitation of the backend system, which only implements a lexical simplification system for now. From
the frontend perspective, however, there are no limitations as to the nature and length of the simplified
items in a text, and extending Lexi to support higher-level modes of simplification simply amounts to

2An alternative to traditional, one-size-fits-all approaches has recently been proposed by Bingel et al. (2018), who use
eye-tracking measures to induce personalized models to predict misreadings in children with reading difficulties.
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Figure 1: Lexical simplification pipeline as identified by Paetzold and Specia (2015). The simplification
workflow consists of identifying simplification targets, i.e. words that pose a challenge to the reader.
In the generation step, possible alternatives for each target are retrieved, which are then filtered in the
selection step, eliminating words that do not fit the context. In the ranking step, the system finally orders
the candidates by simplicity.

implementing a backend system supporting this.3

We initially focus on lexical simplification for a number of reasons: (i) We have existing baseline
models that we expect to work well in a real-world setting. (ii) Given a relatively small number of
parameters in those models, we expect fast adaptation to individual users from relatively little feedback.
(iii) Compared to other forms of simplification, lexical simplification needs to make a selection from a
relatively limited search space that is still reasonably diverse, such that we expect personalized models
to make a difference more easily.

4.1 Frontend

Lexi’s frontend is implemented in JavaScript and jQuery under the Mozilla WebExtension framework,
supported by most modern browsers.4 WebExtensions employ content scripts to modify a webpage
upon certain specified events, for instance a click on some page element. The remainder of this section
describes Lexi’s basic usage as the user registers an account and asks the system for simplifications,
thereby illustrating the user interface and sketching the inner workings of the frontend.

4.1.1 User log-in and registration

Upon installation of the Lexi extension in the browser, the user is prompted to register an account,
providing an email address as well as basic demographic information (year of birth and educational
level, see Figure 2). This information is sent to the backend using its registration endpoint (see Table
1). If the user has previously created an account and simply reinstalled the extension, they may also just
provide their email address to keep using their existing profile. The user’s email address is stored locally
in the browser, where it is kept until the browser storage is cleared or the extension is uninstalled.

4.1.2 Simplification requests and display

Whenever the user visits a webpage, the extension injects an event listener into the page, which triggers
upon the selection of some text and offers the user to simplify the selected content in the form of a small
button that is displayed just above the selection. When this button is clicked, the extension retrieves the
user’s email address from the browser storage (prompting the user to log in if no email address is stored)
and verifies that a user with that email address exists in the backend’s database, using the login endpoint
as given in Table 1. The script then submits a simplification request to the backend’s simplification
endpoint, enclosing a JSON object that contains the user’s email address (used by the backend to retrieve

3Note that, in general, this paper describes the Lexi frontend and backend versions 1.0. Both parts of Lexi are under ongoing
development, with details pertaining to the implementation possibly subject to change.

4https://developer.mozilla.org/en-US/Add-ons/WebExtensions
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Figure 2: User account registration form Figure 3: Five-point rating form

Figure 4: Simplification spans are marked up
in light green. As the user clicks on a simpli-
fication span, the currently displayed word is
replaced with an alternative.

the personal simplification model) and the HTML code of the element containing the text selection. See
Appendix A.1 for an example.

The response from the backend then transmits a JSON object with augmented HTML, where<span>
elements with unique IDs are wrapped around simplification targets. The response object further contains
an array of simplification objects, each of which in turn contains a list of synonyms ordered by simplicity
ranking (including the target). An example is given in Appendix A.2. The content script replaces the
original source with the augmented HTML and displays each simplification span with a light green
background color (see Figure 4). The script then shifts through the simplification alternatives for a given
target whenever the user clicks on the respective span on the page, advancing one alternative per click and
reverting to the first alternative at the end of list. The original item is marked in a slightly but discernibly
darker shade than the proposed simplifications.

4.1.3 User feedback
In order to provide personalized simplifications and to adapt to individual users, Lexi needs to be able
to decide which alternative a user prefers over the others for every target. In a classical, controlled
annotation setting, one would probably present subjects with a set of alternatives and have them rank
these or pick a single favorite. However, as Lexi aims to provide as natural and smooth a reading scenario
as possible to its users, explicitly asking for such feedback would critically obstruct the reading process.

Lexi therefore interprets whatever final selection a user makes for some simplification span as their
preferred alternative in this context.5 As the user finally navigates away from the webpage that Lexi was
invoked on, Lexi solicits feedback from the user on a five-point scale (see Figure 3) and submits this
rating along with the simplification objects and their final selections (and click-through counts) to the

5In the instructions, users are made aware of this. The frontend further keeps track of how many times the user clicked on
a given simplification span, thus providing the backend with information such as how many times the user clicked through the
entire list, or whether perhaps no alternatives were solicited for some item.
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feedback endpoint of the backend.6 See Appendix A.3 for an example of the feedback.

4.1.4 Qualitative evaluation of usability
The frontend design was developed in close collaboration with Nota, the Danish Library and Expertise
Center for people with reading disabilities.7 In February 2018, the software was intensively tested by
four dyslexic members of Nota, all female students in secondary/higher education and aged between
20 and 30. Each test started with a short preliminary interview in which the subjects were asked about
their age, occupation/study field, reading habits, degree of dyslexia and use of browser extensions. The
subjects were then given the possibility to watch an introduction video (of 1:30 min length) outlining
Lexi’s basic functionality and user interface. Two of the four subjects opted for this, while the other two
decided to skip the video as they do not usually watch introduction videos when using new software.
Next, the subjects were asked to locate Lexi in the Chrome Webshop, install it in the browser and create
a user account. Once set up, each subject navigated to a site of her choice and used Lexi to receive
simplifications as outlined in 4.1.2. The two subjects who had not watched the video did so now, and
both declared they gained further insight into Lexi’s functionality through the video, but that it was not
crucial in order to understand its basic usage.

In qualitative interviews directly succeeding each test, the test subjects overall reacted very positively
to the prospect of a personalized simplification tool in general, and to Lexi and its design in particular.8

The test subjects suggested a number of improvements, most of which have now been implemented.
One suggested improvement, which we have not been able to implement but intend to do so for a future
version, is the support for multilingual simplification. Two subjects said they would greatly appreciate
this, as much of their study material is only available in English.

4.2 Backend

Lexi’s backend consists of a simplification system, implemented in Python 3.5, and a database that stores
user information and their simplification histories.

4.2.1 Simplification system
As stated above, Lexi’s simplification system currently focuses on lexical simplification, abiding to the
de-facto standard pipeline depicted in Figure 1. Since Lexi lets users choose which words they wish to
have simplified, it does not employ any automatic CWI.9 Below we sketch Lexi’s simplification system
as it receives simplification requests from the frontend. As our lexical simplification approach is sensitive
to the context of a word, Lexi’s first step is to preprocess the HTML source transmitted from the frontend,
identifying the boundaries of the sentence that contains the target word, if any.10

For Substitution Generation, Lexi implements the embeddings-based approach inspired by the con-
tributions of Glavaš and Štajner (2015) and Paetzold and Specia (2016c). In their work, they extract as
candidate substitutions the N words with the highest cosine similarity with a target word. As Danish,
the language currently served by Lexi, is not as well-resourced as for example English, Lexi extends
the embedding-based Substitution Generation approach by using an ensemble of embeddings models
that are trained independently on different text sources, the Danish Wikipedia and a news corpus.11 The
overall similarity score for a target-candidate pair is then defined as the mean score across these embed-
dings models. Lexi returns the ten most similar candidates whose mean similarity score exceeds some

6More correctly, feedback is not solicited when the user actual navigates away from the page, as security restrictions in
browsers disallow custom scripts to run upon closing a page. Instead, Lexi asks for feedback via a small notification box in
the upper right corner of the page, which pops up as the operating system’s focus changes to a different window, or when the
mouse leaves the browser’s viewport (e.g. for the address bar).

7http://www.nota.dk
8An informal evaluation of the software on a 5-point scale (with 1 being worst and 5 best) yielded two ratings of 5, one 4

and one 3.
9We do plan, however, to implement CWI as the user solicits simplifications for longer text passages or entire pages.

10In order to reduce bandwidth and modify the page more easily, the frontend only transmits the HTML source of the least
HTML node fully containing the selection, which typically is a paragraph (<p>), but may also be a single word contained in a
heading (e.g. <h1>), in which case no context is available. Sentence boundaries are identified using NLTK.

11https://ordnet.dk/korpusdk



252

configurable threshold. Alternatively, Lexi allows to generate synonyms from a simple dictionary, in the
case of Danish using the Danish WordNet (Pedersen et al., 2009), yet this approach suffers from severely
reduced coverage compared to word embeddings.

Once generated, the candidates are filtered during Substitution Selection by an unsupervised bound-
ary ranker (Paetzold and Specia, 2016c). In this approach, a supervised ranker is trained with instances
gathered in an unsupervised fashion: we generate candidate substitutions for complex words using our
generation approach, then assign label 1 to the complex words and 0 to the generated candidates. The
boundary between the two classes is then used to rank and filter candidates. Paetzold and Specia (2016c)
show that this is a state-of-the-art approach that outperforms all earlier supervised and unsupervised
strategies. Given a target word and a set of generated candidate substitutions, the model ranks the candi-
dates based on how far in the positive side of the data they are, then selects 65% of the highest ranking
ones.

Finally, the selected candidates are ranked with a supervised Substitution Ranking model following
the approach we outlined in Section 3.1.2. It is during this step that Lexi is capable of producing cus-
tomized output based on the user’s needs, and to evolve based on the user’s feedback. Lexi employs a
pairwise online logistic regression model that learns to quantify the simplicity difference between two
candidate substitutions. Given an unseen set of candidate substitutions, the regressor estimates the sim-
plicity difference between each candidate pair, then ranks all candidates based on their average score.

Note that the user’s feedback, sent by the frontend, consists of a set S and an index i, where S is
the full set of suggested synonyms, including the target, and i is the index of the item in S that the
user finally selected. As the regressor, however, learns from pairwise rankings, Lexi passes all pairs
{〈Si, Sj〉|j 6= i} to the regressor, i.e. it pairs the selected item with all others and updates the ranker
accordingly, postulating that the selected item is easier for this user than each other suggestion.

Using a seed dataset of complex-simple word correspondences in context, we train a default model
that produces initial simplifications as a user solicits simplifications for the first time.12 As Lexi receives
feedback for this user for the first time, the seed model is copied and personalized with the first batch of
feedback, then this model is saved for later requests by this user.

4.2.2 Database

Lexi stores user information and simplification histories in a PostgreSQL database. More specifically,
it employs three different tables, called users, models and sessions. In the first of these, it links a
unique, numerical user ID to a user email address, and stores when the user first and last used Lexi.
It further contains the demographic information the user provides at registration, i.e. their year of birth
and educational status. The models table stores a path to the serialized personal model for each user ID.
Finally, the sessions table stores each simplification request issued to the backend with a unique session
ID, the respective user ID, a time stamp for the session start and one for the submission of feedback, the
webpage URL, simplification objects serialized as JSON, the provided rating and finally the frontend
version number used in this session.

4.3 Communication between backend and frontend

Lexi’s backend offers a RESTful API implemented in Python 3.5, using the Flask package.13 The ser-
vices available through HTTP POST requests, with their URI paths listed in Table 1. Input and output
values are communicated via a JSON-based protocol exemplified in the appendix. Lexi further defines a
set of error codes for easier troubleshooting and flexible internationalization of the frontend via the i18n
API used by WebExtensions.

12Such a seed dataset is not necessarily available for any language. However, in its absence, a seed model could either be
trained with simple heuristics, e.g. replacing infrequent words with higher-frequency synonyms. Alternatively, the system could
choose to initially rank candidates with such a heuristic and only start learning once the first feedback is available.

13http://flask.pocoo.org/
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URI path Input Returns

/simplify User ID; page HTML Augmented HTML, simplification objects
/login User email address If successful: User ID, else error code
/register User information If successful: User ID, else error code
/feedback User ID; simplification objects updated

with selections; rating
Status code (successful update or error)

Table 1: RESTful API endpoints defined by Lexi’s backend.

4.4 Language support and extensibility

Lexi’s design does not impose any restrictions on the support of new (written) languages, including
right-to-left or non-alphabetic writing systems. In fact, supporting a new language simply amounts to
providing a new language-specific simplification pipeline as illustrated in Figure 1.

Depending on the specific implementation of the simplification system, certain resources are how-
ever needed to induce a first seed model for simplification. Most centrally, this pertains to Substitution
Generation, where a synonym database or good word embeddings are required in the case of lexical
simplification, or a reliable paraphrase module in the case of higher-level simplification. With respect
to Substitution Ranking, the availability of resources such as simplification corpora is less critical, as
simple heuristics (e.g. simplicity proxies such as length and frequency) might give a reasonable baseline
upon which the system can then improve through user feedback.

Lexi currently does not offer multilingual support, but is confined to one language per backend in-
stance. Supporting multilingual simplification could be implemented through a language identification
module upstream to the set of simplification pipelines, consisting of one pipeline per language. This
raises the interesting question whether knowledge about one user’s simplification preferences in one lan-
guage could be transferred to another language. Support for this hypothesis comes, among others, from
the cross-lingual track in the recent CWI shared task by Yimam et al. (2018).

4.5 Ethical and legal considerations

As any software interacting with users and storing information on them, Lexi is naturally subject to eth-
ical and legal concerns, especially those regarding privacy. The EU General Data Protection Regulation
(GDPR), for instance, defines a number of regulations such as the clear statement of terms and condi-
tions or that users need to be provided, upon request, with full access to whatever data is stored on them.
Lexi does not explicitly store users’ names, but in many cases they will be encoded in email addresses.
Personally identifiable information may also be stored in the form of simplified text that is logged in the
database, for instance if Lexi is used on a user’s personal social media profile. The above also highlights
the need for encrypted communication between the client and the server, which is safeguarded through
TLS encryption over the HTTPS protocol.

Ethical concerns pertaining to text simplification arise when infelicitous simplifications distort the
meaning of a text and thus potentially misinform the reader. This is difficult to completely rule out, such
that the user should clearly be informed of this possibility. Other concerns revolve around the hypothesis
that reducing text complexity will “dumb down” the material and keep users at a low reading level by
under-challenging them (Long and Ross, 1993). However, as Rello et al. (2013) point out, “anything
which might help [dyslexics] to subjectively perceive reading as being easier, can potentially help them
to avoid this vicious circle [of reading less and staying on a low reading level], even if no significant
improvement in readability can be demonstrated.”

5 Availability and applications

The Lexi software and code, including its backend and frontend, are freely available for non-commercial
use under a CC-BY-NC license, obtainable at https://www.readwithlexi.net. Researchers can set
up their own, customized version of the software and distribute the browser extension to users. It is
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straightforward to modify features of the software such as offered languages or the exact resources used
to induce the initial models.

Besides its core functionality, which we mapped out in the previous sections, Lexi has a number of
alternate use cases, which we discuss in this section.

Preloaded simplifications Lexi’s primary use case, as described earlier, is to provide simplifications
to users as they select a span of text, which circumvents the need for a CWI module as only such items
are simplified that the user explicitly solicits replacements for. Alternatively, users may wish to have the
entire page simplified before they start reading. Lexi currently implements this functionality, letting the
user solicit simplifications for the entire site via a click on the Lexi icon. As there is no personalized
CWI module implemented yet, simplification targets are identified via a confidence threshold during
Substitution Generation.

Evaluation of simplification quality Via its rating function (Figure 3), Lexi continuously tracks user
satisfaction as a means of evaluating synchronic simplification quality as well as the diachronic develop-
ment of model adaptation. An adaptive model that is continuously customized is expected to gradually
improve the average rating it receives from the user.

Data collection Lexi makes it possible to collect user choices over a longer period in order to create
bigger simplification datasets. If sufficiently homogeneous subgroups can be identified across users, this
data may give insight into their simplification needs, to build better simplification models for them.

Other plausible approaches may understand different users as different tasks and apply multi-task
learning methods to transfer knowledge between users, thus both regularizing the models for the individ-
ual user and increasing the available amount of data that the individual models can be learned from.

6 Conclusion and Future Work

This paper is a first work in personalized, adaptive text simplification, a direction of research motivated by
the observation that generic, user-independent simplification systems cannot fully unfold their potential
in making text simpler for specific end users. We propose a framework for adaptive lexical simplification,
outlining how user feedback can be used to gradually enhance and personalize text simplification. As a
concrete first solution to the problem, we present Lexi, an open-source tool for personalized, adaptive
text simplification that has been very positively evaluated in a first usability test. In its current imple-
mentation, Lexi focuses on lexical simplification in Danish. An extension to other languages is simple,
requiring only a medium-sized monolingual corpus on which a language model and word embeddings
can be trained.

In future work, we aim to extend the proposed framework to sentence-level simplifications. We further
plan to implement support for multilingual simplification.
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A Examples of JSON protocol

A.1 Request sent from frontend to backend

1 {
2 ’frontend_version ’: ’1.0.0’,
3 ’user ’: ’lexi -user@mail.com ’,
4 ’html ’: ’<p>Natasja startede allerede som 13-årig med at synge og

DJ\’e ... </p>’,
5 ’startOffset ’: 17,
6 ’endOffset ’: 25,
7 ’url ’: ’https://da.wikipedia.org/wiki/Natasja ’
8 }

A.2 Reply from backend to frontend

1 {
2 ’backend_version ’: ’1.0.0’,
3 ’html ’: ’<p>Natasja startede <span id="lexi_254_1" class="lexi -

simplify">allerede </span > som 13-årig med at synge og DJ\’e ...
</p>’,

4 ’session_id ’: 254,
5 ’status ’: 200,
6 ’message ’: ’Simplification successful ’,
7 ’simplifications ’: {
8 ’lexi_254_1’: {
9 ’choices ’: [’allerede ’, ’bare ’],

10 ’selection ’: 0,
11 ’sentence ’: "Natasja startede allerede som 13-årig med at

synge og DJ’e i København, hvor hun gjorde sig bemærket
sammen med Miss Mukupa, McEmzee og DJ Kruzh ’em i bandet No
Name Requested .",

12 ’word_index ’: 2
13 }
14 }
15 }
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A.3 Feedback sent from frontend to backend

1 {
2 ’frontend_version ’: ’1.0.0’,
3 ’user ’: ’lexi -user@mail.com ’,
4 ’html ’: ’<p>Natasja startede <span id="lexi_254_1" class="lexi -

simplify">bare </span > som 13-årig med at synge og DJ\’e ...
5 </p>’,
6 ’session_id ’: 254,
7 ’simplifications ’: {
8 ’lexi_254_1’: {
9 ’choices ’: [’allerede ’, ’bare ’],

10 ’selection ’: 1,
11 ’sentence ’: "Natasja startede allerede som 13-årig med at synge
12 og DJ’e i København, hvor hun gjorde sig bemærket sammen med
13 Miss Mukupa, McEmzee og DJ Kruzh ’em i bandet No Name
14 Requested .",
15 ’word_index ’: 2
16 },
17 },
18 ’rating ’: 4,
19 ’url ’: ’https://da.wikipedia.org/wiki/Natasja ’,
20 ’session_id ’: 254
21 }
22 }


