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Non-local features have been exploited by syntactic parsers for capturing dependencies between sub
output structures. Such features have been a key to the success of state-of-the-art statistical parsers. With
the rise of deep learning, however, it has been shown that local output decisions can give highly compet-
itive accuracies, thanks to the power of dense neural input representations that embody global syntactic
information. We investigate two conceptually simple local neural models for constituent parsing, which
make local decisions to constituent spans and CFG rules, respectively. Consistent with previous find-
ings along the line, our best model gives highly competitive results, achieving the labeled bracketing F1
scores of 92.4% on PTB and 87.3% on CTB 5.1.

1 Introduction

Non-local features have been shown crucial for statistical parsing (Huang, 2008a; Zhang and Nivre,
2011). For dependency parsing, High-order dynamic programs (Koo and Collins, 2010), integer linear
programming (Martins et al., 2010) and dual decomposition (Koo et al., 2010) techniques have been
exploited by graph-based parser to integrate non-local features. Transition-based parsers (Nivre, 2003;
Nivre, 2008; Zhang and Nivre, 2011; Bohnet, 2010; Huang et al., 2012) are also known for leveraging
non-local features for achieving high accuracies. For most state-of-the-art statistical parsers, a global
training objective over the entire parse tree has been defined to avoid label bias (Lafferty et al., 2001).

For neural parsing, on the other hand, local models have been shown to give highly competitive ac-
curacies (Cross and Huang, 2016b; Stern et al., 2017) as compared to those that employ long-range
features (Watanabe and Sumita, 2015; Zhou et al., 2015; Andor et al., 2016; Durrett and Klein, 2015).
Highly local features have been used in recent state-of-the-art models (Stern et al., 2017; Dozat and
Manning, 2016; Shi et al., 2017). In particular, Dozat and Manning (2016) show that a locally trained
arc-factored model can give the best reported accuracies on dependency parsing. The surprising result
has been largely attributed to the representation power of long short-term memory (LSTM) encoders
(Kiperwasser and Goldberg, 2016).

An interesting research question is to what extent the encoding power can be leveraged for constituent
parsing. We investigate the problem by building a chart-based model that is local to unlabeled constituent
spans (Abney, 1991) and CFG-rules, which have been explored by early PCFG models (Collins, 2003;
Klein and Manning, 2003). In particular, our models first predict unlabeled CFG trees leveraging bi-
affine modelling (Dozat and Manning, 2016). Then, constituent labels are assigned on unlabeled trees by
using a tree-LSTM to encode the syntactic structure, and a LSTM decoder for yielding label sequences
on each node, which can include unary rules.

Experiments show that our conceptually simple models give highly competitive performances com-
pared with the state-of-the-art. Our best models give labeled bracketing F1 scores of 92.4% on PTB and
87.3% on CTB 5.1 test sets, without reranking, ensembling and external parses. We release our code at

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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(b) unlabeled binarized parse tree.
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(d) Final example parse tree.

Figure 1: An example workflow of our parsers for the sentence “The stock price keeps falling”. We an-
notate every non-terminal span with its covered span range. Figure 1a shows constituent span classifiers
making 0/1 decisions for all possible spans. Based on the local classification probabilities, we obtain an
unlabeled binarized parse tree (Figure 1b) using binary CKY parsing algorithms. We then hierarchically
generate labels for each span (Figure 1c) using encoder-decoder models. Figure 1d shows the final output
parse tree after debinarization.

https://github.com/zeeeyang/two-local-neural-conparsers.

2 Model

Our models consist of an unlabeled binarized tree parser and a label generator. Figure 1 shows a running
example of our parsing model. The unlabeled parser (Figure 1a, 1b) learns an unlabeled parse tree using
simple BiLSTM encoders (Hochreiter and Schmidhuber, 1997). The label generator (Figure 1c, 1d)
predicts constituent labels for each span in the unlabeled tree using tree-LSTM models.

In particular, we design two different classification models for unlabeled parsing: the span model
(Section 2.1) and the rule model (Section 2.2). The span model identifies the probability of an arbitrary
span being a constituent span. For example, the span [1, 2] in Figure 1a belongs to the correct parse
tree (Figure 1d). Ideally, our model assigns a high probability to this span. In contrast, the span [0, 3]
is not a valid constituent span and our model labels it with 0. Different from the span model, the rule
model considers the probability P ([i, j] → [i, k][k + 1, j]|S) for the production rule that the span [i, j]
is composed by two children spans [i, k] and [k + 1, j], where i ≤ k < j. For example, in Figure 1a, the
rule model assigns high probability to the rule [0, 2]→ [0, 0][1, 2] instead of the rule [0, 2]→ [0, 1][2, 2].
Given the local probabilities, we use CKY algorithm to find the unlabeled binarized parses.

The label generator encodes a binarized unlabeled tree and to predict constituent labels for every span.
The encoder is a binary tree-LSTM (Tai et al., 2015; Zhu et al., 2015), which recursively composes the
representation vectors for tree nodes bottom-up. Based on the representation vector of a constituent span,
a LSTM decoder (Cho et al., 2014; Sutskever et al., 2014) generates chains of constituent labels, which
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can represent unary rules. For example, the decoder outputs “VP→S→ </L>” for the span [4, 4] and
“NP→ </L>” for the span [0,2] in Figure 1c where </L> is a stopping symbol.

2.1 Span Model
Given an unlabeled binarized tree Tub for the sentence S, S = w0, w1 . . . wn−1, the span model trains a
neural network model P (Y[i,j]|S,Θ) to distinguish constituent spans from non-constituent spans, where
0 ≤ i ≤ n − 2, 1 ≤ j < n, i < j. Y[i,j] = 1 indicates the span [i, j] is a constituent span ([i, j] ∈ Tub),
and Y[i,j] = 0 for otherwise, Θ are model parameters. We do not model spans with length 1 since the
span [i, i] always belongs to Tub.

Network Structure. Figure 2a shows the neural network structures for the binary classification model.
In the bottom, a bidirectional LSTM layer encodes the input sentence to extract non-local features. In
particular, we append a starting symbol <s> and an ending symbol </s> to the left-to-right LSTM and
the right-to-left LSTM, respectively. We denote the output hidden vectors of the left-to-right LSTM
and the right-to-left LSTM for w0, w1, . . . , wn−1 is f1, f2, . . . , fn and r0, r1, . . . , rn−1, respectively. We
obtain the representation vector v[i, j] of the span [i, j] by simply concatenating the bidirectional output
vectors at the input word i and the input word j,

v[i, j] = [fi+1; ri; fj+1; rj ]. (1)

v[i, j] is then passed through a nonlinear transformation layer and the probability distribution
P (Y[i,j]|S,Θ) is given by

o[i, j] = tanh(Wov[i, j] + bo), u[i, j] = Wuo[i, j] + bu, P (Y[i,j]|S,Θ) = softmax(u[i, j]), (2)

where Wo,bo,Wu and bu are model parameters.
Input Representation. Words and part-of-speech (POS) tags are integrated to obtain the input repre-

sentation vectors. Given a word w, its corresponding characters c0, . . . , c|w|−1 and POS tag t, first, we
obtain the word embedding Ewword, character embeddings Ec0char, . . . ,E

c|w|−1

char , and POS tag embedding
Etpos using lookup operations. Then a bidirectional LSTM is used to extract character-level features.
Suppose that the last output vectors of the left-to-right and right-to-left LSTMs are hfchar and hrchar,
respectively. The final input vector xinput is given by

xchar = tanh(Wl
charh

l
char + Wr

charh
r
char + bchar), xinput = [Ewword + xchar;E

t
pos], (3)

where Wl
char, W

r
char and bchar are model parameters.

Training objective. The training objective is to maximize the probabilities of P (Y[i,j] = 1|S,Θ) for
spans [i, j] ∈ Tub and minimize the probabilities of P (Y[i,j] = 1|S,Θ) for spans [i, j] /∈ Tub at the same
time. Formally, the training loss for binary span classification Lbinary is given by

Lbinary = −
∑

[i,j]∈Tub

logP (Y[i,j] = 1|S,Θ)−
∑

[i,j]/∈Tub

logP (Y[i,j] = 0|S,Θ),

(0 ≤ i ≤ n− 2, 1 ≤ j < n, i < j)

(4)

For a sentence with length n, there are n(n−1)
2 terms in total in Eq 4.

Neural CKY algorithm. The unlabeled production probability for the rule r : [i, j]→ [i, k][k + 1, j]
given by the binary classification model is,

P (r|S,Θ) = P (Y[i,k] = 1|S,Θ)P (Y[k+1,j] = 1|S,Θ).

During decoding, we find the optimal parse tree T ∗ub using the CKY algorithm. Note that our CKY
algorithm is different from the standard CKY algorithm mainly in that there is no explicit phrase rule
probabilities being involved. Hence our model can be regarded as a zero-order constituent tree model,
which is the most local. All structural relations in a constituent tree must be implicitly captured by the
BiLSTM encoder over the sentence alone.
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Figure 2: Neural network structures for span and rule models using BiLSTM encoders.

Multi-class Span Classification Model. The previous model preforms binary classifications to iden-
tify constituent spans. In this way, the classification model only captures the existence of constituent
labels but does not leverage constituent label type information. In order to incorporate the syntactic label
information into the span model, we use a multi-class classification model P (Y[i,j] = c|S,Θ) to describe
the probability that c is a constituent label for span [i, j]. The network structure is the same as the binary
span classification model except the last layer. For the last layer, given o[i,j] in Eq 2, P (Y[i,j] = c|S,Θ)
is calculated by,

m[i, j] = Wmo[i, j] + bm, P (Y[i,j] = c|S,Θ) = softmax(m[i, j])[c]. (5)

Here Wm,bm,Wm and bm are model parameters. The subscript [c] is to pick the probability for the
label c. The training loss is,

Lmulti = −
∑

[i,j]∈Tub

∑
c∈[i,j],c 6=</L>

logP (Y[i,j] = c|S,Θ)−
∑

[i,j]/∈Tub

logP (Y[i,j] = </L>|S,Θ),

(0 ≤ i ≤ n− 2, 1 ≤ j < n, i < j)

(6)

Note that there is an additional sum inside the first term in Eq 6, which is different from the first term in
Eq 4. This is to say that we treat all constituent labels equally of a unary chain. For example, suppose
there is a unary chain S→VP in span [4,4]. For this span, we hypothesize that both labels are plausible
answers and pay equal attentions to VP and S during training. For the second term in Eq 6, we maximize
the probability of the ending label for non-constituent spans.

For decoding, we transform the multi-class probability distribution into a binary probability distribu-
tion by using,

P (Y[i,j] = 1|S,Θ) =
∑

c,c6=</L>

P (Y[i,j] = c|S,Θ), P (Y[i,j] = 0|S,Θ) = P (Y[i,j] = </L>|S,Θ)

In this way, the probability of a span being a constituent span takes all possible syntactic labels into
considerations.

2.2 Rule Model

The rule model directly calculates the probabilities of all possible splitting points k (i ≤ k < j) for the
span [i, j]. Suppose the partition score of splitting point k is psk. The unlabeled production probability
for the rule r : [i, j]→ [i, k][k + 1, j] is given by a softmax distribution,

P ([i, j]→ [i, k][k + 1, j]|S,Θ) =
exp(psk)∑j−1
k′=i exp(psk′)

.
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The training objective is to minimize the log probability loss of all unlabeled production rules.

Lrule = −
∑
r∈Tub

logP (r : [i, j]→ [i, k][k + 1, j]|S,Θ)

The decoding algorithm is the standard CKY algorithm, which we omit here. The rule model can
be regarded as a first-order constituent model, with the probability of each phrase rule being modeled.
However, unlike structured learning algorithms (Finkel et al., 2008; Carreras et al., 2008), which use a
global score for each tree, our model learns each production rule probability individually. Such local
learning has traditionally been found subjective to label bias (Lafferty et al., 2001). Our model relies on
input representations solely for resolving this issue.

Span Representation. Figure 2b shows one possible network architecture for the rule model by taking
the partition point k = 1 for the span [1, 3] as an example. The BiLSTM encoder layer in the bottom is the
same as that of the previous span classification model. We obtain the span representation vectors using
difference vectors (Wang and Chang, 2016; Cross and Huang, 2016b). Formally, the span representation
vector sr[i, j] is given by,

s[i, j] = [fj+1 − fi; ri − rj+1],

sr[i, j] = [s[0, i− 1]; s[i, j]; s[j + 1, n− 1]].
(7)

We first combine the difference vectors (fj+1− fi) and (ri−rj+1) to obtain a simple span representation
vector s[i, j]. In order to take more contextual information such as fp where p > j + 1 and rq where
q < i, we concatenate s[0, i − 1], s[i, j], and s[j + 1, n − 1] to produce the final span representation
vector sr[i, j]. We then transform sr[i, j] to an output vector r[i, j] using an activation function φ,

r[i, j] = φ(WM
r sr[i, j] + bMr ), (8)

where WM
r and bMr and model parameters, and M is a parameter set index. We use separate parameters

for the nonlinear transforming layer. M ∈ {P,L,R} are for the parent span [i, j], the left child span
[i, k] and the right child span [k + 1, j], respectively.

After obtaining the span representation vectors, we use these vectors to calculate the partition score
psk. In particular, we investigate two scoring methods.

Linear Model. In the linear model, the partition score is calculated by a linear affine transformation.
For the splitting point k,

psk = wT
ll,kr[i, k] + wT

lr,kr[k + 1, j] + bll,k

where wT
ll,k and wT

ll,k are two vectors, and bll,k is a size 1 parameter.
Biaffine model. Since the possible splitting points for spans are varied with the length of span, we

also try a biaffine scoring model (as shown in Figure 2b), which is good at handling variable-sized
classification problems (Dozat and Manning, 2016; Ma and Hovy, 2017). The biaffine model produces
the score lpsk between the parent span [i, j] and the left child span [i, k] using a biaffine scorer

lpsk = (r[i, j]⊕ 1)TWpl(r[i, k]⊕ 1) (9)

where Wpl is model parameters. Similarly, we calculate the score rpsk between the parent span [i, j]
and the right child span [k + 1, j] using Wpr and bpr as parameters. The overall partition score psk is
therefore given by

psk = lpsk + rpsk.

2.3 Label Generator
Lexicalized Tree-LSTM Encoder. Shown in Figure 1c, we use lexicalized tree LSTM (Teng and Zhang,
2016) for encoding, which shows good representation abilities for unlabeled trees. The encoder first
propagates lexical information from two children spans to their parent using a lexical gate, then it pro-
duces the representation vectors of the parent span by composing the vectors of children spans using a
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binarized tree-LSTM (Tai et al., 2015; Zhu et al., 2015). Formally, the lexical vector tx[i, j] for the span
[i, j] with the partition point at k is defined by:

ilex[i,j] = σ(Wlex
l tx[i, k] + Wlex

r tx[k + 1, j] + Wlex
lh h[i,k] + Wlex

rh h[k+1,j] + blex)

tx[i, j] = ilex[i,j] � tx[i, k] + (1.0− ilex[i,j])� tx[k + 1, j],

where Wlex
l , Wlex

r and blex are model parameters,� is element-wise multiplication and σ is the logistic
function. The lexical vector tx[i, i] for the leaf node i is the concatenate of the output vectors of the
BiLSTM encoder and the input representation xinput[i] (Eq 3), as shown in Figure 1c.

The output state vector h[i, j] of the span [i, j] given by a binary tree LSTM encoder is,

ip = σ(W1txp + W2hl + W3cl + W4hr + W5cr + b1),

f lp = σ(W6txp + W7hl + W8cl + W9hr + W10cr + b2),

f rp = σ(W11txp + W12hr + W13cl + W14hr + W15cr + b3),

gp = tanh(W16txp + W17hl + W18hr + b4),

cp = f lp � cl + f rp � cr + ip � gp,

op = σ(W19txp + W20hp + W21hr + W22cp + b5), hp = op � tanh(cp).

Here the subscripts p, l and r denote [i, j], [i, k] and [k + 1, j], respectively.
Label Decoder. Suppose that the constituent label chain for the span [i, j] is

(YL0
[i,j],YL1

[i,j], . . . ,YLm[i,j]). The decoder for the span [i, j] learns a conditional language model
depending on the output vector h[i, j] from the tree LSTM encoder. Formally, the probability
distribution of generating the label at time step z is given by,

P (YLz[i,j]|Tub,YLz<m[i,j] ) = softmax
(
g(h[i, j],Elabel(YLz−1[i,j] ),dz−1)

)
,

where YLz<m[i,j] is the decoding prefix, dz−1 is the state vector of the decoder LSTM and Elabel(YLz−1[i,j] )
is the embedding of the previous output label.

The training objective is to minimize the negative log-likelihood of the label generation distribution,

Llabel[i, j] = −
m∑
z=0

logP (YLz[i,j]|Tub,YLz<m[i,j] ),

Llabel =
∑

[i,j]∈Tub

Llabel[i, j].

2.4 Joint training

In conclusion, each model contains an unlabeled structure predictor and a label generator. The latter is the
same for all models. All the span models perform binary classification. The difference is that BinarySpan
doesn’t consider label information for unlabeled tree prediction. While MultiSpan guides unlabeled
tree prediction with such information, simulating binary classifications. The unlabeled parser and the
label generator share parts of the network components, such as word embeddings, char embeddings,
POS embeddings and the BiLSTM encoding layer. We jointly train the unlabeled parser and the label
generator for each model by minimizing the overall loss

Ltotal = Lparser + Llabel +
λ

2
||Θ||2,

where λ is a regularization hyper-parameter. We set Lparser = Lbinary or Lparser = Lmulti and
Lparser = Lrule when using the binary span classification model, the multi-class model and the rule
model, respectively.
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hyper-parameter value hyper-parameter value
Word embeddings English: 100 Chinese: 80 Word LSTM layers 2
Word LSTM hidden units 200 Character embeddings 20
Character LSTM layers 1 Character LSTM hidden units 25
Tree-LSTM hidden units 200 POS tag embeddings 32
Constituent label embeddings 32 Label LSTM layers 1
Label LSTM hidden units 200 Last output layer hidden units 128
Maximum training epochs 50 Dropout English: 0.5, Chinese 0.3
Trainer SGD Initial learning rate 0.1
Per-epoch decay 0.05 φ ELU (Clevert et al., 2015)

Table 1: Hyper-parameters for training.

3 Experiments

3.1 Experimental Settings

Data. We perform experiments for both English and Chinese. Following standard conventions, our
English data are obtained from the Wall Street Journal (WSJ) of the Penn Treebank (PTB) (Marcus et
al., 1993). Sections 02-21, section 22 and section 23 are used for training, development and test sets,
respectively. Our Chinese data are the version 5.1 of the Penn Chinese Treebank (CTB) (Xue et al.,
2005). The training set consists of articles 001-270 and 440-1151, the development set contains articles
301-325 and the test set includes articles 271-300. We use automatically reassigned POS tags in the same
way as Cross and Huang (2016b) for English and Dyer et al. (2016) for Chinese.

We use ZPar (Zhang and Clark, 2011)1 to binarize both English and Chinese data with the head rules of
Collins (2003). The head directions of the binarization results are ignored during training. The types of
English and Chinese constituent span labels after binarization are 52 and 56, respectively. The maximum
number of greedy decoding steps for generating consecutive constituent labels is limited to 4 for both
English and Chinese. We evaluate parsing performance in terms of both unlabeled bracketing metrics
and labeled bracketing metrics including unlabeled F1 (UF)2, labeled precision (LP), labeled recall (LR)
and labeled bracketing F1 (LF) after debinarization using EVALB3.

Unknown words. For English, we combine the methods of Dyer et al. (2016) and Cross and Huang
(2016b) to handle unknown words. In particular, we first map all words (not just singleton words) in
the training corpus into unknown word classes using the same rule as Dyer et al. (2016). During each
training epoch, every word w in the training corpus is stochastically mapped into its corresponding
unknown word class unkw with probability P (w → unkw) = γ

γ+#w , where #w is the frequency count
and γ is a control parameter. Intuitively, the more times a word appears, the less opportunity it will be
mapped into its unknown word type. There are 54 unknown word types for English. Following Cross
and Huang (2016b), γ = 0.8375. For Chinese, we simply use one unknown word type to dynamically
replace singletons words with a probability of 0.5.

Hyper-parameters. Table 1 shows all hyper-parameters. These values are tuned using the corre-
sponding development sets. We optimize our models with stochastic gradient descent (SGD). The initial
learning rate is 0.1. Our model are initialized with pretrained word embeddings both for English and
Chinese. The pretrained word embeddings are the same as those used in Dyer et al. (2016). The other
parameters are initialized according to the default settings of DyNet (Neubig et al., 2017). We apply
dropout (Srivastava et al., 2014) to the inputs of every LSTM layer, including the word LSTM layers,
the character LSTM layers, the tree-structured LSTM layers and the constituent label LSTM layers. For
Chinese, we find that 0.3 is a good choice for the dropout probability. The number of training epochs
is decided by the evaluation performances on development set. In particular, we perform evaluations on
development set for every 10,000 examples. The training procedure stops when the results of next 20
evaluations do not become better than the previous best record.

1https://github.com/SUTDNLP/ZPar
2For UF, we exclude the sentence span [0,n-1] and all spans with length 1.
3http://nlp.cs.nyu.edu/evalb
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Model SpanVec LP LR LF

BinarySpan v[i, j] 92.16 92.19 92.17
sr[i, j] 91.90 91.70 91.80

BiaffineRule v[i, j] 91.79 91.67 91.73
sr[i, j] 92.49 92.23 92.36

Table 2: Span representation methods.

Model English Chinese
LP LR LF LP LR LF

BinarySpan 92.16 92.19 92.17 91.31 90.48 90.89
MultiSpan 92.47 92.41 92.44 91.69 90.91 91.30
LinearRule 92.03 92.03 92.03 91.03 89.19 90.10
BiaffineRule 92.49 92.23 92.36 91.31 91.28 91.29

Table 3: Main development results.

3.2 Development Results

We study the two span representation methods, namely the simple concatenating representation v[i, j]
(Eq 1) and the combining of three difference vectors sr[i, j] (Eq 7), and the two representative mod-
els, i.e, the binary span classification model (BinarySpan) and the biaffine rule model (BiaffineRule).
We investigate appropriate representations for different models on the English dev dataset. Table 2
shows the effects of different span representation methods, where v[i, j] is better for BinarySpan and
sr[i, j] is better for BiaffineRule. When using sr[i, j] for BinarySpan, the performance drops
greatly (92.17 → 91.80). Similar observations can be found when replacing sr[i, j] with v[i, j] for
BiaffineRule. Therefore, we use v[i, j] for the span models and sr[i, j] for the rule models in latter
experiments.

Table 3 shows the main results on the English and Chinese dev sets. For English, BinarySpan
acheives 92.17 LF score. The multi-class span classifier (MultiSpan) is much better than BinarySpan
due to the awareness of label information. Similar phenomenon can be observed on the Chinese dataset.
We also test the linear rule (LinearRule) methods. For English, LinearRule obtains 92.03 LF score,
which is much worse than BiaffineRule. In general, the performances of BiaffineRule and
MultiSpan are quite close both for English and Chinese.

For MultiSpan, both the first stage (unlabeled tree prediction) and the second stage (label genera-
tion) exploit constituent types. We design three development experiments to answer what the accuracy
would be like of the predicted labels of the first stage were directly used in the second stage. The first one
doesn’t include the label probabilities of the first stage for the second stage. For the second experiment,
we directly use the model output from the first setting for decoding, summing up the label classification
probabilities of the first stage and the label generation probabilities of the second stage in order to make
label decisions. For the third setting, we do the sum-up of label probabilities for the second stage both
during training and decoding. These settings give LF scores of 92.44, 92.49 and 92.44, respectively,
which are very similar. We choose the first one due to its simplicity.

3.3 Main Results

English. Table 4 summarizes the performances of various constituent parsers on PTB test set.
BinarySpan achieves 92.1 LF score, outperforming the neural CKY parsing models (Durrett and
Klein, 2015) and the top-down neural parser (Stern et al., 2017). MultiSpan and BiaffineRule
obtain similar performances. Both are better than BianrySpan. MultiSpan obtains 92.4 LF score,
which is very close to the state-of-the-art result when no external parses are included. An interesting
observation is that the model of Stern et al. (2017) show higher LP score than our models (93.2 v.s
92.6), while our model gives better LR scores (90.4 v.s. 93.2). This potentially suggests that the global
constraints such as structured label loss used in (Stern et al., 2017) helps make careful decisions. Our
local models are likely to gain a better balance between bold guesses and accurate scoring of constituent
spans. Table 7 shows the unlabeled parsing accuracies on PTB test set. MultiSpan performs the best,
showing 92.50 UF score. When the unlabeled parser is 100% correct, BiaffineRule are better than
the other two, producing an oracle LF score of 97.12%, which shows the robustness of our label gener-
ator. The decoding speeds of BinarySpan and MutliSpan are similar, reaching about 21 sentences
per second. BiaffineRule is much slower than the span models.

Chinese. Table 5 shows the parsing performance on CTB 5.1 test set. Under the same settings, all
the three models outperform the state-of-the-art neural model (Dyer et al., 2016; Liu and Zhang, 2017a).
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Parser LR LP LF Parser LR LP LF
Zhu et al. (2013) (S) 91.1 91.5 91.3 Charniak (2000) 89.5 89.9 89.5
McClosky et al. (2006) (S) 92.1 92.5 92.3 Collins (2003) 88.1 88.3 88.2
Choe and Charniak (2016) (S,R,E) 93.8 Sagae and Lavie (2006) 87.8 88.1 87.9
Durrett and Klein (2015) (S) 91.1 Petrov and Klein (2007) 90.1 90.2 90.1
Vinyals et al. (2015) (S, E) 92.8 Carreras et al. (2008) 90.7 91.4 91.1
Charniak and Johnson (2005) (S, R) 91.2 91.8 91.5 Zhu et al. (2013) 90.2 90.7 90.4
Huang (2008b) (R) 91.7 Watanabe and Sumita (2015) 90.7
Huang and Harper (2009) (ST) 91.1 91.6 91.3 Fernández-González and Martins (2015) 89.9 90.4 90.2
Huang et al. (2010) (ST) 92.7 92.2 92.5 Cross and Huang (2016b) 90.5 92.1 91.3
Shindo et al. (2012) (E) 92.4 Kuncoro et al. (2017) 91.2
Socher et al. (2013) (R) 90.4 Liu and Zhang (2017b) 91.3 92.1 91.7
Dyer et al. (2016) (R) 93.3 Stern et al. (2017) top-down 90.4 93.2 91.8
Kuncoro et al. (2017) (R) 93.6 BinarySpan 91.9 92.2 92.1
Liu and Zhang (2017a) (R) 94.2 MultiSpan 92.2 92.5 92.4
Fried et al. (2017) (ES) 94.7 BiaffineRule 92.0 92.6 92.3

Table 4: Results on the PTB test set. S denotes parsers using auto parsed trees. E, R and ST denote
ensembling, reranking and self-training systems, respectively.

Parser LR LP LF Parser LR LP LF
Charniak and Johnson (2005) (R) 80.8 83.8 82.3 Petrov and Klein (2007) 81.9 84.8 83.3
Zhu et al. (2013) (S) 84.4 86.8 85.6 Zhang and Clark (2009) 78.6 78.0 78.3
Wang et al. (2015) (S) 86.6 Watanabe and Sumita (2015) 84.3
Huang and Harper (2009) (ST) 85.2 Dyer et al. (2016) 84.6
Dyer et al. (2016) (R) 86.9 BinarySpan 85.9 87.1 86.5
Liu and Zhang (2017b) 85.2 85.9 85.5 MultiSpan 86.6 88.0 87.3
Liu and Zhang (2017a) 86.1 BiaffineRule 87.1 87.5 87.3

Table 5: Results on the Chinese Treebank 5.1 test set.

Compared with the in-order transition-based parser, our best model improves the labeled F1 score by 1.2
(86.1 → 87.3). In addition, MultiSpan and BiaffineRule achieve better performance than the
reranking system using recurrent neural network grammars (Dyer et al., 2016) and methods that do joint
POS tagging and parsing (Wang and Xue, 2014; Wang et al., 2015).

4 Analysis

Constituent label. Table 6 shows the LF scores for eight major constituent labels on PTB test
set. BinarySpan consistently underperforms to the other two models. The error distribution of
MultiSpan and BiaffineRule are different. For constituent labels including SBAR, WHNP and
QP, BiaffineRule is the winner. This is likely because the partition point distribution of these la-
bels are less trivial than other labels. For NP, PP, ADVP and ADJP, MultiSpan obtains better scores
than BiaffineRule, showing the importance of the explicit type information for correctly identifying
these labels. In addition, the three models give similar performances of VP and S, indicating that simple
local classifiers might be sufficient enough for these two labels.

LF v.s. Length. Figure 3 and Figure 4 show the LF score distributions against sentence length and
span length on the PTB test set, respectively. We also include the output of the previous state-of-the-art
top-down neural parser (Stern et al., 2017) and the reranking results of transition-based neural generative
parser (RNNG) (Dyer et al., 2016), which represents models that can access more global information.
For sentence length, the overall trends of the five models are similar. The LF score decreases as the
length increases, but there is no salient difference in the downing rate (also true for span length ≤6),
demonstrating our local models can alleviate the label bias problem. BiaffineRule outperforms the
other three models (except RNNG) when the sentence length less than 30 or the span length less than 4.
This suggests that when the length is short, the rule model can easily recognize the partition point. When
the sentence length greater than 30 or the span length greater than 10, MultiSpan becomes the best
option (except RNNG), showing that for long spans, the constituent label information are useful.
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Figure 3: Sentence length v.s LF scores. Figure 4: Span length v.s LF scores.

Model NP VP S PP SBAR ADVP ADJP WHNP QP
BinarySpan 93.35 93.26 92.55 89.58 88.59 85.85 76.86 95.87 89.57
MultiSpan 93.61 93.41 92.76 89.96 89.16 86.39 78.21 95.98 89.51
BiaffineRule 93.53 93.46 92.78 89.30 89.56 85.89 77.47 96.66 90.31

Table 6: LF scores for major constituent labels.

Model UF LF Speed(sents/s)
BinarySpan 92.16 96.79 22.12
MultiSpan 92.50 97.03 21.55
BiaffineRule 92.22 97.12 6.00

Table 7: UF, oralce LF and speed.

5 Related Work

Globally trained discriminative models have given highly competitive accuracies on graph-based con-
stituent parsing. The key is to explicitly consider connections between output substructures in order to
avoid label bias. State-of-the-art statistical methods use a single model to score a feature representation
for all phrase-structure rules in a parse tree (Taskar et al., 2004; Finkel et al., 2008; Carreras et al., 2008).
More sophisticated features that span over more than one rule have been used for reranking (Huang,
2008b). Durrett and Klein (2015) used neural networks to augment manual indicator features for CRF
parsing. Structured learning has been used for transition-based constituent parsing also (Sagae and Lavie,
2005; Zhang and Clark, 2009; Zhang and Clark, 2011; Zhu et al., 2013), and neural network models have
been used to substitute indicator features for transition-based parsing (Watanabe and Sumita, 2015; Dyer
et al., 2016; Goldberg et al., 2014; Kiperwasser and Goldberg, 2016; Cross and Huang, 2016a; Coavoux
and Crabbé, 2016; Shi et al., 2017).

Compared to the above methods on constituent parsing, our method does not use global structured
learning, but instead learns local constituent patterns, relying on a bi-directional LSTM encoder for
capturing non-local structural relations in the input. Our work is inspired by the biaffine dependency
parser of Dozat and Manning (2016). Similar to our work, Stern et al. (2017) show that a model that
bi-partitions spans locally can give high accuracies under a highly-supervised setting. Compared to their
model, we build direct local span classification and CFG rule classification models instead of using span
labeling and splitting features to learn a margin-based objective. Our results are better although our
models are simple. In addition, they collapse unary chains as fixed patterns while we handle them with
an encoder-decoder model.

6 Conclusion

We investigated two locally trained span-level constituent parsers using BiLSTM encoders, demonstrat-
ing empirically the strength of the local models on learning syntactic structures. On standard evaluation,
our models give the best results among existing neural constituent parsers without external parses.
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