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Abstract

Reading comprehension models are based on recurrent neural networks that sequentially process
the document tokens. As interest turns to answering more complex questions over longer docu-
ments, sequential reading of large portions of text becomes a substantial bottleneck. Inspired by
how humans use document structure, we propose a novel framework for reading comprehension.
We represent documents as trees, and model an agent that learns to interleave quick navigation
through the document tree with more expensive answer extraction. To encourage exploration of
the document tree, we propose a new algorithm, based on Deep Q-Network (DQN), which strate-
gically samples tree nodes at training time. Empirically we find our algorithm improves question
answering performance compared to DQN and a strong information-retrieval (IR) baseline, and
that ensembling our model with the IR baseline results in further gains in performance.

1 Introduction

Reading comprehension (RC), the task of reading documents and answering questions about their con-
tent, has attracted immense attention recently. While early work focused on simple questions and short
paragraphs (Hermann et al., 2015; Rajpurkar et al., 2016; Trischler et al., 2017; Onishi et al., 2016),
current work is shifting towards more complex questions that require reasoning over long documents
(Joshi et al., 2017; Hewlett et al., 2016; Welbl et al., 2017; Kočisky et al., 2017).

Long documents pose a challenge for current RC models, as they are dominated by recurrent neural
networks (RNNs) (Chen et al., 2016; Kadlec et al., 2016; Xiong et al., 2017). RNNs process documents
token-by-token, and thus using them for long documents is prohibitive. A common solution is to retrieve
part of the document with an IR approach (Chen et al., 2017; Clark and Gardner, 2017) or a cheap model
(Watanabe et al., 2017), and run an RNN over the retrieved excerpts. However, as documents become
longer and questions become complex, two problems emerge: (a) retrieving all the necessary text with a
one-shot IR method when performing complex reasoning becomes harder, and thus thousands of tokens
are retrieved (Clark and Gardner, 2017). (b) Running even a cheap model over the document in its
entirety becomes expensive (Choi et al., 2017).

Humans, in lieu of a mental inverted index, use document structure to guide their search for answers.
E.g., the answer to “What high school did Leonard Cohen go to?” is likely to appear in “Early life”,
while the answer to “How hot is it in Melbourne in July?” is likely to appear in “Climate”. In this work
we investigate whether we can train a model to navigate through a document using its structure and find
the answer, while reading only a small portion of the entire document.

We represent documents as trees and train an agent that navigates through the document tree until
returning a final answer. Figure 1 illustrates this process. Our agent reads the question “The vacation
destinations of Pattaya and Phuket are in which country?” and starts navigation at the title of the doc-
ument. After reading a paragraph, and skipping “History”, it drills down to “Geography” until finally
halting at a paragraph that specifies the answer (“Thailand”). The agent observes at each step only a
glimpse of the local text to determine its next action, which can be movement to a tree node, answering
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Figure 1: An overview of our framework: an agent answers the question q for a document d by starting at the title, performing
navigation actions until reaching the relevant paragraph, extracting the answer a, and then stopping.

the question with a more expensive RC model, or terminating navigation. Thus, the agent consumes only
a small fraction of the entire document.

Our training data is question-document-answer triplets, without gold navigation paths, and thus we
train our model with the Deep Q-Network (DQN) algorithm. Because the dataset is biased towards
answers appearing at the beginning of the document, the algorithm tends to stop early and does not
explore the document well. To overcome this challenge, we propose DOCQN: a variant of DQN for tree
navigation that improves exploration by sampling nodes from multiple parts of the tree.

We evaluate the ability of our agent to navigate to paragraphs containing the answer on a variant of
TRIVIAQA (Joshi et al., 2017) and find that: (a) DOCQN navigates better than DQN in documents both
quantitatively and qualitatively. (b) While DOCQN observes only 6% of the document tokens, it outper-
forms an IR method in end-to-end QA performance. (c) An ensemble of DOCQN and IR substantially
improves both navigation and end-to-end QA performance over the ensemble components.

To summarize, in this paper we ask: can an agent use document structure and learn to find answers for
complex questions in long documents? We propose a new model and training algorithm that overcomes
an inherent bias in the data, answering the aforementioned question in the affirmative. Our code and
dataset are available at https://github.com/mega002/DocQN.

2 Problem Overview

We work in the traditional RC setup, where we are given question-document-answer triplets
{(qi, di, ai)}Ni=1 as a training set, and aim to learn a function that finds the answer for an unseen question-
document pair. Unlike prior work, we assume documents are trees, where every tree node u corresponds
to a structural element and is labeled with text l(u). Specifically, the root is labeled with the document
title, sections and subsections are labeled by their title, and paragraphs and sentences are labeled by
the text they contain. In addition, we order all non-sentence tree nodes by a pre-order traversal (which
corresponds to the linear order of text in the document), and denote the index of a node u by n(u). For
sentence nodes, n(u) is the index of their parent (a paragraph).

Figure 1 shows an example tree, where for each node we show the relevant structural element and
index (sentence nodes are not shown in the figure).

With this document representation, answering questions can be viewed as a Markov Decision Process
(MDP), where in each state the agent is located in a particular tree node, actions allow movement through
the document tree, answering the question with a RC model, or stopping, and a reward is based on
whether the agent locates a node that contains the answer.

Our agent interleaves actions that navigate in the document, with an action that runs an RC model in
a certain document position and extracts an answer. Thus, the agent can decide to continue navigation
after extracting a certain answer. This is strictly more expressive than existing approaches that combine
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TRIVIAQA TRIVIAQA-NOP

Train Questions 61,888 57,220
Documents 110,647 99,315

Development Questions 7,993 7,336
Documents 14,229 12,706

Test Questions 7,701 6,507
Documents 13,661 10,481

Table 1: Data statistics for TRIVIAQA vs. TRIVIAQA-NOP.

Average number of tokens 5590.7
Average number of tree nodes 332.2
Average number of high-level sections 6.6

Table 2: Data statistics for the evidence documents of
TRIVIAQA-NOP.

Figure 2: FAO node index distribution of TRIVIAQA and
TRIVIAQA-NOP (median values in red).

TRIVIAQA TRIVIAQA-NOP
Questions 86.7% 83.8%
Question-document pairs 69.7% 66.9%

Table 3: Portion of answerable samples in a random subset
of the training set, which contains 278 questions and 475
question-document pairs.

IR with RC, where some text is retrieved exactly once before applying an RC model. As RC shifts to
reasoning over complex questions, navigating and reading multiple parts of the document will become
necessary. We show in Section 5 this approach indeed improves QA performance.

3 Data

To test our framework, we capitalize on the recently-released TRIVIAQA dataset, which contains
question-answer pairs, along with a small set of documents that (in almost all cases) contain the an-
swer. TRIVIAQA is suitable for our purposes as it is a large scale dataset, where questions are relatively
complex and documents are fairly long. The dataset includes only raw text, and thus for every evi-
dence document, we built a tree representation by extracting the html metadata from the corresponding
Wikipedia page, and constructing the document structure from it.

Because our goal is to investigate whether a model can learn to search through a document, it is impor-
tant that a non-negligible fraction of the questions require navigation through the document. However,
in Wikipedia each document starts with a preface that summarizes the document, and thus often contains
the answer. Consequently, a model that ignores the question and document and always stops in the first
paragraph is likely to obtain good performance. Figure 2 shows the distribution of the first answer oc-
currence (FAO) in a document in TRIVIAQA over the node indices n(u) (x-axis), where all tree nodes,
except sentences are considered (see Section 2). We find that in most question-document pairs the FAO
is in the first few paragraphs, and that in 60% of the cases it is in the preface section.

To alleviate this heavy bias, we derive a new dataset, termed TRIVIAQA-NOP, where we remove the
preface section from every document. After removing the preface, 2,144 out of 77,582 (2.8%) questions
and 6,124 out of 138,537 (4.4%) question-document pairs are left without an answer and are removed.
To further reduce the number of cases where an answer can not be inferred from a document, we drop
question-document pairs where: (a) the answer appears only in titles; (b) the answer is a single-character;
(c) the FAO node index is > 700 (in most cases the answer is an item in a list). Finally, the dataset
includes 91.6% of the questions and 88.4% of the question-document pairs from the original dataset. We
provide full statistics on the dataset in Tables 1 and 2.

To verify that questions remain answerable in TRIVIAQA-NOP after removing the preface, we per-
form manual analysis on a random sample of 278 questions and 475 documents from the training set
(Table 3). We find that the portion of answerable questions and question-document pairs remains high
and is reduced by less than 3% in comparison to TRIVIAQA . This demonstrates that indeed, for most
questions and documents, the context necessary for answering the question also appears in the document
body and not only in the preface.

Figure 2 shows the FAO node index distribution in TRIVIAQA-NOP. We observe, compared to TRIV-
IAQA, that the first occurrence of an answer is much more spread out across the document, and that the
median increases from 3 to 14, which will require more navigation from the agent. However, even in
TRIVIAQA-NOP answers tend to appear at the beginning of the document, because document content is
usually organized by importance. This bias results in an exploration challenge for our training algorithm,
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Example
o “Phuket Province Name”
φ1
n: height 2
φ2
n: depth 1
φ3
n: h dist start 0
φ4
n: h dist end 2
φ5
n: parent.h dist start 0
φ6
n: parent.h dist end 0
φ7
n: navigation step 1

Table 4: An example observation o and list of navigation features φn for node 1 in Figure 1. The features height and depth
correspond to distance from the farthest leaf and root, respectively (height is 2 since sentence nodes are omitted from the
figure). h dist start and h dist end measure the horizontal distance from the first and last child of the node’s parent.
navigation step is a counter for the number of performed steps.

which we will address in Section 4.

4 Method

In this section, we describe a model for the agent and a training algorithm based on DQN (Mnih et al.,
2015). Specifically, we introduce a tree-sampling strategy, which addresses the exploration challenge
stemming from the bias towards answers early in the document.

4.1 Framework
We represent the MDP as a tuple (S,A, R, T ), where S is the state space, A is the action space, R(s, a)
is a reward function, and T (s, a) is a deterministic transition function. Our model implements an action-
value function Q(s, a), which takes a state s ∈ S and returns a value for every action a ∈ A. This
function defines a policy π(s) = argmaxa∈AQ(s, a). We now describe the state space, actions and
reward function.

States Given a tree node u, a state is a tuple su = (q, o, z, φn, φz), where q is the question, o is an
observation, z is an answer prediction, and φn, φz are navigation and answer prediction features. An
observation o = (o1, . . . , o|o|) is a sequence of tokens produced by recursively concatenating the first k
tokens of text in the label l(u) to the observation of u’s parent. An answer prediction z = (z1, . . . , z|z|)
is the sequence of tokens that were extracted by an RC model, if an RC model was already run on l(u)
(and a null token otherwise). The answer prediction features φz = (ze, zl, zn) provide information on
the distribution over answer spans provided by the RC model, which reflects its confidence: ze is the
entropy of the distribution, zl is the logit value for z, and zn is the number of tokens in l(u). Navigation
features φn provide information on the relative location of u in the document. An example observation
and full list of navigation features are given in Table 4.

Note that the state s does not depend on the history of visited tree nodes.1 While incorporating his-
tory could be beneficial, a memory-less model enables us to explore tree-sampling strategies, which is
important for training (Section 4.2).

Actions We define the following set of actions A. Let u be a node with an ordered list of children
(v1, v2, v3), and w be a child of v2. We define five movement actions (Figure 3), where DOWN moves
from u to its first child v1, RIGHT moves from v2 to v3, and LEFT moves from v2 to v1. Because moving
upwards reaches a node we already visited, we define UPR, which moves from w to v3, and UPL, which
moves from w to v1. If an illegal action is chosen (e.g., LEFT from v1), then the agent stays in its current
position. The action ANSWER returns an answer (and a distribution over spans) by running a RC model
on l(u), unless u is a sentence, in which case it is run on the paragraph containing u. After ANSWER,
the agent can resume navigation. The action STOP also returns the answer given the current node u, but
also terminates navigation.

Reward Our goal is to develop an agent that can navigate in the document, and thus we define the
reward based on whether the agent stops in a node that contains the gold answer text (this is noisy,

1except for navigation step, which can be approximated by the shortest path from the root to any node.
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Figure 3: Movement actions in our environment.

because the answer might be there sporadically). While a simple reward would be an indicator for
whether the agent stopped at a correct node, such a reward would not capture the proximity of the agent
to the answer. Moreover, we would like to consider the overall document length, rewarding successful
navigations in long documents. Therefore, we define the following reward:

r(s, a) =


2 a = STOP, |n(u)− n(u∗)| = 0

1− |n(u)−n(u∗|)
maxu n(u)

a = STOP, |n(u)− n(u∗)| > 0

−0.06 a = ANSWER

−0.02 a 6∈ {ANSWER, STOP}

where u is the node where the agent is located and u∗ is the closest tree node that contains the answer
(n(u) is the node index as defined above). Thus, when stopping, the reward is proportional to the distance
to the closest answer location given the document length. An additional reward is given if navigation
is successful, and a penalty is given for any other action, to encourage shorter trajectories. We further
penalize the ANSWER action to discourage frequent usage of the RC model.

4.2 DOCQN: DQN with Tree Sampling
Training the navigation model is based on DQN (Mnih et al., 2015). In DQN, at every step an agent
at state st selects an action at using ε-greedy policy, given the current action-value function Qθ(st, at)
parameterized by θ. The agent observes a reward rt and a state st+1 = T (st, at) and adds a transition
(st, at, rt, st+1) to a replay memory buffer D that holds a large number of recent transitions. The pa-
rameters are then optimized so that the action-value function matches better the observed reward. This
is done by sampling a batch of random transitions from D and minimizing the regression loss

(rt + γmax
a′

Qθ̂(st+1, a
′)−Qθ(st, at))2, (1)

where θ̂ are the parameters of a target network, which is a periodic copy of θ that is not optimized, and
γ is a discount factor.

We also add some of the recent enhancements to DQN (Hessel et al., 2017), which have proved to be
useful in our setup. Specifically we implement Double Q-Learning (van Hasselt et al., 2016), Prioritized
Experienced Replay (Schaul et al., 2015), and Dueling Networks (Wang et al., 2016).

Reducing bias with DOCQN The DQN algorithm contains episodes, where in each episode the agent
is placed at an initial state s0, from which it starts taking actions. In our setup, this state corresponds to
the root of the document tree. Because the data has a bias towards answers appearing at the beginning of
the document, the agent learns that stopping early improves the reward and is stuck at a local minimum,
where it ceases exploration. Examining Figures 2 and 8, we observe that DQN learns to stop very early
in the document compared to the FAO node index distribution of TRIVIAQA-NOP, amplifying the bias
in the data.

To address this issue, we suggest DOCQN, a variant of DQN aimed at increasing exploration when
navigating in a document structure. DOCQN capitalized on two properties. First, DQN is an off-policy
algorithm that trains from transitions (st, at, rt, st+1). Second, our model is memory-less, and thus
we can sample any node u and compute the corresponding state su. Therefore, we modify DQN, and
instead of initializing every episode with s0 and performing a sequence of actions, we sample states from
distributions that explore the document better. By exploring transitions from across the document, the
model learns from more distant parts of the document.
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Figure 4: Illustration of the different state distributions for a specific documents tree. Nodes with darker color have higher
sampling probability, and nodes marked in red are paragraph nodes containing the answer.

Algorithm 1: DOCQN

1: Let f be a distribution over tree nodes
2: Initialize replay memory D and parameters θ, θ̂
3: for episode = 1,M do
4: if random() < εs then
5: for i = 1 . . .K do
6: sample node u ∼ f and generate su

7: sample action a from su (ε-greedily).
8: r ← R(su, a), s′ ← T (su, a)
9: store (su, a, r, s′) in D

10: else
11: Initialize start state s0
12: for t = 0 . . . T − 1 do
13: sample action a from st (ε-greedily).
14: r ← R(st, a), st+1 ← T (st, a)
15: store (st, a, r, st+1) in D
16: UPDATEPARAMS(θ, θ̂,D) (Equation 1) Figure 5: High-level overview of the network architecture.

Algorithm 1 provides the details of DOCQN. The algorithm initializes the replay memory buffer, the
model and target network parameters, and chooses a distribution f over tree nodes. At the beginning
of every episode, with probability εs (line 4),2 we sample K state transitions using f and store them in
D, and with probability (1 − εs) (line 10), we start at the initial state s0 and sample a trajectory as in
DQN. Parameters are updated as in DQN by sampling transitions from the replay buffer and minimizing
Equation 1. If f samples nodes from various locations in the document, the algorithm will explore better
and will not getting stuck at its beginning. We consider the following instantiations of f :

1. fU : Uniform sampling over nodes, except we discourage sampling sentences by uniformly sampling
with probability 0.2 a leaf (sentence), and probability 0.8 an inner node.

2. fB: Backward sampling: We uniformly sample a paragraph node p that contains the gold answer,
then uniformly a number of actions B ∈ {1, 2, 3}, and perform B random movement actions from
p to output a node. This results in a node that is “close” to the answer a, and can be viewed as
similar to bi-directional search or backward search (Lao et al., 2015).

Figure 4 shows the distribution over tree nodes for a specific document tree where the answer appears
in two paragraph nodes (ignoring sentence nodes). We see that sequential sampling (as in DQN) puts
most of the probability mass close to the root, uniform sampling is uniform (across paragraphs, as sen-
tence nodes are omitted), and backward sampling is concentrated close to answer nodes. This illustrates
how different distributions result in different exploration strategies.

Network Architecture We briefly describe the neural architecture (Figure 5) and provide full details
in the supplementary material. As explained in Section 4.1, the input to the network is the state s, which
comprises the question tokens q, observation tokens o, answer prediction tokens z and features φn, φz .
The question, observation and answer prediction tokens are encoded with pre-trained word embeddings
and trained character embeddings, where character embeddings are followed by a convolutional layer
with max pooling, yielding a single vector per token. Each token is then represented by concatenating
the word embedding with the character embedding.

Question tokens, observation tokens, and answer to are then fed into a BiLSTM and LSTM (Hochreiter
and Schmidhuber, 1997) respectively and the LSTM outputs are compressed to a single vector through

2εs is annealed from 1 to 0.5 during training.
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self attention (Cheng et al., 2016), resulting in one vector for q and one for o. Answer prediction tokens
are fed into an LSTM, where the last hidden state is concatenated to the features φz , thus creating a third
vector for the answer prediction.

We concatenate these three vectors, and pass them through a one layer feed-forward network that then
branches to two networks according to the Dueling DQN architecture (Wang et al., 2016). In each branch
we also concatenate the navigation features φn. One branch predicts the value of the state Vθ(s) ∈ R,
and the other branch predicts the advantage of every action Aθ(s, a) ∈ R for every possible action a.
The output of the network is Qθ(s, a) = Vθ(s) + (Aθ(s, a)− 1

A
∑

a′ Aθ(s, a
′)) as in Wang et al. (2016).

5 Experimental Evaluation

Our experimental evaluation aims to answer the following questions: (a) Can document structure be used
to learn to navigate to an answer in a document? (b) How does DOCQN compare to DQN? (c) How does
DOCQN compare to IR methods that observe the entire document?

5.1 Experimental Setup

We evaluate on TRIVIAQA-NOP. Because our focus is on the navigation ability of the agent, we train
a single RC model and fix it in all experiments. Specifically, we download RASOR (Lee et al., 2017;
Salant and Berant, 2018),3 and exactly follow the procedure described by the authors of TRIVIAQA for
training a RC model, i.e., we train RASOR on the first 400 tokens of each document in TRIVIAQA-
NOP. As a sanity check for our RC model, we also train and evaluate RASOR on the original TRIVIAQA
dataset. Indeed, RASOR obtains 48.6% EM and 53.4% F1, which is substantially higher than the baseline
reported by Joshi et al. (2017).

Evaluation We use two metrics: First, we measure navigation accuracy, i.e., for a question-document
pair, whether a method returns text containing a gold answer (if the agent stops at a sentence node we
evaluate the encompassing paragraph). Because questions in TRIVIAQA-NOP often have more than one
evidence document, we also measure aggregated navigation accuracy, where we give credit if the agent
navigated correctly in any of the documents. This gives performance assuming an oracle that always
chooses the best document for the question. Because the test set in TRIVIAQA is hidden, we evaluated
navigation accuracy on the development set only.

In addition, we measure end-to-end QA performance with the official Exact Match (EM) and F1
metrics. The EM metric measures the percentage of predictions that match exactly any of the answer
aliases, and the F1 metric measures the average overlap between the prediction and answer. To aggregate
evidence from multiple documents we follow Joshi et al. (2017) and define the score of an answer to be
the sum of probabilities for that answer across all documents.

Models We compare the following models:
• DOCQN: This is our main model, where we use the sampling distribution fU+B = 1

2fU + 1
2fB .

• DQN: DQN algorithm without state sampling.
• {DOCQN|DQN}-COUPLED: A less expressive version of the model, where the actions ANSWER

and STOP are coupled, i.e., the agent can use the RC model exactly once and then stops. This is
similar to a setup where retrieval is performed once and not interleaved with navigation.
• RANDOMWALK An agent that selects an action at each step uniformly at random.
• RANDOMPARA An agent that randomly selects a non-sentence tree node.
• DOC-TF-IDF: An IR baseline, where a paragraph is selected based on its tf-idf score. We imple-

ment the tf-idf scheme of DOCQA (Clark and Gardner, 2017), which is a high-performing system on
TRIVIAQA. Here, idf is computed for each paragraph in the context of the current document, and the
paragraph with highest cosine similarity to the question is chosen. Note that DOC-TF-IDF processes
the entire document (up to tens of thousands of tokens), while DOCQN processes only a small fraction.
• TF-IDF: Vanilla tf-idf, where the idf score is computed from all documents in TRIVIAQA-NOP.

3https://github.com/shimisalant/RaSoR
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• Ensemble: We ensemble DOCQNfU+B with DOC-TF-IDF in two ways: (1) for finding the final
answer, we aggregate scores as described above, that is, we sum the probabilities from both models
over all documents and choose the answer with highest score. (2) For navigation, we simply tune on
the development set a threshold l, where we take the prediction of DOCQNfU+B if it stopped at a
node with index ≤ l and use DOC-TF-IDF otherwise.
• READTOP: Following Joshi et al. (2017), a model that runs the RC model on the first 800 tokens of

the document. Note that running the RC model on the text retrieved by DOCQN involves consuming
far fewer tokens, namely, RASOR consumes only 160 tokens on average.

We report the value of all hyper-parameters in the supplementary material (all fixed without tuning).

5.2 Results

Figure 6: Navigation example of DOCQN.

Figure 7: Model performance (top) and portion of sam-
ples in the development set (bottom) as functions of the
node index of the FAO.

Figure 8: Distribution of node index at navigation stop-
ping point (median value in red) for DQN and DOCQN.

Tables 5 and 6 show the results of our experiments. Focusing on navigation accuracy, we see that
randomly walking or choosing a paragraph yields low performance. Vanilla TF-IDF performs consid-
erably better than the random baselines, but is outperformed by all other models. Comparing DQN to
DOCQN, we see that DOCQN outperforms DQN. Allowing DQN and DOCQN to run the RC model
during navigation improves their performance, but the accuracy gain is substantially higher for DOCQN
(2.3% accuracy and 3.1% aggregated accuracy) than for DQN (0.4% accuracy and 0.7% aggregated accu-
racy). DOC-TF-IDF, which has access to the entire document outperforms DOCQN, which consumes on
average 6% of the entire document. Nonetheless, the two models obtain the same aggregated accuracy.
This good performance of DOC-TF-IDF shows that in TRIVIAQA-NOP answer paragraphs share a lot of
lexical material with the question. Importantly, an ensemble of DOC-TF-IDF with DOCQN substantially
improves the overall performance, reaching accuracy of 35% and aggregated accuracy of 48%. This is
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Dev. Dev. Agg.
RANDOMWALK 1.8 3.1
RANDOMPARA 13.4 20.9
DQN-COUPLED 26.8 38.8
DQN 27.2 39.5
DOCQN-COUPLED 28.1 40.5
DOCQN 30.4 43.6
TF-IDF 25.3 35.4
DOC-TF-IDF 32.4 43.5
Ensemble (threshold, l = 5) 35.0 48.0

Table 5: Navigation accuracy for all models on the devel-
opment set of TRIVIAQA-NOP.

Development Test
EM F1 EM F1

DQN 21.7 26.5 19.1 24.1
DOCQN 23.6 27.9 21.0 25.5
DOC-TF-IDF 21.4 27.1 18.2 23.5
Ensemble (threshold, l = 5) 26.8 32.0 24.2 29.4
Ensemble (answer) 28.4 33.4 25.4 30.5
READTOP 32.5 36.7 28.1 32.4

Table 6: End-to-end QA performance of all models on the
development and test sets of TRIVIAQA-NOP. For the en-
semble model, we choose the best threshold of l = 5.

DQN DOCQN
Path length avg. 7.7, range [1,36] avg. 15.2, range [3,100]
Answer predictions avg. 2.8 avg. 4.1
Tokens consumed 3.4% 6.2%
Stopping node 0.5% title, 2.2% head-

line, 89.0% paragraph,
8.3% sentence

0% title, 0.4% head-
line, 75.1% paragraph,
24.5% sentence

Table 7: Comparing navigation properties of DQN and DOCQN on the development set. The average and range of navigation
path length in steps, relative amount of consumed tokens, and distribution of stopping node types.

in sharp contrast to an ensemble with DQN, where for any value of l, DOC-TF-IDF performs better on
its own.

Examining end-to-end performance, DOCQN again outperforms DQN, but DOCQN is now better
than DOC-TF-IDF. This suggests that when DOC-TF-IDF selects a paragraph with the answer, it is often
difficult to extract with the RC model. Again, the ensembles leads to a dramatic increase in performance,
showing that DOC-TF-IDF and DOCQN are complementary. However, READTOP, which consumes
the first 800 tokens of each document compared to ∼ 160 for DOCQN, substantially outperforms all
navigation models. This shows that the bias for answers at the beginning of documents is still strong in
TRIVIAQA-NOP.

To further elucidate the differences between navigation models, Figure 7 shows navigation accuracy
of different models and the proportion of samples for different node indices of the FAO. We see that
DQN outperforms DOCQN when the answer is at the top of the document, but DOCQN dominates DQN
when the answer is further down, showing that DOCQN learns to find answers deeper in the document.
DOC-TF-IDF has a more balanced navigation accuracy across the document, which explains why an
ensemble of DOC-TF-IDF with DOCQN works, as they are complementary to one another.

Analysis Figure 6 shows a navigation example, which includes the navigation step, node index, obser-
vation o, and the action a taken. For the observation we also highlight the attention distribution from the
self-attention component. In this figure the question is about culture, and we see the agent going into
multiple sections, reading them, running the RC model and continuing forward, until finally stopping at
a paragraph that contains the answer. We provide many more examples in the supplementary material.

Table 7 highlights some differences between DQN and DOCQN. DOCQN has longer trajectories,
and stops at sentence nodes more frequently, suggesting it reads the document at a finer granularity.
Additionally, it leverages the RC model to collect more information and confidence during navigation,
by choosing the action ANSWER more frequently. Both models consume less than 7% of the entire
document. Figure 8 illustrates the navigation stopping point, and shows that DOCQN navigates deeper
into the document.

6 Related Work

Handling the challenges of reasoning over multiple long documents is gaining fast momentum recently
(Shen et al., 2017). As mentioned, some approaches use IR for reducing the amount of processed text
(Chen et al., 2017; Clark and Gardner, 2017), while others use cheap or parallelizable models to handle
long documents (Hewlett et al., 2017; Swayamdipta et al., 2018; Wang et al., 2018a). Searching for
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answers while using a trained RC model as a black-box was also implemented recently in Wang et al.
(2018b), for open-domain questions and multiple short evidence texts from the Web. Another thrust has
focused on skimming text in a sequential manner (Yu et al., 2017), or designing recurrent architectures
that can consume text quickly (Bradbury et al., 2017; Seo et al., 2018; Campos et al., 2018; Yu et al.,
2018). However, to the best of our knowledge no work has previously applied these methods to long
documents such as Wikipedia pages.

In this work we use TRIVIAQA-NOP for evaluation of our navigation based approach and comparison
to an IR baseline. While there are various aspects to consider in such evaluation setup, our choice of data
was derived mainly by the requirements for long and structured context. Recently, several new datasets
such as WIKIHOP and NARRATIVEQA were published. These datasets try to focus on the tendency
of RC models to match local context patterns, and are designed for multi-step reasoning. (Welbl et al.,
2017; Wadhwa et al., 2018; Kočisky et al., 2017).

Our work is also related to several papers which model an agent that navigates in an environment to
find objects in an image (Ba et al., 2015), relations in a knowledge-base (Das et al., 2018), or documents
on the web (Nogueira and Cho, 2016).

7 Conclusions

We investigate whether document structure can be leveraged to train an agent that finds answers to
questions in long documents while reading only a small fraction of it. We show that an agent that
reads 6% of the document can improve QA performance compared to an IR method that utilizes the
entire document, and that ensembling the two substantially improves performance. We also present
DOCQN, an algorithm that promotes better exploration of the document, and show it outperforms DQN
qualitatively and quantitatively.

Our approach represents a conceptual departure from previous methods for reading long documents,
as it interleaves searching for an answer in the document with extracting the answer from a particular
paragraph, which we show improves both navigation and QA performance. We expect that as RC models
tackle longer documents that require reasoning and reading text that is spread in multiple parts of the
document, models that can efficiently navigate and collect evidence will become more and more crucial.
Our agent provides a first step in this important research direction.
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A Supplementary Material

A.1 Network Architecture Details

Here, we elaborate on the network architecture, which was briefly described in the paper. Given an input
state s = (q, o, z, φn, φz), we denote by q = (q1, ..., qn), o = (o1, ..., om) and z = (z1, ..., zr) the
question tokens, observation tokens and answer prediction tokens, respectively.

Word-level embedding For every i = 1, ..., n, every j = 1, ...,m and every k = 1, ..., r, we create
an embedding of the input tokens qi, oj , zk in two steps. First, we embed every token with a pre-trained
GloVe word embedding matrix Ww:

ewqi =Ww · qi ; ewoj =Ww · oj ; ewzk =Ww · zk

Next, we apply character-level embeddings with a learned embedding matrix Wc. The embedded
characters are then summarized with a max-pooling convolutional neural network:

ecqi = CNN({Wc · qix}|qi|x=1)

ecoj = CNN({Wc · ojx}
|oj |
x=1)

eczk = CNN({Wc · okx}
|zk|
x=1)

Concatenation of the two components yields the final word-level embeddings:

eqi = [ewqi ; e
c
qi ] ; eoj = [ewoj ; e

c
oj ] ; ezk = [ewzk ; e

c
zk
]

Question sequence encoding The question is encoded with a BiLSTM, where for every timestamp i,
the forward and backward outputs are concatenated:

{uq1 , ..., uqn} = BiLSTM(eq1 , ..., eqn)

uqi := [
−−−−→
LSTM(

−→
h qi−1 , eqi) ;

←−−−−
LSTM(

←−
h qi+1 , eqi)]

The outputs are then summarized with a self-attention:

hq =

n∑
i=1

αiuqi

where the coefficients α1, ..., αn are obtained by feeding the outputs to a two-layer feed-forward network,
and normalizing the output logits with softmax:

ai = FFNN(uqi) ; αi =
eai∑n
k=1 e

ak

Observation sequence encoding The observation sequence encoding ho is obtained in an analogous
manner to hq, except that we use a LSTM rather than a BiLSTM.

Answer prediction encoding The answer prediction encoding hz is obtained by running the answer
prediction tokens through a LSTM, and concatenating the last hidden state with the input feature vector
φz:

{uz1 , ..., uzr} = LSTM(ez1 , ..., ezr)

uzk :=
−−−−→
LSTM(

−→
h zk−1

, ezk)

hz = [uzr ; φz]
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Parameter Value

Network Maximum node observation length 20 tokens
Maximum observation length 120 tokens
Word embedding dimension 300
Character embedding dimension 20
Convolution filter size 5
BiLSTM and LSTM hidden dimension 300
First feed-forward layer dimension 512
Second feed-forward layer dimension 256
Dropout rate 0.2

Training
RMSprop learning rate 0.0001
Batch size 64
Target network period 10K steps
Initial memory size 50K transitions
Maximal memory size 300K transitions
Action sampling ε 1.0 → 0.1
Discount factor γ 0.996
Prioritization usage α 0.6
Prioritization importance sampling β 0.4 → 1.0

Sampling State sampling εs 1.0 → 0.5
Annealing steps for εs 1.2M steps
Sampling repetitionsK 5
Maximum navigation length T (train) 30 steps
Maximum navigation length T (test) 100 steps
Interpolation coefficient for fU+B 0.5

Table 8: DOCQN hyper-parameters

State representation The final state representation is formed by concatenating the encoded question
hq with the encoded observation ho. Concretely:

hs = [hq ; ho ; hz]

The input node features φo are concatenated to an upper layer, as we describe next , to increase their
weights in the final predictions. We have found that incorporation of these features in this way accelerates
the navigation learning process.

Q-values prediction We implement a Dueling DQN architecture, where the final Q-values are com-
posed of a state value V (s) prediction and advantage predictions A(s, a) for every possible action a.
Denoting by FFNN a single-layer feed-forward neural network, predictions are derived as follows:

v0 = FFNN(hs)

vV1 = FFNN(v0) ; v
A
1 = FFNN(v0)

vV2 = FFNN([vV1 ; φn]) ; v
A
2 = FFNN([vA1 ; φn])

Where vV2 ∈ R, vA2 ∈ R|A|, and φ are the navigation features. The final Q-values prediction is obtained
by averaging:

vQ = vV2 +
(
vA2 −

∑|A|
i=1 v

A
2i

|A|

)
A.2 Hyper Parameters
Table 8 summarizes the hyper-parameters used for building and training the DOCQN models.

A.3 Navigation Examples
Figures 9,10,11,12,13 show sample navigations, performed by the DOCQN model. In each example,
q, a, n denote the question, answer aliases and answer node numbers. The observation tokens are high-
lighted according to the self-attention weights, given by the model. By choosing the action ANS, the
agent executes the RC model to obtain an answer prediction, which is part of the observation in the next
step.
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Figure 9: Navigation example 1. Although the document
is more general than the question subject and the answer
appears multiple times across the document, the agent
finds the correct context for answering the question.

Figure 10: Navigation example 2. The agent explores
several sections before reaching the most relevant one.

Figure 11: Navigation example 3. The agent quickly nav-
igates to the answer, without running the RC model.

Figure 12: Navigation example 4. The agent leverages
the RC model and decides to stop after observing enough
information to answer.
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Figure 13: Navigation example 5. After reading through the
”Television episodes” section, the agent goes back to the ”Pro-
duction” section to find the answer.


