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Abstract

This paper describes an unsupervised model for morphological segmentation that exploits
the notion of paradigms, which are sets of morphological categories (e.g., suffixes) that can
be applied to a homogeneous set of words (e.g., nouns or verbs). Our algorithm identifies
statistically reliable paradigms from the morphological segmentation result of a probabilistic
model, and chooses reliable suffixes from them. The new suffixes can be fed back iteratively to
improve the accuracy of the probabilistic model. Finally, the unreliable paradigms are subjected
to pruning to eliminate unreliable morphological relations between words. The paradigm-based
algorithm significantly improves segmentation accuracy. Our method achieves state-of-the-
art results on experiments using the Morpho-Challenge data, including English, Turkish, and
Finnish. !

1 Introduction

Morphological learning aims to automatically uncover constitutive units of words. It is an especially
important task for many NLP applications such as language generation, information retrieval etc. (Sproat,
1992). Morphology analyzing is non-trivial especially for morphologically rich languages such as
Turkish where the word formation process is extremely productive and can create in principle tens of
billions of word forms. The identification of morphological relations between words provides a basis for
uncovering their syntactic and semantic relations, which in turn can be exploited by downstream NLP
applications.

Most unsupervised models of morphological segmentation (Virpioja et al., 2013; Goldwater and
Johnson, 2004; Creutz and Lagus, 2005; Creutz and Lagus, 2007; Lignos, 2010; Poon et al., 2009; Snyder
and Barzilay, 2008) treat words as concatenation of morphemes. In some models, the dependencies
between morphemes (e.g., the English suffix -es often follows a verbal stem with y changed to i, as
in carries) are recognized (Narasimhan et al., 2015), making use of transformations akin to rewrite
rules (Goldwater and Johnson, 2004; Lignos et al., 2010). In all these approaches, the dependency
between morphemes is generally local, and the overall distribution of the underlying paradigms implied
by the segmentation result is not explored.

In this paper, we propose to exploit the notion of the paradigm, a global property of morphological
systems, for the task of unsupervised morphological segmentation (Parkes et al., 1998; Goldsmith, 2001;
Chan, 2006). The idea of using paradigm to describe the morphological structure of a language can be
traced back to a long time ago, and has been widely adopted in modern linguistic studies, starting from
Ferdinand de Saussure. A paradigm refers to a set of morphological categories such as suffixes that can
be can be applied to a homogeneous class of words. For instance, the paradigm (NULL, -er, -est, -ly) is
defined over English adjectives (e.g., high, higher, highest, highly), the paradigm (NULL, -ing, -ed, -s,
-er) is defined over English verbs (e.g, walk, walking, walked, walks, walker), etc. In essence, a paradigm
establishes an equivalence class for word formation such that a word realized in one of the categories in
a paradigm can be expected to appear in all the categories in the paradigm.
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The advantages of using paradigms in morphological learning are manifold. On the one hand,
paradigms provide a principled strategy for tackling the data sparsity problem. Not all morphologically
possible forms of a word will be attested (Chan, 2006) and in a morphologically rich language such as
Turkish, only a small fraction will be attested even in very large corpora. Paradigms can extend the
attested morphological forms from few but high frequency words to low frequency words, likely the
majority, for which there is little data. On the other hand, high quality paradigms may prove effective at
detecting spurious morphological relations between words that have plagued many previous models.
For instance, it is not uncommon for unsupervised morphological segmentation models to produce
segmentations such as with-in, with-out, and with-er, where with is an attested word and -in, -out, and
especially -er, are highly plausible suffixes (or more generally, morphemes). From the perspective of
the paradigm, a global property defined over all words that take the suffix set (-in, -er, -out), it is clear
that such a paradigm is very poorly supported—in fact by only one stem, namely, with, rather than a
substantial set. This suffix set, then, is very unlikely to be a true paradigm and will be discarded, thereby
eliminating segmentation errors such as with-er.

In this paper, we show that high quality morphological paradigms can be automatically constructed,
resulting in considerable improvement in unsupervised morphological segmentation accuracy. Section 2
provides a review of previous and related work. Section 3 describes the general framework of our
approach. Section 4 describes how to use linguistically-motivated language-independent heuristics
to generate candidate segmentations with transformation rules for each word. Section 5 describes
a probabilistic model of morphological learning that provides an initial segmentation including the
identification of potential suffixes. Section 6 lays out the details of constructing morphological paradigms
and a pruning process that eliminates spurious morphological relations. Section 7 reports the results of
our experiments on Morpho-Challenge data including English, Turkish, and Finnish in comparison with
previous models. Section 8 concludes with a discussion of future research.

2 Related Work

The Morpho-Challenge, held from 2005 to 2010, led to many successful morphology learning models.
The Morfessor baseline system (Creutz and Lagus, 2002; Virpioja et al., 2013) provides a framework
that maximizes the likelihood of the observation under the MDL principle. Creutz and Lagus (2005;
2007) extend the model with the maximum a posteriori (MAP) on both observed data and the model.
Semi-supervised models have shown to be effective on morphological segmentation (Kohonen et al.,
2010; Spiegler et al., 2010). In this paper, we focus on unsupervised learning of language morphologies,
based on the consideration that constructing annotating data is expensive, especially for low-resource
languages.

Narasimhan et al. (2015) adopt a log-linear model with semantic similarity measures obtained from
word embedding to identify morphologically related word pairs (Schone and Jurafsky, 2001) and
achieve impressive segmentation results on the Morpho-Challenge data. Such semantically based model,
however, requires a large corpus to train reliable word embeddings, which renders the method unsuitable
for low-resource languages.

The idea of paradigms has been explored in previous studies (Parkes et al., 1998; Goldsmith,
2001; Dreyer and Eisner, 2011; Ahlberg et al., 2014). Parkes et al. (1998) propose a model that
learns neat inflectional paradigms only for English verbs from a corpus. Goldsmith (2001; 2006)
uses heuristic rules with the MDL principle to greedily search morphological patterns (signatures).
But the performance of rule-based search methods is crucially determined by the heuristic rules, and
transformation rules are difficult to incorporate. Dreyer and Eisner (2011) proposed a log-linear model
to identify paradigms. However, their method requires a number of seed paradigms for training. In
morphologically rich languages such as Turkish, where one paradigm can be extremely large, this method
requires considerable human annotation effort. Ahlberg et al. (2014) use a semi-supervised approach to
learn abstract paradigms from a given inflection table. However, the task is different from what we
discuss here, which somehow discovers inflection tables as an intermediate step.

In the paper, instead of constructing paradigms as a goal, we select statistically reliable paradigms from
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the initial segmentation generated from a simple probabilistic model, and then use the reliable paradigms
for pruning the unreliable ones, which we refer to paradigm pruning. The advantage of the proposed
model is that it mathematically maximizes the likelihood of the observed data through the probabilistic
model as well as maintains the global morphological structure in terms of paradigms. As will be
demonstrated later, our method produces state-of-the-art results for morphological segmentation. It also
provides a promising approach to unsupervised morphological learning for low-resource languages for
which there is no sufficient quantity of data to enable embedding methods.

3 Our Method

We now formally describe our model. We write w = (r,s,t) for a word w that consists of a root
r, a suffix s, and a transformation rule ¢ which captures stem changes in morphological processes. A
morphologically simple word is treated as taking an empty suffix NULL without transformation rules.
For example, the word realizing can be analyzed as deleting the last letter e from the word realize and
adding suffix -ing, i.e. (realize, -ing, DEL-¢). To deal with words with multiple suffixes is trivial. If
w = (r,s,t)and r = (r',s',t'), then w = ((+', s, t’), s,t). Here, we call r the immediate root of w.
If the word has itself as immediate root, i.e. taking a NULL sulffix, it is called atomic. If v’ is atomic,
it is called the final root of w, otherwise, it is called an intermediate root of w. For example, the word
realizing can be represented as ((real, -ize, NULL), -ing, DEL-e), where (real, -ize, NULL) represents the
word realize. So, the final root of realizing is real, and the word realize is an intermediate root. Finally,
the task of morphological segmentation for a word is to recursively find immediate root until its final root
is found.

3.1 Modeling Transformation Rules

We model three stem changes, called transformation rules, namely deletion, substitution, and duplication,
similarly to (Narasimhan et al., 2015). These three transformation rules were mainly designed to capture
stem changes that are involved in suffixation. All transformation rules are represented with the specific
characters involved in changes. The definitions of the three transformation rules are as follows.

1. Deletion (DEL) of the end letter of the root. For example, the word using can be analyzed as (use,
-ing, DEL-e).

2. Substitution (SUB) of the end letter of the root with another. For example, the word carries can be
analyzed as (carry, -es, SUB-y+i)

3. Duplication (DUP) of the end letter of the root. For example, the word stopped can be analyzed as
(stop, -ed, DUP+p).

We note, however, that certain morphological phenomena do not readily yield to the transformation-
based approach here. Infixation and templatic morphology are obvious examples. Even agglutinative
systems, which at first glance appear suitable for transformation rules that operate at word edges, may
still prove problematic when more global morphological processes are at play. For instance, the Turkish
suffixes -lar and -ler will fall under two distinct transformational rules but are in fact one morpheme that
is realized differently due to vowel harmony. This problem does not pose insurmountable problems for
the purpose of morphological segmentation since both -lar and -ler are relatively frequent and can be
identified as genuine (and distinct) suffixes, but clearly a more robust representation of morphological
processes will be necessary to account for the full range of languages. We leave this problem for future
research.

3.2 Morphological Segmentation Framework

Our method is schematically described in Algorithm 1. It has several major components. The GETPRIOR
function sets the prior of the model parameters by assigning each candidate segmentation (r, s,t) of a
word w equal probability. The function GENSEG generates candidate segmentations, (r, s,t), for each
word w. A probabilistic model is then used to compute the probability of each candidate, i.e. P(r, s,t)
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based on the parameters estimated by the function ESTIMATE. Then the segmentation with the maximum
probability is chosen. The final segmentation (e.g. words with multiple suffixes) can be constructed
recursively as described in the beginning of this section.

After that, the function PARADIGMS reorganizes the segmented words into paradigms. The function
RELIABLE then selects a set of statistically reliable paradigms. The function ESTIMATE estimates the
model parameters based on the segmentation result derived from reliable paradigms. Then the new
parameters are used by the probabilistic model to get better segmentation result. The procedure iterates
for several times. Here, we let the algorithm iterate twice as we find it sufficient to produce high quality
segmentations. The function PRUNE prunes the unreliable paradigms. The final result is generated based
on the reliable paradigms and the pruned ones with function SEGMENTATION. The following sections
describe each component in details.

Algorithm 1 The main procedure
procedure MAIN(W ordList D)

1:

2 {P(r,s,t)} + GETPRIOR(D)

3 while iter < maxIter do

4: morph + {}

5: for all w in D do

6: segs < GENSEG(w)

7 seg < argmax(r, s, esegs L (T, 8, 1)

8 morph < morph + (w, seg)

9: pdgs < PARADIGMS (morph)
10: pdgs_reliable, pdgs_unreliable < RELIABLE(pdgs)
11: {P(r,s,t)} < ESTIMATE(pdgs-reliable)
12: pdgs_pruned < PRUNE(pdgs_unreliable)
13: return SEGMENTATION (pdgs_pruned + pdgs_reliable)

4 Generating Candidate Segmentations

4.1 Selecting Candidate Suffixes

To obtain a working set of suffixes, we first adopt a simple method from previous studies: given a word
pair (wy, wa), if we = wi + s, then s is a candidate suffix (Keshava and Pitler, 2006; Dasgupta and
Ng, 2007). By comparing all possible word pairs, we can generate a set of candidate suffixes with their
counted frequencies. The more frequent a candidate is, the more likely it is to be a real suffix. In our
system, we only keep candidate suffixes that are at most six character long and appear at least three times
in the word list. If applied naively, this method produces many short, spurious suffixes that are frequently
occurring substrings in words, e.g. (for, fore), (are, area), (not, note), (she, shed) etc. The problem can
be overcome by imposing a minimum length on words that are subject to candidate suffix generation. In
practice, we find that a minimum word length of four characters works well, which partially reflects the
prosodic constraints on minimal words from the linguistic literature (McCarthy and Prince, 1999).

In addition, if a candidate suffix can be taken by words of various lengths, it is more likely to be a real
one; if a candidate suffix can only be taken by short words, it is likely to be a false one. To further utilize
this information, we use the following equation to calculate the confidence value (conf) of a candidate
suffix.

conf(s) =log (14 |[W,|) x x> len(w) (1)

1
S| weWy

|W,
where W is the set of words that can take the candidate suffix s and form a new word, and len(w) is the
length of word w. Finally, we can select the top N candidates.

4.2 Generating Candidate Segmentations with Transformation Rules

The procedure for generating a candidate segmentation of target word w begins by stripping a possible
suffix s from the word. If the remaining part r is a valid word, then (r, s, NULL) is a possible candidate.
If 7 is not a word, but there exists a word r’=r+c and ¢ # s, then (r/, s, DEL-c) is a candidate. If 7 is in
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the form r’+c, and 7’ is a valid word also ending with ¢, then (r/, s, DUP-c) is a candidate. If r is in the
form r’'+c, r’ is not a word, but there exist another word w’=r'+c’ and ¢’#c, then (w', s, SUB-c+c') is a
candidate. If no possible suffix s could be found, then add (w, NULL, NULL) as a candidate.

We apply the transformation rule types in the following ordering: (NULL, duplication, deletion,
substitution). A candidate with a transformation rule is generated only if no candidate could be found
with a previous type. The ordering reflects the linguistic approaches to morphology where suffixation
applies to the stem changes, and the changes take place at morpheme boundaries before affecting the rest
of the words on either side (Halle and Marantz, 1993). The linguistic reality of these processes, once
more widespread in English, is now only latently reflected in modern English orthography but can be
transparently observed in other languages.

5 A Probabilistic Model for Morphological Segmentation

We evaluate the conditional probability of a segmentation (r, s,t) given a word w. Since each triple
(r,s,t) is uniquely associated with a single word w, denoted as (r,s,t) = w, for all (r,s,t),
P(r,s,tlw) = 0if (r, s,t) # w. Otherwise, we use the following formula to calculate this probability.

P(r,s,t)
Z(r’,s’,t’):w P(T’,, S,, t/)

To compute P(r, s,t), we assume that r is independent of s, and that ¢ depends on both r and s. Taking
into account that the transformation rules are not word form specific, but rather follow some constraints
based on the phonological structures of the word and the suffix. We assume that the transformation rule
t is dependent on feature extracted from r and s, denoted by f(r, s). Thus, P(r, s, t) can be decomposed
as follows.

P(r,s,tlw) =

2

P(r,s,t)=P(r) x P(s) x P(t|f(r,s)) 3)

In our implementation, we assume that ¢ depends on the last character of the root r (end(r)) and the
initial character of the suffix s (init(s)), i.e. f(r,s) = end(r)-init(s). For example, the probability of
the segmentation (carry, -es, SUB-y-i) for the word carries can be calculated by multiplying P(carry),
P(-es), and P(SUB-y+ilf), where fis y-e. Again, this is an approximation of the morpho-phonological
properties of language but one which nevertheless proves effective for morphological segmentation.

Finally, the segmentation of a word w can be predicted by choosing the segmentation (r, s, t) that
maximizes P(r, s, t) as follows.

seg(w) = argmax P(r, s, t) “4)

(r,s,t)=w
5.1 Parameter Estimation

To estimate the parameters P(r), P(s), P(t|f), we initially assume that each candidate segmentation of
a word has equal probability because the unsupervised model has no access to gold data. Each (7, s, t)
of all possible segmentations seg of a word w then obtains 1/|seg| weight. After that, the probabilities
P(r), P(s), and P(t|f) can be easily computed based on the frequencies of 7, s, f, and (¢, f). This
first estimation of the parameters P(r), P(s), P(t|f) is the prior returned by the function GETPRIOR in
Algorithm 1.

Consequently, the probability of a segmentation (r, s, t) of a word w can be computed using Formula 3,
and select the segmentation with the maximum probability. Here, EM can also be used for estimating
parameters, but we found that this simple method works very well. After the first round, the parameters
can be re-estimated by only using the predicted segmentation of each word, with the function ESTIMATE
in Algorithm 1.

As discussed above, the reliability of a candidate suffix is also related to the length of words that
can take the suffix. So, another way of estimating P(s) is to use the confidence value calculated with
Equation 1. We will show that the method gives better results.
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English Turkish Finnish
Suffix Set Sup Suffix Set Sup Suffix Set Sup
(-ed, -ing, -s) 772 (-ki, -n) 1560 (-ssa, -ta) 2465
(-ed, -ing) 331 (-n1, na) 207 (-en, -ta) 1132
(-ed, -er, -ing, -s) 219 (-n1, -na, -nda) 201 (-la, -le, -ta) 808
(-ly, -ness) 208 (-ne, -ni) 199 (-n, -ssa) 693
(-ed, -ing, -ion, -s) 154 (-1, -a) 165 (-ssd, -td) 677
(-ic, -s) 125 (-de, -e, -1, -in) 126 (-sen, -set, -sia, -ta) 462
(-ly, -s) 109 | (-nde, -ne, -ni, -nin) 82 (-en, -ssa, -ta) 328
(-ed, -ing, -ment, -s) 63 (~dir, -ki, -n) 81 (-sen, -set, -sid, -td) 177
(-ism, -s) 52 (-8i, -tir) 81 | (-a, -ksi, -la, -le, -ssa, -ta) 160
(-ed, -es, -ing) 52 (-de, -1) 79 (-aan, -ni) 156

Table 1: Examples of paradigm suffix sets and their supports of English, Turkish, and Finnish.

6 Paradigm Construction and Pruning

In this section, we discuss how to perform a post-pruning with a paradigm-based algorithm to exclude
noisy segmentations. We define a paradigm formally as follows.

e Paradigm p = S x R is a Cartesian product of a set of suffix S = {s;} and a set of roots R = {r;},
such that for any suffix s € S and root r € R, r can take s to form a valid word w by applying a
transformation rule ¢ 2.

With this definition, the larger the cardinality | R| is, the more reliable a paradigm p is. On the other
hand, it is not always true that the larger |S| is, the more reliable a paradigm is. An extreme case occurs
when there is only one root in the paradigm, i.e. |R| = 1. For example, the root the forms a paradigm
with 42 possible suffixes and all of them are false. We therefore define the support of a paradigm as
follows.

e Support (SUP) of the a paradigm p = S x R is | R|, the cardinality of the root set R.

6.1 Constructing Paradigms

After we get the segmentation (7, s, t) for each word w, the paradigms can be easily obtained by grouping
together the words that share the same immediate root r, regardless of the transformation rules that
are involved. For example, the words reporting, reported, and reports are segmented as (report, -ed,
NULL), (report, -ing, NULL), and (report, s, NULL) respectively, and the words baked, baking, bakes
are segmented as (bake, -ed, DEL-e), (bake, -ing, DEL-¢), and (bake, -s, NULL). Then we can construct
a paradigm based on these two words as {-ed, -ing, -s} x {report, bake}.

6.2 Paradigm Pruning

We crucially assume that even though the segmentation result given by the initial model is not highly
accurate, the distribution of paradigms constructed will provide clear evidence of whether they are
reliable. Table 1 shows some examples of paradigms with more than one suffix, and these are indeed
consistent with the morphological structures of the languages.

The paradigms with more than one suffix and with support value larger than 1 are selected as the
reliable ones, the same strategy used by Goldsmith (2001) for filtering when constructing candidate
paradigms. The method has two consequences. First, we exclude a large proportion of suffixes that
only appear in unreliable paradigms so that the frequency of suffixes be estimated based on the reliable
paradigms. Second, we can use the reliable paradigms as references for pruning the unreliable ones.

The basic idea of pruning unreliable paradigms with reliable ones is to take the intersection of the
suffix set of a paradigm to be pruned and that of any of the reliable ones and to choose the one that
achieves the best score. The score of a set of suffixes is calculated according to the following equation.

Transformation rules (or stem changes) are not considered a part of the paradigms, because they are usually not directly
driven by morphological processes but rather some phonological rules or others
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English | Turkish Finnish
Training (MC:10) | 878,036 | 617,298 | 2,928,030
Test (MC:05-10) 2,218 2,534 2,495

Table 2: Data Set. MC:10 is the Morpho-Challenge 2010 and MC:05-10 is the combined data of Morpho-
Challenge 2005-2010.

score(S) = Z conf(s) 5)

seSs

For instance, suppose we have an unreliable paradigm {-ed, -ing, -s, -se} x {appear} 3, which only
has support value 1, and there are two reliable paradigms with suffix sets (-ed, -ing, -s) and (-ed, -ing)
respectively. Then, the pruning algorithm calculates the intersection of the unreliable one and each of
the reliable ones, resulting in (-ed, -ing, -s) and (-ed, -ing). According to Equation 5, the former one will
be kept since it has a higher score. Thus, the original paradigm is pruned to {-ed, -ing, -s} x {appear},
and consequently, the false morphological relation between appease and appear (by -se) is filtered out.

7 Experiments

7.1 Experiment Setting
7.1.1 Data

We ran experiments on a combined version of the Morpho-Challenge 2005-2010 data sets including
English, Turkish, and Finnish, the same setup as Narasimhan et al. (2015). In our experiments, testing
words are included in the training set since the method is unsupervised. A statistical description of the
data is shown in Table 2.

As in previous work on unsupervised morphological learning, we use a frequency-based filtering
method to reduce noise in the data. This is necessary because the word list provided by Morpho-
Challenge 2010 is generated by lower-casing all running tokens in the corpora including abbreviations
and proper nouns. Many of these are three characters words. We use the following conditions to select
reliable roots: 1) freq > 2000 if len(word) < 3; 2) freq > 200 if len(word) < 4; 3) freq > 20 if
len(word) < 5;4) freq > 3 else. The motivation is that short words are expected to be more frequent;
rare short words are likely to be abbreviations or noise.

7.1.2 Compounding

We also add a compound inference module, which simply splits a word w before generating candidate
segmentations if it is composed of w; and ws. If there is more than one possible segmentation, then we
choose the one with maximum length of w;. The candidate segmentations are then generated for w; and
wy separately. The final segmentation result is obtained by combining the segmentation results of w;
and ws.

7.1.3 Evaluation

Following (Narasimhan et al., 2015), we measure the performance of our model with segmentation
points, i.e. the boundaries between morphemes in words. The precision, recall and F1 values on the
identification of segmentation points are reported.

7.2 Experiment Results

7.2.1 Ablation test

We first test five different variations of our model. The first one is the baseline system (Base) which only
uses the probabilistic Model without transformation rules. The second one (+Trans) is the baseline plus
transformation rules. The third one (+Comp) is the second one plus the compounding inference module.
The fourth one (+Prune) is the third one plus the paradigm pruning algorithm. The fifth one (+Conf) is

3The word appear takes suffix -se to form appease through a transformation rule DEL-r.
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English Turkish Finnish
Prec | Rec F1 | Prec | Rec F1 | Prec | Rec F1
Base 0.483 [ 0.686 | 0.567 | 0.616 | 0.621 | 0.619 | 0.521 | 0.245 | 0.333
+Trans | 0.531 | 0.807 | 0.641 | 0.589 | 0.728 | 0.651 | 0.393 | 0.338 | 0.363
+Comp | 0.511 | 0.861 | 0.641 | 0.582 | 0.728 | 0.647 | 0.389 | 0.606 | 0.474
+Prune | 0.814 | 0.783 | 0.798 | 0.651 | 0.514 | 0.574 | 0.688 | 0.436 | 0.534
+Conf | 0.810 | 0.787 | 0.798 | 0.600 | 0.746 | 0.665 | 0.712 | 0.481 | 0.574

Table 3: Experimental result of our model.

English Turkish Finnish
Method | Prec Rec F1 Prec Rec F1 Prec Rec F1
Morf-Base | 0.740 | 0.623 | 0.677 | 0.827 | 0.362 | 0.504 | 0.839 | 0.357 | 0.501
Morf-Cat | 0.673 | 0.587 | 0.627 | 0.522 | 0.607 | 0.561 | 0.782 | 0.452 | 0.573
LogLinear-C | 0.555 | 0.792 | 0.653 | 0.516 | 0.652 | 0.576 | 0.483 | 0.650 | 0.554
LogLinear-Full | 0.807 | 0.722 | 0.762 | 0.743 | 0.520 | 0.612 | 0.428 | 0.496 | 0.460
Our model | 0.810 | 0.787 | 0.798 | 0.600 | 0.746 | 0.665 | 0.824 | 0.452 | 0.584

Table 4: Comparison of our model with others. The numbers for Finnish are obtained by running the
systems by ourselves. The other numbers are from (Narasimhan et al., 2015).

the same as the fourth one except that the estimation of P(s) is based on the confidence value calculated
through Equation 1. In order to achieve the best performance, if a feature harms the performance, it will
be removed in the next round.

The results are shown in Table 3. Firstly, we can see that incorporating of transformation rules
improves the performance for all the three languages with 7.6%, 3.2%, and 3.0% improvements of F1
measure respectively. After adding the compounding analysis module, the performance is significantly
improved on Finnish, with 11.1% improvement of F1 measure. The paradigm pruning algorithm
significantly improves the performance on English and Finnish, with 15.7% and 6.0% of F1 measure,
and improves precision of the model on Turkish, although the overall performance decreases. Finally,
by using confidence based estimation of P(s), the performance is improved further on all the three
languages, achieving the best result for English and Turkish. For Finnish, the best result is actually
achieved without transformation rules, namely 0.824, 0.452, and 0.584 in Precision, Recall, and F1
respectively.

7.2.2 Comparison with other models

We compare our model with three systems including the Morfessor Baseline system (Morf-Base) (Virpio-
jaetal., 2013), Morfessor CatMAP (Morf-Cat), and the Log-linear model with full features (LogLinear-
Full) and the model without semantic similarity (LogLinear-C) in (Narasimhan et al., 2015). Besides
English and Turkish as used in (Narasimhan et al., 2015), we also add Finnish for experiments. For
training word embeddings which will be in LogLinear-Full model, we use a corpus created in the DARPA
LORELEI # project, which contains about 101 million tokens.

The result is shown in Table 4. The numbers for English and Turkish are from (Narasimhan et
al., 2015). We can see that our model achieves the best performance in all the three languages. The
LogLinear-Full model is the second best model on English and Turkish. However, it is worth noting that
that model is based on semantic similarity features which requires training word vectors on independent
corpora. Our model, on the other hand, only uses a list of words. The word frequencies are only used to
filter noise. Our model is significantly better than the (Narasimhan et al., 2015) model without semantic
embedding (i.e. LogLinear-C), with 20.1% relative improvement of F1 on English and 12.8% relative
improvement on Turkish. For Finnish, the Morfessor CatMAP model has similar result as ours. The
semantic similarity information harms the LogLinear-Full model. We think that this is due to the data
sparseness problem as Finnish is a highly synthetic language, which then requires a larger corpus for
training effective word embeddings.

*https://www.darpa.mil/program/low-resource-languages-for-emergent-incidents
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7.3 Error Analysis and Discussion

Morphology learning systems in general suffer from two major problems, namely over-segmentation
and under-segmentation. Over-segmentation is usually caused by spurious roots, either intermediate
or final, such as the over-segmented words caused by the short frequent words, e.g. the, with, etc.
Under-segmentation is usually caused by unseen intermediate roots or unidentified real suffixes. In
morphologically rich languages like Turkish and Finnish where a root can take multiple suffixes, this
problem is more serious.

Firstly, we can see from Table 3 that the use of transformation rules significantly reduces the under-
segmentation problem in all the three languages as indicated by the increased recall rates. For English,
the transformation rules also reduce the over-segmentation problem. This is due to fact that the
transformation rules can well capture the morphology of English and thus significantly increase the
true positive segmentations. On the other hand, the transformation rules increase the over-segmentation
problem for Turkish and Finnish as indicated by the decreased precisions. For Finnish, the best
performance of the system is achieved without transformation rules. That is due to the fact that Finnish
morphology involves a large number of vowel changes, e.g. lengthening and shortening at non-boundary
positions, which cannot be captured by the current transformation rules. However, the transformation
rules we use introduce a large number of false stem changes which then causes the over-segmentation
problem increased. We will address this problem in our future research.

Secondly, the compounding module can further improve the recall rates and thus decrease the under-
segmentation problem for English and Finnish. This also reflects the compounding nature of the
languages and also the distribution of the test set.

Finally, the pruning algorithm significantly reduces over-segmentations for all three languages as
indicated by the increased precision values. However, the under-segmentation problem is also increased.
This is due to the identification of incomplete paradigms which is then caused by data sparseness
problem. For Turkish, the problem is even more serious. Pruning with incomplete paradigms will falsely
exclude real suffixes from an unreliable paradigm. This problem can be potentially addressed by merging
proper paradigms to identify the maximal suffix sets (complete paradigms). This will be in our future
research.

8 Conclusion and Future Work

In this paper, we propose an unsupervised model of morphology learning which outperforms the state-
of-the-art systems, using only orthographic information from a word list. Our contribution also lies
in providing a new method of using automatically learned paradigms to fine tune the morphological
segmentation results produced by a simple probabilistic model. This method is effective in eliminating
spurious segmentations and improving the segmentation accuracy. Finally, we also use the word length
information to select good candidate suffixes and estimate the suffix probabilities, which can further
improve the performance of the model. In addition, combining our model and semantics based systems
can potentially yield better result since they use different kinds of information and complement each
other.

We believe that our approach of using paradigms provides a foundation for dealing with other
morphological types such as prefixes, infixes, reduplication etc. In detail, the notation of the suffix
variable s can be generalized to f, a morphological function that takes a root as input and produces
the derived form. Correspondingly, the definition of paradigms could be easily revised as a set of
morphological functions that can take a set of words and generate their derived forms. We will work
on extending our system to process other types of morphologies in our future research.
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