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Abstract

Distributional word representations (often referred to as word embeddings) are omnipresent in
modern NLP. Early work has focused on building representations for word types, and recent studies
show that lemmatization and part of speech (POS) disambiguation of targets in isolation improve
the performance of word embeddings on a range of downstream tasks. However, the reasons behind
these improvements, the qualitative effects of these operations and the combined performance of
lemmatized and POS disambiguated targets are less studied. This work aims to close this gap and
puts previous findings into a general perspective. We examine the effect of lemmatization and POS
typing on word embedding performance in a novel resource-based evaluation scenario, as well
as on standard similarity benchmarks. We show that these two operations have complementary
qualitative and vocabulary-level effects and are best used in combination. We find that the
improvement is more pronounced for verbs and show how lemmatization and POS typing implicitly
target some of the verb-specific issues. We claim that the observed improvement is a result of
better conceptual alignment between word embeddings and lexical resources, stressing the need
for conceptually plausible modeling of word embedding targets.

1 Introduction

Word embeddings learned from unlabeled corpora are one of the cornerstones of modern natural language
processing. They offer important advantages over their sparse counterparts, allowing efficient computation
and capturing a surprising amount of lexical information about words based solely on usage data.

Since precise word-related terminology is important for this paper, we introduce it early on. A token is
a unique word occurrence within context. Tokens that are represented by the same sequence of characters
belong to the same word type. A type signifies one or — in case of morphological ambiguity — several
word forms. Word forms encode the grammatical information carried by the word and are therefore
POS-specific. One of the word forms is considered the base form - or lemma of the word. All possible
word forms of a word represent the lexeme of this word. From a semantic perspective, a word is assigned
to a minimal sense-bearing lexical unit (LU). In general, multi-word and sub-word lexical units are
possible, but in this paper we focus on single-word units. LUs are the reference point to the semantics of
the word and might be used to describe further properties of the words within a specific lexicon, e.g. get
assigned one or several senses, related to other LUs via lexical relations etc. Figure 1 illustrates these
concepts and positions some of the relevant approaches w.r.t. the level they operate on.

In general, the training objective in the unsupervised word embedding setup (e.g. (Mikolov et al.,
2013)) is to induce vector representations for targets based on their occurrences in an unlabeled reference
corpus. For each occurrence of the target, context representation is extracted. The goal is to encode
targets so that targets appearing in similar contexts are close in the resulting vector space model (VSM).
We further refer to the set of targets in a given VSM as target vocabulary of this VSM.

The applications of word embeddings can be roughly grouped in two categories, occurrence-based and
vocabulary-based: the former aims to classify tokens (e.g. parsing, tagging, coreference resolution), the
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Figure 1: Hierarchy of word-related concepts for emails, with VerbNet as lexicon example.

latter aims to classify lexemes (e.g. word clustering, thesaurus construction, lexicon completion). Lexical
resources mostly operate on lexeme or lexical unit level. This includes most of the similarity benchmarks
(Finkelstein et al., 2001; Bruni et al., 2014; Hill et al., 2015; Gerz et al., 2016) that implicitly provide
similarity scores for lexemes and not word types. Traditional word embeddings approaches (Mikolov et
al., 2013; Pennington et al., 2014) induce representations on word type level. As our example in Figure 1
shows, this leads to a conceptual gap between the lexicon and the VSM, which has practical consequences.
Consider the standard scenario when a type-based VSM is evaluated against a lexeme-based benchmark.
One of the types contained in the VSM vocabulary corresponds to the base form (lemma), and the
vector for the base word form is used for evaluation. This particular form, however, is selected based
on grammatical considerations and, as we later demonstrate, is neither the most frequent nor the most
representative in terms of contexts, nor the most unambiguous. As a result, (1) the contexts for a given
lexical unit are under-represented, ignoring other word forms than the base form; (2) in case of ambiguity
the same context-based representation is learned for several different lexemes sharing the same word type.

Recent studies demonstrate that even partially addressing these problems leads to improved performance.
Ebert et al. (2016) introduce the lemma-based LAMB embeddings and show that lemmatization of
the targets improves the results cross-linguistically on similarity benchmarks and in a WordNet-based
evaluation scenario. In our scheme this represents a step up in the conceptual hierarchy but still leaves
room for ambiguity on the LU level. Trask et al. (2015) experiment with POS-disambiguated targets, and
also report improved performance on a variety of tasks.

While prior work shows that lemmatization and POS-typing of targets in isolation are beneficial for
downstream tasks, it does not provide a detailed investigation on why it is the case and does not study the
effects of combining the two preprocessing techniques. This paper aims to close this gap. We evaluate the
effects of lemmatization and POS disambiguation separately and combined on similarity benchmarks, and
further refine our results using a novel resource-based word class suggestion scenario which measures
how well a VSM represents VerbNet (Schuler, 2005) and WordNet supersense (Ciaramita and Johnson,
2003) class membership. We find that POS-typing and lemmatization have complementary qualitative
and vocabulary-level effects and are best used in combination. We observe that English verb similarity is
harder to model and show that using lemmatized and disambiguated embeddings implicitly targets some
of the verb-specific issues. In summary, the contributions of this paper are as follows:

• We suggest using lemmatized and POS disambiguated targets as a conceptually plausible alternative
to type, word form and lemma-based VSMs;
• We introduce the suggestion-based evaluation scenario applicable to a wide range of lexical resources;
• We show that lemmatization and POS disambiguation improve both benchmark and resource-based

performance by implicitly targeting some of the grammar-level issues.
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2 Related work

The starting point for our study are the results from the lemma-based word embedding approach by Ebert
et al. (2016), the POS-disambiguated sense2vec embeddings by Trask et al. (2015) and the dependency-
based contexts by Levy and Goldberg (2014). Our primary focus is the effect of word embedding targets
on vocabulary-based task performance. However, to put our work in context, we provide an extended
overview of the issues related to traditional type-based approaches to VSM construction, along with
relevant solutions.

Type-based VSMs (Mikolov et al., 2013; Pennington et al., 2014) have several limitations that have
been extensively studied. They have restricted vocabularies and hence lack the ability to represent
out-of-vocabulary words. Several recent approaches treat this issue by learning vector representations for
sub-word units, e.g. fastText (Bojanowski et al., 2016) and charagram (Wieting et al., 2016).

Type-based VSMs do not abstract away from word inflection: different forms of the same word
are assigned different representations in the VSM. Ebert et al. (2016) introduces lemmatized LAMB
embeddings as a way to address this issue and shows that lemmatization is highly beneficial for word
similarity and lexical modeling tasks even for morphologically poor English, while using stems doesn’t
lead to significant improvements. Their approach is similar to our lemma-w2 setup (Section 3). Another
recent attempt to address this problem is the study by Vulić et al. (2017b), which uses a small set of
morphological rules to specialize the vector space bringing the forms of the same word closer together
while setting the derivational antonyms further apart. We relate to this approach in Section 4.

Finally, type-based VSMs neglect the problem of polysemy: all senses of a word are encoded as a
single entry in the VSM. This issue has been recently approached by multi-modal word embeddings
(Athiwaratkun and Wilson, 2017) and Gaussian embeddings (Vilnis and McCallum, 2014). Partially
disambiguating the source data via POS tagging has been employed in (Trask et al., 2015). Here, instead
of constructing vectors for word forms, POS information is integrated into the vector space as well. This
is similar to our type.POS-w2 setup (Section 3) which, as we show, introduces additional sparsity and
ignores morphological inflection.

An alternative line of research aims to learn embeddings for lexical units by using an external WSD
tool to preprocess the corpus and applying standard word embedding machinery to induce distributed
representations for lexical units, e.g. (Iacobacci et al., 2015; Flekova and Gurevych, 2016). Such
approaches require an external WSD tool which introduces additional bias and might not be available for
lower-resourced languages. Moreover, to query such VSMs it is necessary to either apply WSD to the
input, or to align the inputs with the senses in some other way, which is not always feasible.

From the evaluation perspective, a popular method to assess the performance of a particular vector
space model is similarity benchmarking. A similarity benchmark consists of word pairs along with
human-assessed similarity scores, which are compared to cosine similarities returned by VSMs via rank
correlation. Some common examples include WordSim-353 (Finkelstein et al., 2001) and MEN (Bruni et
al., 2014). The recent SimLex-999 (Hill et al., 2015) and SimVerb-3500 (Gerz et al., 2016) particularly
focus on word similarity as opposed to word relatedness (e.g. bank and money would be related, but not
similar) and have been shown difficult for word embedding models to tackle.

Being attractive from the practical perspective, similarity benchmarks are expensive to create and do
not provide detailed insights about the lexical properties encoded by the word embeddings. Motivated
by that, resource-based benchmarking strategies have been suggested. (Ebert et al., 2016) represents
WordNet as a graph and measures the correspondence of similarity ranking to the distances between query
words in the graph via mean reciprocal rank. Vulić et al. (2017a) and Sun et al. (2008) apply a clustering
algorithm to the input words and measure how well the clusters correspond to the word groupings in
VerbNet via purity and collocation. Both methods have certain limitations, which we discuss and attempt
to resolve via a novel general suggestion-based approach in Section 5.

3 General setup

Distributional word representations aim to encode word targets based on the context words they co-occur
with. One popular general-purpose model for inducing such representations is skip-gram with negative
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sampling (SGNS), exemplified by word2vec (Mikolov et al., 2013).
In the original SGNS targets and contexts belong to the same type-based vocabulary, but this is not

required by the model. In this study we experiment with the following targets: type (going), lemma (go),
type.POS1 (going.V) and lemma.POS (go.V). Word embeddings demonstrate qualitative differences
depending on context definition (Levy and Goldberg, 2014), and we additionally report the results on
2-word window-based (w2) and dependency-based (dep-W) contexts. To keep the evaluation setup
simple, we only experiment with word type-based contexts.

We train 300-dimensional VSMs on a recent English Wikipedia dump, preprocessed using the Stanford
Core NLP pipeline (Manning et al., 2014) with Universal Dependencies 1.0. The text is extracted using
the wikiextractor module2 with minor additional cleanup routines. Training the VSM is performed with
the skip-gram based word2vecf implementation from (Levy and Goldberg, 2014) with default algorithm
parameters.

4 Similarity Benchmarks

Following previous work, we first evaluate the effect of lemmatization and POS-typing on similarity
benchmarks SimLex-999 (Hill et al., 2015) and SimVerb-3500 (Gerz et al., 2016). Both benchmarks
provide POS information, which is required by POS-enriched VSMs. SimLex-999 contains nouns (60%),
verbs (30%) and adjectives (10%); SimVerb-3500 is verbs-only. Table 1 summarizes the performance of
the VSMs in question on similarity benchmarks.

Context: w2
SimLex SimVerb

target N V A all V
type .334 .336 .518 .348 .307

+ POS .342 .323 .513 .350 .279
lemma .362 .333 .497 .351 .400

+ POS .354 .336 .504 .345 .406
* type - - - .339 .277
* type MFit-A - - - .385 -
* type MFit-AR - - - .439 .381

Context: dep-W
type .366 .365 .489 .362 .314

+ POS .364 .351 .482 .359 .287
lemma .391 .380 .522 .379 .401

+ POS .384 .388 .480 .366 .431
* type - - - .376 .313
* type MFit-AR - - - .434 .418

Table 1: Benchmark performance, Spearman’s ρ. SGNS results with * taken from (Vulić et al., 2017b).
Best results per column (benchmark) annotated for our setup only.

Several observations can be made. Lemmatized targets generally perform better, with the boost being
more pronounced on SimVerb. English verbs have richer morphology than other parts of speech and
benefit more from lemmatization. Adding POS information benefits the SimVerb and SimLex verb
performance, which can be attributed to the coarse disambiguation of verb-noun and verb-adjective
homonyms. However, the type.POS targets show a considerable performance drop on SimVerb and
SimLex verbs. This is due to vocabulary fragmentation, when the same word type is split into several
entries based on the POS, e.g. acts (110)→ acts.V (80) + acts.N (30). As a result, some word types
do not exceed the frequency threshold and are not included into the final VSM. Another way to see it

1We use coarse POS classes obtained by selecting the first character in the Penn POS tags assigned by the tagger
2https://github.com/attardi/wikiextractor
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is that POS disambiguation increases the sparsity, which lemmatization, in turn, aims to reduce. Using
dep-W contexts proves beneficial for both datasets since modeling the context via syntactic dependencies
results in more similarity-driven (as opposed to relatedness-driven) word embeddings (Levy and Goldberg,
2014).

We provide the Morph-Fitting scores (Vulić et al., 2017b) as a state-of-the-art reference; a direct
comparison is not possible due to the differences in the training data and information available to the
models. This approach uses word type-based VSMs specialized via Morph-Fitting (MFit), which can
be seen as an alternative to lemmatization. Morph-Fitting consists of two stages: the Attract (A) stage
brings word forms of the same word closer in the VSM, while the Repel (R) stage sets the derivational
antonyms further apart. Lemma grouping is similar to the Attract stage. However, as the comparison of
MFit-A and -AR shows, a major part of the Morph-Fitting performance gain on SimLex comes from the
derivational Repel stage3, which is out of the scope of this paper.

While some properties of lemmatized and POS disambiguated embeddings are visible on the similarity
benchmarks, the results are still inconclusive, and we proceed to a more detailed evaluation scenario.

5 Word Class Suggestion

5.1 Background

Similarity benchmarks serve as a standard evaluation tool for word embeddings, but provide little insights
into the nature of relationships encoded by the word representations. A more fine-grained context-free
evaluation strategy is to assess how well the relationships in a certain lexical resource are represented by
the given VSM. Two recent approaches to achieve this are rank-based and clustering-based evaluation.

Rank-based evaluation treats the lexical resource as a graph with entries as nodes and lexical relations
as edges, and estimates how well the similarities between the VSM targets represent the distances in this
graph via mean reciprocal rank (MRR), e.g. Ebert et al. (2016) use WordNet (Miller, 1995). It requires
the target lexical resource to have a dense linked structure which might be not present.

Clustering-based evaluation, e.g. Vulić et al. (2017a) utilize the VSM to produce target clusters
which are compared to the groupings from the lexical resource via collocation and purity. This approach
only requires lexical entries to be grouped into classes. However, it doesn’t model word ambiguity: a
word can only be assigned to a single cluster. Moreover, it introduces an additional level of complexity
(clustering algorithm and its parameters) which might obscure the VSM performance details.

In this paper we propose an alternative, suggestion-based evaluation approach: we use the source
VSM directly to generate word class suggestions (WCS) for a given input term. Many lexical resources
group words into intersecting word classes, providing a compact way to describe word properties on
the class level. For example, in VerbNet (Schuler, 2005) verbs can belong to one or more Levin classes
(Levin, 1993) based on their syntactic behavior, FrameNet (Baker et al., 1998) groups its entries by
the semantic frames they can evoke, and WordNet (Miller, 1995) provides coarse-grained supersense
groupings. Suggestion-based evaluation can be seen as flexible alternative to clustering-based evaluation,
which intrinsically takes ambiguity into account and does not require an additional clustering layer. The
following section describes the suggestion-based evaluation in more detail4.

5.2 Task formulation

Abstracting away from the resource specifics, a lexicon L defines a mapping from a set of members
m1,m2, ...mi ∈M to a set of word classes c1, c2...cj ∈ C. We further denote the set of classes available
for a member m as L(m) and the set of members for a given class c as L′(c). Given a query q, our task is
to provide a set of word class suggestions WCSL(q) = {ca, cb...} ∈ C. Note that we aim to predict all
potential classes for a member given its vector representation on vocabulary level, independent of context.

3See also (Vulić et al., 2017b), Table 5.
4Our implementation is available at https://github.com/UKPLab/coling2018-wcs
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5.3 Suggestion strategies

Given an input target w, the source vector space V SM provides its vector representation V SM(w). We
use cosine similarity between targets sim(wi, wj) to rank the word classes.

A lexical resource might already contain a substantial number of members, and a natural solution for
word class suggestion is to find the prototype member mproto closest to the query q in the VSM, and use
its classes as suggestions. This scenario mimics human interaction with the lexicon. If q ∈ M , this is
equivalent to a lexicon lookup. More formally,

mproto = argmaxm∈Msim(q,m) scoreproto(q, c, L) =

{
1, if c ∈ L(mproto)

0, otherwise

The prototype strategy per se is sensitive to the coverage gaps in the lexicon and inconsistencies in the
VSM. We generalize it by ranking each word class c ∈ C using the similarity between the query q and its
closest member in c:

scoretop(q, c, L) = maxm∈L′(c)sim(q,m)

This is equivalent to performing the prototype search on each word class, and scoring each class by
the closest prototype among its members, given the query. We use this generalized strategy for our WCS
experiments throughout this paper. The output of the model WCSL(q, V SM) is a set of classes ranked
using the input VSM, as illustrated by Table 2.

query top classes / prototypes
dog→ animal (cat), food (rabbit) ...

crane→ artifact (derrick), animal (skimmer) ...

query top classes / prototypes
idea→ cognition (concept), artifact (notion) ...
bug→ animal (worm), state (flaw) ...

Table 2: WCS output for WordNet supersenses

5.4 Evaluation procedure

For each member m in the lexicon in turn, we remove it from the lexicon, resulting in a reduced lexicon
L−m. We aim to reconstruct its classes using the suggestion algorithm and the remaining mappings.

The performance is measured via precision (P ) and recall (R) at rank k with the list of original
classes for a given lexical unit serving as gold reference. Formally, given m we compute the ranking
WCSL−m(m,V SM). Let Sk be the set of classes suggested by the system up to the rank k, and T be
the true set of classes for a given member in the original lexicon. Then

P@k =
|Sk ∩ T |
|Sk|

R@k =
|Sk ∩ T |
|T |

To get a single score, we average individual members’ P@k and R@k for each value of k, resulting in
scores P@k and R@k. F-measure might be then calculated using the standard formula

F@k =
2P@kR@k

P@k +R@k

Upper bound Since the number of gold classes is not known in advance, the evaluation is always
performed on k ranks, which leads to a resource-specific upper bound on P . For example, if a member
only has one class, the ranked list of 10 suggestions will inevitably show lower precision. When the
member set is not fully covered by the VSM target vocabulary, additional upper bound on R applies.
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6 Experiment

6.1 Resources
We use two lexical resources for suggestion-based evaluation: VerbNet 3.3 (Schuler, 2005) and WordNet
3.1 (Miller, 1995). VerbNet groups verbs into classes5 so that verbs in the same class share syntactic
behavior, predicate semantics, semantic roles and restrictions imposed on these roles. For example, the
verb buy belongs to the class get-13.5.1. The class specifies a set of available roles, e.g. an animate Agent
(buyer), an Asset (price paid) and a Theme (thing bought), and lists available syntactic constructions,
e.g. the Asset V Theme construction (“$50 won’t buy a dress“). A verb might appear in several
classes, indicating different verb senses. For example, the verb hit allows several readings: as hurt (John
hit his leg), as throw (John hit Mary the ball) and as bump (The cart hit against the wall). VerbNet has
been successfully used to support semantic role labeling (Giuglea and Moschitti, 2006), information
extraction (Mausam et al., 2012) and semantic parsing (Shi and Mihalcea, 2005).

WordNet, besides providing a dense network of lexical relations, groups its entries into coarse-
grained supersense classes, e.g. noun.animal (aardvark, koala), noun.location (park, senegal),
noun.time (forties, nanosecond). WordNet supersense tags have been applied to a range of downstream
tasks, e.g. metaphor identification and sentiment polarity classification (Flekova and Gurevych, 2016).
WordNet differs from VerbNet in terms of granularity, member-class distribution and part of speech
coverage, and allows us to estimate VSM performance on nominal as well as verbal supersenses, which
we evaluate separately. Table 3 provides the statistics for the resources. We henceforth denote VerbNet as
VN, WordNet nominal supersense lexicon as WN-N and WordNet verbal supersense lexicon as WN-V.

classes members ambig %ambig
VN 329 4 569 1 366 30%
WN-V 15 8 702 3 326 38%
WN-N 26 57 616 9 907 17%

Table 3: Lexicon statistics, single-word members

6.2 Results
We use the suggestion-based evaluation to examine the effect of lemmatization and POS-disambiguation.
We first analyze the coverage of the VSMs in question with respect to the lexica at hand, see Table 4. For
brevity we only report coverage on w2 contexts6.

target VN WN-V WN-N
type 81 66 47

+POS 54 39 43
lemma 88 76 53

+POS 79 63 50
shared 54 39 41

Table 4: Lexicon member coverage (%)

Coverage analysis on lexica confirms our previous observations: lemmatization allows more targets to
exceed the SGNS frequency threshold, which results in consistently better coverage. POS-disambiguation,
in turn, fragments the vocabulary and consistently reduces the coverage with the effect being less
pronounced for lemmatized targets. WN-N shows low coverage containing many low-frequency members.
Due to significant discrepancies in VSM coverage, we conduct our experiments on shared vocabulary,
only including members found in all VSMs to analyze the qualitative differences between VSMs.

5For simplicity in this study we ignore subclass divisions.
6We have observed slight coverage differences for dep contexts, and attribute this to the context vocabulary fragmentation

caused by dependency typing of the contexts, similar to the POS fragmentation effect described earlier.
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Figure 2: WCS PR-curve, shared vocabulary, w2 contexts.

We treat the cutoff rank k as a parameter that specifies the Precision-Recall trade-off. As Figure 2
demonstrates, lemmatized targets consistently outperform their word form-based counterparts on the
WCS task. The magnitude of improvements varies between resources: verb-based WN-V and VN benefit
more from lemmatization, and VN gains most from POS-disambiguation. This aligns with the similarity
benchmarking results where the verb-based SimVerb benefits more from addition of lemma and POS
information.

WN-N WN-V VN
P R F P R F P R F

Context: w2
type .700 .654 .676 .535 .474 .503 .327 .309 .318
+POS .699 .651 .674 .544 .472 .505 .339 .312 .325

lemma .706 .660 .682 .576 .520 .547 .384 .360 .371
+POS .710 .662 .685 .589 .529 .557 .410 .389 .399

Context: dep
type .712 .661 .686 .545 .457 .497 .324 .296 .310
+POS .715 .659 .686 .560 .464 .508 .349 .320 .334

lemma .725 .668 .696 .591 .512 .548 .408 .371 .388
+POS .722 .666 .693 .609 .527 .565 .412 .381 .396

Table 5: WCS performance, shared vocabulary, k = 1. Best results across VSMs in bold.

Table 5 provides exact scores for reference. Note that the shared vocabulary setup puts the type
and type.POS VSMs at advantage since it eliminates the effect of low coverage. Still, lemma-based
targets significantly7 (p ≤ .005) outperform type-based targets in terms of F-measure in all cases. For
window-based w2 contexts POS disambiguation yields significantly better F scores on lemmatized targets
for VN (p ≤ .005) with borderline significance for WN-N and WN-V (p ≈ .05). When dependency-
based dep contexts are used, the effect of POS disambiguation is only statistically significant on type
targets for VN (p ≤ .005) and on lemma-based targets for WN-V (p ≤ .005). We attribute this to the
fact that dependency relations used by dep contexts are highly POS-specific, reducing the effect of
explicit disambiguation. Lemma-based targets without POS disambiguation perform best on WN-N when
dependency-based contexts are used; however, the difference to lemmatized and disambiguated targets is
not statistically significant (p > .1).

Our results are in line with the previous observations (Gerz et al., 2016) in that the verb similarity is
7Wilcoxon signed-rank test over individual lexicon members’ F scores
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SimLex SimVerb WN-N WN-V VN
N V A V N V V

base .80 .26 1.0 .24 .86 .21 .22
avg #POS 1.08 1.01 1.39 1.50 1.15 1.37 1.42
single POS .93 .99 .62 .51 .85 .65 .59

Table 6: Base form ratio and available POS averaged over members; % members with single POS.

hard to capture with standard VSMs. To investigate why verbs benefit most from lemmatization and POS
disambiguation, we analyze some relevant statistics based on our Wikipedia data. Table 6 shows the ratio
of base form to total occurrences in our corpus8. As we can see, the base form (lemma) is by far not
the dominating form for verbs. Practically this means that for our resources verbal type targets have
direct access to only 20-25% of the corpus occurrence data on average. Individual verbs and nouns also
differ in terms of preferred word forms, which introduces additional bias into the evaluation. This effect is
countered by lemmatization.

The second important difference between the noun- and verb-based lexica is the number of POS
available for the lexicon members’ lemmas. As Table 6 further demonstrates, nouns are less ambiguous in
terms of POS: for example, VN member lemmas appear with 1.42 distinct POS categories on average,
compared to 1.15 categories for WN-N. Individual members might differ in terms of POS frequency
distribution, again biasing the evaluation. One regular phenomenon accountable for this is the verbification
of nouns and adjectives, when a verbal form is constructed without adding any derivational markers. While
these derivations might to some extent preserve the similarities between words (e.g. e-mail.N→e-mail.V
is similar to fax.N→fax.V), many cases are less transparent and benefit from POS separation (e.g. the
meaning shift in air.N→air.V is different from water.N→water.V). One exception is the verb subset of
SimLex which has a particularly low POS ambiguity.

7 Future work

Lexical unit-based modeling. In this work we have shown that lemmatization and subsequent POS
disambiguation benefit both benchmark- and resource-based performance of word embeddings. While
verb semantics is notoriously hard to pinpoint per se, we show that modeling verbs via type-based
distributed representations also meets grammar-related challenges which can be partially addressed with
lemmatization and POS-disambiguation of the inputs. From the conceptual perspective, lemmatized and
POS-tagged targets can be seen as another step towards conceptually plausible lexical unit-based modeling
of word usage. In this work we focused on single-word entities, and analyzing the effect of including
multi-word expressions into the VSM vocabulary is an important direction for future studies.

Word embedding methods. To ensure fair comparison and to keep our evaluation setup compact, we
have consciously restricted the scope of the study to a single word embedding model (SGNS), single
context size (w2) and a single parameter set (word2vecf SGNS default). Our results could be further
validated by experimenting with alternative context definitions and word embedding models, e.g. GloVe
(Pennington et al., 2014) and CBOW (Mikolov et al., 2013). Experiments on character-based models,
e.g. fasttext (Bojanowski et al., 2016) or charagram (Wieting et al., 2016) could be another interesting
extension to our work. However, it is not clear how to integrate lemma and POS information with
character-based representations in an elegant way.

Cross-linguistic studies. POS tagging and lemmatization are general and well-defined language-
independent operations. We have focused on English and have shown that POS-typing and lemmatization
implicitly target several grammar-level issues in the context of word embeddings. (Ebert et al., 2016)
demonstrate that the improvements from lemmatization hold in a cross-lingual setup. While we believe
our results to generally hold cross-linguistically, the relative contribution of POS disambiguation and

8We use all lemmas that appear more than 100 times in the corpus; to smooth the effect of tagging errors we only count POS
that appear with the target lemma in more than 10% of total lemma occurrences. All statistics averaged over individual lemmas.
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lemmatization will inevitably depend on the grammatical properties of the language, constituting another
topic for further research.

Suggestion-based evaluation. Our evaluation procedure has clear advantages: it is word class-based,
polysemy-aware, does not introduce additional complexity and does not require an annotated corpus. It
is resource-agnostic and only requires the target lexical resource to group words into classes. However,
several issues must be addressed before it can be used on large scale. Our leave-one-out scenario excludes
singleton classes, i.e. classes that only have one member. This issue will become less severe with resource
coverage increasing over time. The evaluation depends on resource and VSM vocabulary coverage, and
for qualitative comparison between VSMs vocabulary intersection should always be taken into account.
Alternative suggestion strategies might be explored, e.g. averaging among class members instead of
selecting the closest prototype.

Application scenarios. We have introduced word class suggestion as an evaluation benchmark for word
embeddings. However, the WCS output might be used in vocabulary-based application scenarios, e.g. as
annotation study support in cases when the lexicon is available, but the usage corpora are scarce; as a
lexicographer tool for finding the gaps in existing lexica; and as a source for context-independent unknown
word class candidates in a word sense disambiguation setup.

8 Conclusion

This paper has investigated the effect of lemmatized and POS-disambiguated targets on vector space
model performance. We have shown that these preprocessing operations lead to improved performance
on the standard benchmarks as well as in a novel word class suggestion scenario. Our results stress the
need for more conceptually sound distributional models which align better to lexical resources. This
would help to abstract away from the grammar-level issues and allow to further focus on bridging the gap
between distributional models and lexical resources on the semantic level.
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