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Abstract

The use of machine learning for NLP generally requires resources for training. Tasks performed
in a low-resource language usually rely on labeled data in another, typically resource-rich, lan-
guage. However, there might not be enough labeled data even in a resource-rich language such
as English. In such cases, one approach is to use a hand-crafted approach that utilizes only a
small bilingual dictionary with minimal manual verification to create distantly supervised data.
Another is to explore typical machine learning techniques, for example adversarial training of
bilingual word representations. We find that in event-type detection task—the task to classify
[parts of] documents into a fixed set of labels—they give about the same performance. We ex-
plore ways in which the two methods can be complementary and also see how to best utilize a
limited budget for manual annotation to maximize performance gain.

1 Introduction

For most languages of the world, few or no language processing tools or resources exist (Baumann and
Pierrehumbert, 2014). This hinders efforts to apply certain language technologies enjoyed by languages
like English, in which much current research is done.

To perform natural language processing tasks in resource-poor languages, one way to overcome data
scarcity is to tap on resources from another resource-rich language. Assuming that there are already
good resources and tools to solve the same tasks in the more resource-rich language (henceforth, aux-
iliary language), the only remaining challenge is to transfer the learning process into the resource-poor
language (henceforth, target language) and adapt it to the specifics of that language. One way to do
this is to build a shared word representation across the two languages and train an NL engine on this
shared representation, perhaps using an adversarial domain adaptation approach to handle the domain
(language) shift (Chen et al., 2017). Usually, these approaches assume the availability of large labeled
data in the auxiliary language, on the order of hundred thousands to millions.

However, for some more complex or specialized tasks, there might not be enough available training
data even in a resource-rich language such as English. A case in point is the event-type classification
task over the publicly available datasets, such as ACE 20051 and TAC KBP 2 datasets, which usually
contain only a few hundred to a few thousand documents. The situation frame (SF) detection task is one
example of event-type classification task, where the objective is to extract from each document one or
more situation frames with their corresponding arguments. A situation frame (SF) is either an issue being
described in the articles, such as civil unrest or terrorism, or a need situation such as the need for water
or medical aid. In our task there are 11 situation frame types, each associated with a set of arguments,
namely the location, status, relief, and urgency. For example, an article titled “Millions of people are
at the risk of starvation due to the food shortage in South Sudan”, with content describing the details
and the cause of the food shortage, including a mention of difficulty accessing certain regions, can be
classified as describing a food need and an infrastructure need.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

1https://catalog.ldc.upenn.edu/ldc2006t06
2https://tac.nist.gov/2016/KBP/
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As described below, we have tried two approaches: (1) a simple keyword-matching system utilizing
only a small bilingual dictionary and minimal manual verification and (2) a sophisticated neural adversar-
ial network that learns bilingual word representations for cross-lingual transfer. We find that the methods
have similar performance. We therefore explore ways in which few keyword-based models can create
additional, distantly supervised data to improve the performance of a neural cross-lingual event type de-
tection system. Our contributions are: (1) an evaluation of a state-of-the-art method in a different task
showing its similar result against a simple baseline, (2) ways to improve performance of such models,
and (3) an analysis of the result, with insights to practitioners as to where to focus the available, yet
limited, budget for manual annotation work.

This paper is organized as follows: we first describe the related work on cross-lingual NLP tasks in
low-resource settings, specifically how the available resources are used. Based on previous work, we then
apply our proposed training data augmentation methods and run experiments to show the effectiveness
of our methods. We then analyze the results, and follow with a few suggestions on how to best utilize
the available annotation effort for maximum gain.

2 Related Work

Keyword-based Models A keyword-based heuristic model is a simple yet effective approach to
extract specific information such as events (Keane et al., 2015), because keywords often indicate a strong
presence of important information contained in documents (Marujo et al., 2015). Such methods have
been used in different tasks like text categorization (Özgür et al., 2005) and information retrieval (Marujo
et al., 2013) to extract the required information. Keyword heuristics have also been used to overcome
language and domain barriers using bilingual dictionaries (Szarvas, 2008; Tran et al., 2013). However,
a weak bilingual dictionary could result in low coverage with this method. Hence, to overcome the
limiting bilingual dictionary people employ bootstrapping methods to improve the coverage (Knopp,
2011; Ebrahimi et al., 2016).

Cross-Lingual Text Classification Cross-lingual event type detection is closely related to cross-
lingual text classification (CLTC), which aims to classify text in a target language using training data
from an auxiliary language (Bel et al., 2003).

To bridge the language gap, early approaches of CLTC relied on a comprehensive bilingual dictionary
to translate documents between languages (Bel et al., 2003; Shi et al., 2010; Mihalcea et al., 2007).
However, in resource-poor languages, bilingual dictionaries may be small and sparse. Therefore, the
performance of direct word translation will be unsatisfactory. Some researchers utilized the bilingual
dictionary to translate the models instead (Xu et al., 2016; Littell et al., 2017).

Another line of work focuses on the use of automatic machine translation as an oracle. The various
learning algorithms treated the translations as a second view of document and facilitate cross-lingual
learning with co-training (Wan, 2009), majority learning (Amini et al., 2009), matrix completion (Xiao
and Guo, 2013) and multi-view co-regularization (Guo and Xiao, 2012a).

Instead of word-level or sentence-level translation, various other approaches seek some cross-lingual
mapping between document representation (Littman et al., 1998; Vinokourov et al., 2002; Platt et al.,
2010; Jagarlamudi et al., 2011; De Smet et al., 2011; Guo and Xiao, 2012b; Zhou et al., 2015; Zhou et
al., 2016a; Zhou et al., 2016b; Chen et al., 2017) or label distribution (Xu and Yang, 2017).

Bilingual Word Embedding The most recent method for sharing document representation between
languages is bilingual word embedding (Mikolov et al., 2013a; Faruqui and Dyer, 2014; Luong et al.,
2015). The goal is to learn a shared embedding space between words in two languages. With the shared
embedding, we are able to project all documents into a shared space. The model trained in one language
can, therefore, be used in the other language.

3 Models

To see how well recent state-of-the-art methods for CLTC work in our task, we implemented a convolu-
tional neural classifier. We compare this against a simple keyword-based method.
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Figure 1: Architecture of the neural classifier with adversarial domain (language) adaptation by Ganin
and Lempitsky (2015). Arrows show the flow of gradient.

3.1 Adversarial Convolutional Network
The first step is to train a bilingual word embedding as a shared feature representation space between the
two languages. We trained our bilingual word embedding for English and the incident language using
the method proposed in XlingualEmb (Duong et al., 2016). This method is a cross-lingual extension
from word2vec model (Mikolov et al., 2013b) to bilingual text using two large monolingual corpora and
a bilingual dictionary.

Based on the shared representation, we then used a convolutional neural network (CNN) (Kim, 2014)
to perform the classification. There are two main advantages of choosing a deep neural classifier over a
shallow one. First, CNN outperforms shallow models like SVM or Logistic Regression in various text
classification benchmark datasets (Kim, 2014; Lai et al., 2015; Johnson and Zhang, 2015; Xu and Yang,
2017). Second, CNN takes dense word vector representations as input, allowing one to incorporate the
state-of-the-art bilingual word embedding methods into the pipeline.

The CNN model takes a sequence of word embeddings as input and applies 1-D convolutional oper-
ation on the input to extract semantic features. The features are then passed through a fully-connected
layer before reaching the final soft-max layer. The model is trained in English using the ReliefWeb
dataset (Littell et al., 2017, Sec 2.3), which is annotated at sentence level with disaster relief needs and
emergency situations. Thanks to the bilingual word embedding, which maps the words from the two
languages to the same distributional semantic space, the model trained in English can be applied to
documents in the target language.

Ideally, if the bilingual word embedding captures the ground-truth mapping between two languages, a
classifier learned from English training documents should generalize well on the target language. How-
ever, in practice, we can observe obvious domain gaps between documents in different languages when
we represent them with bilingual word embeddings. In order to close the domain (language) gap be-
tween training and testing, we adapt our learned model in English to the target language with similar
adversarial training techniques used in (Xu and Yang, 2017; Chen et al., 2017). In order to alleviate the
domain mismatch, we are essentially looking for a feature extractor that only captures the semantics of
the event types but not the difference in language usage between English and the target language. In other
words, we want the features captured by CNN to be informative for the event type classification and to
be language-invariant at the same time. To achieve this goal, we include an auxiliary classifier that takes
the features extracted by CNN and predicts the language that the input belongs to. During training, we
update our parameter to simultaneously minimize the loss of the event type classification and maximize
the loss of language classification through Gradient Reversal Layer (Ganin and Lempitsky, 2015).

3.2 Keyword-based Model
As mentioned previously, a keyword-based model is a simple, quick, yet effective approach to perform
text classification without much training data. In our case, we do this in two steps: (1) build a list of key-
words for each SF type in English, then (2) translate the keywords into the target language automatically
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Instances
Distribution of Situation Frames (%)

Visualization
terror violence regime food water med infra shelter evac utils search none

Eng-Orig ( O©) 82,096 2.4 1.8 3.9 14.0 33.0 8.2 6.0 9.2 3.7 4.3 8.6 4.9
Eng-KW ( E©) 1,356,425 17.5 29.2 6.0 11.3 12.6 9.9 2.7 4.0 3.6 1.6 1.5 0.3

Tigrinya
Tgt-Boot ( T©) 98 12.2 33.7 10.2 4.1 6.1 20.4 0.0 11.2 1.0 0.0 1.0 0.0
Tgt-Ann ( A©) 1,012 6.7 14.3 17.6 2.0 0.8 6.6 2.2 3.3 2.4 0.9 2.7 40.6
Test Data 2,991* 3.2 6.2 0.7 2.5 0.9 3.2 0.4 0.3 0.8 0.3 0.8 80.7

Oromo
Tgt-Boot ( T©) 92 3.3 13.0 25.0 21.7 8.7 10.9 1.1 6.5 3.3 1.1 5.4 0.0
Tgt-Ann ( A©) 652 3.2 4.0 3.5 0.8 0.2 0.6 0.2 0.6 0.0 0.0 0.5 86.5
Test Data 2,810* 0.6 11.4 2.3 1.4 0.5 2.1 1.7 1.2 0.7 0.5 1.5 76.2

Table 1: Statistics of the various sources of training data. Eng-Orig and Eng-KW refer to training data
in English described in Littell et al. (2017, Sec 2.3) and from our English keyword model’s output on
ReliefWeb corpus, respectively, while Tgt-Boot and Tgt-Ann refer to training data in the target language
obtained from bootstrapped keyword-spotting and from annotation, respectively. The “none” class sig-
nifies negative examples in the data. The last column shows a visualization of the SF types, excluding
“none”. Note: for Test Data, the instances refer to documents, while for the rest, instances refer to
sentences.

using a bilingual dictionary. We also asked native speakers of the target language to refine the translation,
especially for domain-specific keywords which are not adequately captured by the bilingual dictionary.3

Building English keywords is again a two-step process. First, we use the ReliefWeb dataset to generate
a list of 100 candidate keywords for each class by taking the top-100 words with the highest TF.IDF
scores. Similar to the keyword generation method described by Littell et al. (2017), we manually refined
the keyword list by pruning based on world knowledge. For each candidate keyword, we added 30 most
similar words using the English word2vec model trained on the Google News corpus4. We retained only
the words that have cosine-similarity greater than 70%. For each candidate keyword in this extended
list, we computed a label affinity score with each SF class label (e.g., water, evacuation) using cosine-
similarity between their word2vec embeddings. Candidate keywords with similarity above a certain
threshold th1 were retained and used as keywords for the corresponding classes5.

4 Method: Training Data Augmentation

Chen et al. (2017) assumed the auxiliary language contains a large amount of labeled data for the task,
about 700k Yelp reviews. For our case, the original training data, which was built semi-automatically
by Littell et al. (2017, Sec 2.3), contains only about 80k sentences (Table 1, first row). To improve
the performance of the neural model, therefore, we propose to utilize the keyword-based system to
automatically augment the original training data. We also explore using additional training data obtained
via manual annotation for comparison.

Figure 2 is a summary of the various training data sources we compare in this paper: the original
training data ( O©), keyword-spotting in the auxiliary language ( E©), keyword-spotting with bootstrapping
in the target language ( T©), and annotated data in the target language ( A©). The additional training data
from keyword-spotting in English ( E©) can be directly obtained by using the keyword list in English that
we used for the keyword model (Section 3.2) to label a larger ReliefWeb corpus. We describe the other
two ways ( T© and A©) to obtain additional training data in the following sections.

3We showed the native speakers translation pairs obtained through the bilingual dictionary, and asked them to verify the
translation as acceptable, or to supply a better translation.

4https://code.google.com/archive/p/word2vec/
5Threshold th1 = 0.9 was determined by a grid search on a held-out English dataset.
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Figure 2: A summary of the various training data sources that we compare in this paper ( O©, E©, T©, A©).

4.1 Bootstrapping Language-specific Keywords

We note that using simple keyword matching can result in low coverage due to missing keywords in
the bilingual dictionary or word-variations in the target language. To overcome this, we developed an
iterative bootstrapping algorithm that takes into account the newly labeled documents from keyword-
spotting and generates additional language-specific keywords in a two-step process ( T© in Figure 2).

Clustering: In the first step, we collected labeled documents from each class, and generated clusters
for them (D = {Dc1 ,..,Dcm}, where Dcp is the cluster of the class cp). For each cluster Dcp and non-
keyword wi in it, we then computed the label affinity score Sp(wi), defined as follows:

Sp(wi) = tfidf (wi) +

∑
wj∈Wp

cos(wi, wj)

|Wp|

where Wp was the set of keywords present in Dcp . We then appended the words which exceed a certain
threshold th2 to the keywords list of class cp.

The rationale for this step is that the keywords that were missed in the initial keyword list (due to an
incomplete bilingual dictionary, the keywords being language-specific, or incident-specific) may appear
more frequently in the document cluster, and the second term in Sp(wi) will capture this.

Labeling: With the updated set of keywords for each class, we relabeled the documents to obtain
a new set of labeled documents and again executed the clustering step to get more keywords. We can
repeat this two-step process n times until we have the desired coverage or until this process no longer
gives useful new keywords. In our experiments, we found that n = 10 generally gives good coverage.
To generate the training data, we ran this procedure on the test set and took the top-100 most confident
predictions.6

4.2 Annotation in Target Language

When we have the budget and annotators to do so, we can also annotate documents in the target language
with class labels of interest. Given the limited budget and the rarity of documents with SFs (14-18%
in our dataset), however, one question remains: how to best pick the documents to be annotated to
maximize the gain from the additional training data? Seeing that the number of documents with at least
one positive class is much less common compared to the number of documents without any positive
class (see Table 1), simply taking a randomly sampled document from the unlabeled documents will
likely give a document with no class, which is less useful compared to document with at least one
positive class. Thus, we opt for a simpler method of asking annotators to make a binary decision on a

6As explained below, we used sentences as our training data, by taking the sentences which contain the keywords found.



75

Tigrinya Oromo
#Documents 2,991 (100%) 2,810 (100%)
– single sentence 2,508 (83.9%) 2,432 (86.6%)
– with 0 SFs 2,565 (85.7%) 2,307 (82.1%)
– with 1 SF 295 (9.9%) 361 (12.9%)
– with 2 SFs 95 (3.2%) 99 (3.5%)
– with 3 SFs 26 (0.9%) 26 (0.9%)
#Sentences 9,412 11,905
#SFs 612 721

Table 2: Data statistics for Situation Frame (SF) type extraction task in Tigrinya and Oromo dataset.

subset of our model’s output on a separate dataset, different from the test set. We obtained 653 annotated
sentences in Tigrinya this way (and 652 in Oromo). In addition to the native speakers, we also had
non-speaker linguists annotate another separate (359) sentences in Tigrinya, assisted by grapheme-to-
phoneme conversion, morphological glossing, and machine translation (MT) output.7 This results in
1,012 sentences annotated in Tigrinya ( A© in Figure 2 and Table 1). Overall, we spent less than 12 man-
hours with native speakers of the target language to do the keyword translation and the annotation, with
the larger amount of time spent on keyword translation.

5 Experiments

5.1 Dataset
For the purpose of the experiments and analysis, we used the dataset from the LoReHLT 20178 shared
task, which consists of news articles in two Ethiopian languages: Tigrinya and Oromo.9 The statistics of
the dataset is shown in Table 2.

The available resources that we used for this experiment consist of:

1. Monolingual articles in Tigrinya and Oromo in various genres (news, discussion, social media).
2. Bilingual word dictionary (English-Tigrinya and English-Oromo).
3. A few hours of interaction with volunteers who are native speakers of Tigrinya or Oromo.
4. English documents about disaster recovery from ReliefWeb10 and CrisisNet11 annotated semi-

automatically with disaster type and theme (Littell et al., 2017, Sec 2.3).12

5.2 Setup
We summarize more details about the experiment setup.

Sentence-level prediction: Although the model we used can be applied to produce document-level pre-
dictions directly, working at sentence-level provided more training data for the model and made
it easier to train. Doing so also enabled some insight on which sentences contain the information
about the document-level predictions.

Document-level aggregation: We then aggregate sentence-level predictions to a document-level predic-
tion by assigning to each SF type the maximum confidence score of that type across all sentences
in the document. Based on these scores, we calculate the mean confidence score µcp of each SF
type cp. We then took the top-k (k = 3 in our experiments) SF types as our document-level predic-
tion and filter out the predicted SF types which have confidence scores below µcp . In the absence

7The MT model was also trained in a low-resource setting, with BLEU score around 12 for Tigrinya.
8https://www.nist.gov/itl/iad/mig/lorehlt-evaluations#lorehlt17
9For Oromo, the original dataset includes one annotator (out of 4) which annotated most of the documents with a single

class. We did not consider this outlier annotator in our experiments.
10https://reliefweb.int/
11http://http://crisis.net/
12Also available at http://dx.doi.org/10.7910/DVN/TGOPRU
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Tigrinya Oromo
P R F P R F

KW 48.72 55.63 51.95 14.83 24.40 18.45
KW (bootstrap) 45.90 60.71 52.28 13.35 44.56 20.55
NN ( O©) 50.30 58.38 54.04 9.09 18.24 12.13
NN ( O©+ E©) 56.53 65.86 60.84 13.65 22.10 16.87
NN ( O©+ A©) 53.32 67.67 59.64 14.82 23.79 18.27
NN ( O©+ E©+ A©) 55.40 65.69 60.11 25.76 28.62 27.12
NN ( O©+ T©) 48.01 65.42 56.46 17.45 14.76 16.00
NN ( O©+ E©+ T©+ A©) 55.39 70.25 61.94 32.80 14.07 19.70

Table 3: Performance of the neural model (NN) with various sources of training data. O© is the original
training data, E© is the additional training data in English from keyword-spotting, T© is the additional
training data in target language from bootstrapping, and A© is the additional training data in target lan-
guage from annotation. The result on keyword model (KW) is also shown for comparison.

of labeled data in the target language to be used as development set, this is one method that we
can use without much tuning. In later sections we show how different document-level aggregation
procedures may affect the performance.

Metric: We followed the metric defined in LoReHLT 2017 guidelines13, which is occurrence-weighted
scores, defined as follows:

Pocc =

∑
αtp∑

αtp +
∑
αfp

, Rocc =

∑
αtp∑

αtp +
∑
αfn

, Focc =
2 · Pocc ·Rocc

Pocc +Rocc

where
∑
αtp is the number of true positives, weighted with the number of annotators that agree with

it.
∑
αfp and

∑
αfn are similarly defined for false positives and false negatives. False negatives

always have weight 1. For brevity, we drop the occ subscript when referring to these scores.

Model hyperparameters: In our neural CNN model, we used filter lengths of {3, 4, 5} and 300 filters
for each length. We also applied dropout on the extracted feature by CNN at a rate of 0.2. The
model was optimized in mini-batches of size 128 by Adam (Kingma and Ba, 2014) optimizer at the
learning rate of 0.001. The optimization was terminated after 30 epochs or a convergence criteria
was satisfied on the held-out training data.

5.3 Results
Table 3 shows the results in Tigrinya and Oromo with the varying training data described in Section 4.

First, the keyword model (KW) gave results comparable to the neural model (NN O©), even outper-
forming it in Oromo. This suggests that in a low-resource setting, a keyword-based model can be used
as a way to quickly get a working classifier, without the hassle of training a machine learning classifier
or getting a large additional training data.

Next, the additional training data did help to significantly improve the performance of the baseline
neural model in both languages. The large additional English data (+ E©) provided a large boost both in
Tigrinya (+6.8) and Oromo (+4.7). Interestingly, with only about 900 examples in the target language,
the additional annotation in the target language (+ A©) gave about the same improvements in F1-score in
Tigrinya, and even 1.4 points higher in Oromo compared to the large additional training data in English.
Recall that the annotation was done on a subset of the neural model’s output (trained on O©). This
suggests that when an annotation budget is available, using that to verify the output of a model is a good
investment.

It is interesting to note that each source of additional training data improved a different aspect of the
model. The additional training data in English ( O©+ E©) seemed to improve precision more, while the

13https://goo.gl/FwRCwj
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additional training data in target language from annotation seemed to improve recall more ( O©+ A©), and
combining both ( O©+ E©+ A©) provided the best of both worlds, especially in Oromo.

When we included the training data in target language from the keyword model with bootstrapping
together with all other training data ( O©+ E©+ T©+ A©), it further improved the result in Tigrinya, but not in
Oromo, although when it was used alone ( O©+ T©) it still gave some improvements. This could be due to
the lower quality of the keyword system in Oromo. Recall that it was created by taking the top-100 most
confident predictions of the keyword model. This set of predictions gave 75.9% precision in Tigrinya
and 47.1% precision in Oromo. This lower quality of Oromo bootstrapping method can also be seen in
the diverging SF Type distribution, as can be seen in Table 1.

The best overall improvement was more pronounced in Oromo (+14.99 points in F1 for O©+ E©+ A©)
than in Tigrinya (+7.90 points in F1 for O©+ E©+ T©+ A©). This could be related to the fact that the baseline
score was much lower in Oromo than in Tigrinya to begin with.

For completeness, we also compare the results of the keyword model (KW) in target language with-
out and with bootstrapping in the first two rows of Table 3. As anticipated, the bootstrapping process
increased recall significantly, almost doubling the recall in Oromo. Although the precision was slightly
reduced, it still resulted in an overall improvement in F1-score for both languages.

In summary, there are four main observations:

1. The Neural model (NN O©) gave similar performance to the keyword (KW) model in Tigrinya and
lower performance in Oromo, although the keyword model was a much simpler system.

2. With large additional training data in English (+ E©), we obtained large improvements both in
Tigrinya (+6.8) and Oromo (+4.7).

3. With only small additional annotations in target language (+ A©) we obtained similar performance to
using large English training data in Tigrinya, and even better in Oromo.

4. Getting additional training data in the target language through the keyword model can help if the
quality of the keyword model is good enough.

6 Discussion

We hypothesize that the focused improvements on precision when using additional training data in En-
glish ( E©) could be attributed to the similarity of the SF distribution to the original training data, since
both are in English. This causes the model to be more confident in its prediction, at the expense of diverg-
ing away from the true distribution of SF types in the target language. In contrast, the annotated dataset
in the target language ( A©) has similar distribution to the true distribution, making the model able to rank
correct SF types higher. We can see this from the SF type distribution shown in Table 1 by comparing
the visualization at the last column.

Another explanation for the higher recall when adding annotated data in the target language is word
coverage. The other two additional sources of data rely on keywords, and although bootstrapping helps
improve coverage, the annotated data in the target language will cover more subtle correlations between
word forms and class labels.

To analyze the differences between the various source of additional training data, we plot the co-
occurrence of classes on the Tigrinya dataset in Figure 3. Each row describes the percentage of a partic-
ular SF type co-occurring with other SF types in the same document (recall that each document might
be labeled with multiple SF types), including none, in which the SF type is the single label for that
document. The numbers in a row sums to unity.

As can be seen, predictions of the NN system trained on the additional English data (Figure 3b)
and target language data (Figure 3c) have different co-occurrence patterns. The additional English data
apparently allowed the NN to find a strong correlation between the crime violence class and the terrorism
and regime change classes, which is consistent with our intuition. On the other hand, the NN fine-tuned
on the Tigrinya annotations apparently found the terrorism and regime change classes tend to occur
alone.

There is also an interesting phenomenon that arises from the correlation between keywords and class
labels. We found that the SF type terrorism is associated with the keyword “ ” which means
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terror regime crime food water search evac med utils shelter infra n/a
co-occurrence (%)

terror
regime

crime
food

water
search

evac
med
utils

shelter
infra

cla
ss

0 4.2 27 0 0 2.5 0.85 12 0.85 0.85 0 52
19 0 26 0 0 0 0 3.7 0 0 0 52
14 3 0 4.2 1.7 5.9 2.5 17 0.84 1.3 1.7 48
0 0 9.6 0 21 0.96 9.6 8.7 0.96 1.9 5.8 41
0 0 8.3 46 0 2.1 10 15 2.1 2.1 6.2 8.3

7.9 0 37 2.6 2.6 0 2.6 16 2.6 0 0 29
2.2 0 13 22 11 2.2 0 13 2.2 6.7 13 13
10 0.74 30 6.6 5.1 4.4 4.4 0 3.7 2.2 3.7 29
7.1 0 14 7.1 7.1 7.1 7.1 36 0 0 0 14
5.6 0 17 11 5.6 0 17 17 0 0 22 5.6
0 0 13 19 9.7 0 19 16 0 13 0 9.7

(a) Tigrinya Gold

terror regime crime food water search evac med utils shelter infra n/a
co-occurrence (%)

terror
regime

crime
food

water
search

evac
med
utils

shelter
infra

cla
ss

0 6 66 5 3.6 1.2 2.4 4.4 0.2 0.6 4 6
7.9 0 54 4.7 4.2 1.3 2.9 3.7 0.26 0.79 2.6 17
29 18 0 6.9 6 1.6 3.7 6 0.44 1.4 4.5 23
4.7 3.4 15 0 18 4.1 3.9 7.8 0.93 1.3 6.3 35
4.2 3.7 16 22 0 1.9 4.4 11 1.2 2.3 6.1 27
3.7 3 11 13 4.9 0 12 3.7 0 1.8 7.3 40
4.7 4.3 16 8.2 7.4 7.4 0 4.3 0.39 8.6 5.8 33
5.8 3.7 18 11 12 1.6 2.9 0 2.1 2.1 6.3 34
2.7 2.7 14 14 14 0 2.7 22 0 8.1 11 11
3 3 16 7 10 3 22 8 3 0 8 17

5.5 2.7 14 9.3 7.1 3.3 4.1 6.6 1.1 2.2 0 44

(b) Tigrinya NN( O©+ E©)

terror regime crime food water search evac med utils shelter infra n/a
co-occurrence (%)

terror
regime

crime
food

water
search

evac
med
utils

shelter
infra

cla
ss

0 15 13 6.5 0.84 9.7 5.6 6.3 2.1 9.1 3.1 29
11 0 22 5.8 3.1 3.6 1.7 5.6 3.1 3 3.6 37
12 25 0 5.4 2.8 6.2 2.2 4.8 2.7 3.9 4.3 31
13 15 12 0 5.1 7.3 6.8 8.5 6.8 4.2 3.4 17
3.7 18 14 11 0 5.5 3.1 17 3.7 1.2 9.2 14
15 7.2 11 5.7 2 0 18 7.2 1.8 14 6.6 11
13 5.3 6 8 1.7 28 0 4 1.3 18 8.6 6.3
12 14 10 8 7.2 8.8 3.2 0 3.2 5.1 4 24
7.7 15 11 12 3.1 4.1 2.1 6.2 0 0.51 14 24
19 8.2 9.4 4.4 0.58 18 15 5.6 0.29 0 4.1 15
8 12 13 4.3 5.4 11 9.4 5.4 9.8 5.1 0 17

(c) Tigrinya NN( O©+ A©)

terror regime crime food water search evac med utils shelter infra n/a
co-occurrence (%)

terror
regime

crime
food

water
search

evac
med
utils

shelter
infra

cla
ss

0 27 14 2.5 0.12 7.7 5.5 4 1.5 6.9 3.2 28
22 0 17 4.1 1 2.8 2.1 5.9 2.2 2.1 5.6 35
17 25 0 1.8 1.8 5.8 3.5 3.2 0.84 2.5 3.5 35
8.8 17 5.2 0 6.8 4.4 2 4 3.2 1.6 3.2 44
0.85 9.4 11 15 0 14 19 6 4.3 0 2.6 19
18 8.1 11 3 4.3 0 18 5.4 1.3 13 2.7 15
17 7.8 8.9 1.8 7.8 24 0 4.3 1.4 14 3.9 9.6
12 22 8.1 3.5 2.5 7 4.2 0 3.9 2.8 2.5 32
11 19 5 6.7 4.2 4.2 3.3 9.2 0 3.3 9.2 25
24 9 7.3 1.6 0 20 16 3.3 1.6 0 3.3 14
13 28 12 3.8 1.4 4.7 5.2 3.3 5.2 3.8 0 20

(d) Tigrinya NN( O©+ E©+ A©)

Figure 3: Co-occurrence of classes.

Tigrinya Oromo
Method P R F P R F

NN ( O©+ E©+ A©) top-1 68.77 52.45 59.51 36.03 19.93 25.66
NN ( O©+ E©+ A©) top-2 61.05 62.94 61.98 27.15 24.76 25.90
NN ( O©+ E©+ A©) top-3 55.40 65.69 60.11 25.76 28.62 27.12
NN ( O©+ E©+ A©) mean 42.11 71.54 53.01 17.74 36.71 23.92
NN ( O©+ E©+ A©) Tuned on ref. 80.00 55.03 65.21 36.43 44.08 39.89

Table 4: Impact of various aggregation strategy to the performance.

“youth” or “juvenile”, as in the example sentence (English translation, the word recognized as keyword
in the original language underlined) “According to the information, the Eritrean girls killed in the incident
hide near the tyre of a car and was hot by the Sudanese soldiers.” Examining the various examples in
the dataset, we found that the violence inherent in terrorism is often depicted with youths as the victims.
This could be related to the tendency of news outlets to focus on the suffering experienced by young
people to make more emotional appeal.

6.1 Impact of Document-level Aggregation Strategy

In Section 5.2 we showed one heuristic to do document-level aggregation. One might wonder whether
one can do better in the classification performance by using another aggregation strategy, such as filtering
out classes with confidence scores under certain threshold, or using different k when taking top-k classes.
In this section, we explore the impact of different aggregation strategies on the performance under dif-
ferent conditions. Assuming the more realistic case of having no development set to prefer one strategy
over another, we can use the top-k strategy like we did in our experiments, or set a fixed threshold on
the confidence score based on the average confidence score of each type across all documents in the test
set. We also show the result when we set the threshold based on the reference annotation, to show how
well the result can be in the case that we have a development set to find the best threshold. The result is
shown in Table 4.
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The significant gap of performance between the one tuned on the reference annotation and the rest
suggests that if additional training data can be obtained in the target language, independently from the
model’s predictions, we should allocate a portion of them to be used for validation, since there are still
large room for improvements just from tuning the thresholds (3-4% in Tigrinya and over 12% in Oromo).
Note that in our experiments, since the annotation was done on the output of our neural model, we cannot
use them as validation set, as it is biased towards the output of our model. So there is a trade-off between
ease of annotation process and the amount of data that can be used as validation set.

7 Conclusion and Future Work

In this paper we tackled the problem of event type detection and classification in low-resource setting.
We found that a neural model with adversarial training compared about the same as a simple keyword-
based model using a small bilingual dictionary. Given that the problem lies with the limited amount of
training data available, we proposed and compared methods to increase the amount of training data: to
get significant gain in performance one can either use a very large additional semi-automatically labeled
dataset in a resource-rich language, or annotate a small amount of documents in the target resource-poor
language. We also showed how investing in a development set for tuning might also be a good strategy
when there is a limited budget for annotation, after allocating some of them for keyword translation and
additional training data.

One possible direction for future work is to address the mismatch of distribution of the classes between
the additional training data and the actual test data as we see in Oromo. One way to mitigate the mismatch
would be to make the classifier itself less prone to overfitting. In Section 6.1 we have shown how the
document-level aggregation strategy may significantly affect the final result. Thus, exploring ways to
effectively select the thresholds might be worthwhile. We could also incorporate the correlation between
classes as evident from Figure 3, which has proven useful in multi-label classification (Zhang and Zhang,
2010).
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