
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: System Demonstrations,
pages 273–277, Osaka, Japan, December 11-17 2016.

WordForce: Visualizing Controversial Words in Debates

Wei-Fan Chen Fang-Yu Lin Lun-Wei Ku
Institute of Information Science,
Academia Sinica, Taipei, Taiwan.

viericwf@iis.sinica.edu.tw, nis50122806@gmail.com, lwku@iis.sinica.edu.tw

Abstract

This paper presents WordForce, a system powered by the state of the art neural network model
to visualize the learned user-dependent word embeddings from each post according to the post
content and its engaged users. It generates the scatter plots to show the force of a word, i.e.,
whether the semantics of word embeddings from posts of different stances are clearly separated
from the aspect of this controversial word. In addition, WordForce provides the dispersion and
the distance of word embeddings from posts of different stance groups, and proposes the most
controversial words accordingly to show clues to what people argue about in a debate.

1 Introduction

Word embeddings have been widely used in deep neural networks and have achieved promising results.
Compared to the traditional n-gram feature, which represents each document as a high dimensional
sparse vector, the word embedding is representing with the low dimensional and dense vector. Hence
using embeddings has its merits on decreasing training time and reducing complexity, and many papers
have introduced different compositions of word embeddings in their work for comparison (Chen et al.,
2015; Lai et al., 2015). However, one drawback of using word embeddings is that human cannot interpret
its meaning as when using n-gram feature. In previous work, one solution is to visualize the word em-
beddings by reducing them into two-dimensional vectors on a x-y plot to view the semantic distribution
of words. For example, in Iyyer et al.’s work we see people’s names would cluster together when they
have the same jobs or positions, e.g., presidents of United States, prime ministers or emperors (Iyyer et
al., 2014); ScholarOctopus1 and tsnejs2 visualize research articles embeddings and word embeddings,
respectively; Mikolov also shows the semantics can be calculated using this kind of two dimensional
plot (Mikolov and Dean, 2013); the semantic word cloud based on word embedding visualizes the word
usage in product reviews (Xu et al., 2016). All these show the distance between word embeddings reveals
semantic relations.

In a time that social media becomes part of our life, we attempt to observe the user-dependent word
embeddings in a debate to analyze user-dependent semantics. In the past, incorporating meta data to
train neural network models for sentiment analysis on product reviews and social media texts has been
shown to be effective. For example, our UTCNN integrates users, topics and comments information
in Facebook posts (Chen and Ku, 2016); Dong et al. consider topics and add an adaptive layer in their
recursive neural network for target-dependent Twitter sentiment (Dong et al., 2014); Tang et al.’s UPNN
incorporates users and products (Tang et al., 2015). In this paper, to see how this kind of word embed-
dings can be further utilized, we consider users who posted or liked the post in the process of training
word embeddings in addition to a pure text-based neural network models (Kim, 2014). Such learned
word embeddings for the same word would differ among posts when the engaged users are different.

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

1http://cs.stanford.edu/people/karpathy/scholaroctopus/
2http://cs.stanford.edu/people/karpathy/tsnejs/wordvecs.html
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Figure 1: The WordForce interface showing the results of the controversial word上漲(rise). The selected
post comments that after the implement of non-nuclear policy, the electricity rate in Japan has risen 25-
30%; if we follow, how many factories will be closed and how many unemployed people will we have?

Therefore, we may investigate their semantic difference and how they can contribute to the analysis of
the stance classification problem in debates.

For this purpose, we present the web-based system, WordForce3, where users can query an arbitrary
corpus word to get its visualization and statistic information. Figure 1 shows the query result of searching
the word上漲(rise) in the nuclear power plant construction debate. The left-hand side shows the two-
dimensional visualization including its word embedding in each post and a decision boundary between
the supportive and unsupportive stance (if applicable). Supportive/unsupportive posts were those in
support of or against anti-reconstruction; neutral posts were those evincing a neutral standpoint on the
topic, or were irrelevant. The stance of the post where the word embedding is from is indicated by
different dot colors: blue for supportive, gray for neutral, and red for unsupportive. The plot here suggests
that the word rise, referring to the rise of electric charge in the nuclear power debate, has different
semantics between the supportive and unsupportive posts as we expect. The right-hand side shows
distribution statistics. Further clicking on any dot will show the original post content below the plot,
e.g., after clicking a red dot, the unsupportive post arguing that the abandon of nuclear power will rise
the electricity rate shows below.

2 Learning User-Dependent Word Embeddings

To learn the user-dependent word embeddings for stance classification and visualization, we train the
50-dimensional word embeddings via GloVe (Pennington et al., 2014). These embeddings are then
transformed via a user-dependent matrix embedding Uk as in equation 1.

x′w = Uk · xw (1)

where xw and x′w are the word embeddings of word w trained by GloVe and the transformed word em-
beddings, respectively. The user-dependent matrix embedding models the user’s preference for reading
certain semantics where the “user” denotes a pseudo user on behalf of all likers and authors in a given
post. Then the transformed word embeddings x′w are used as the input of a convolutional neural net-
work and fed into a fully connected network to yield the final post stance. The detail descriptions of the
proposed neural network model is included in the paper of UTCNN (Chen and Ku, 2016).

We collect data from anti-nuclear-power Chinese Facebook fan groups in one year period of time,
including posts and their author and liker IDs. There are a total of 2,496 authors, 505,137 likers and

3WordForce is available at http://doraemon.iis.sinica.edu.tw/wordforce
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Supportive Neutral Unsupportive all

Annotation 7,504 24,816 275 32,595

Stance Classification .698 .957 .571 .755

Table 1: Annotation results and f-scores of stance classification of Facebook dataset.

32,595 posts. We annotate the stance of all posts as supportive, neutral, or unsupportive. The annotation
results are shown in the first row of Table 1. On average, 161.1 users are engaged to one post. The
maximum is 23,297 and the minimum is one (the author). Experimental results show that the proposed
model achieves good results on the Chinese Facebook fans group material as shown in the second row of
Table 1 (Chen and Ku, 2016). For comparison, this model is also tested on the English open benchmark
CreateDebate for stance classification and it outperforms the state of the art by achieving the accuracy
0.842 against 0.735 (Sridhar et al., 2015; Chen and Ku, 2016).

3 WordForce

On top of the word embeddings obtained from the state of the art neural network model for stance clas-
sification, WordForce visualize these embeddings for debatable issues to provide useful information for
research surveys or industrial applications. WordForce can illustrate each corpus word by displaying a
two-dimensional word embedding distribution plot as well as the inter- and intra-group distances (dis-
persion and distance, respectively), where a “group” is a set of word embeddings from posts of the same
stance label. Furthermore, with these statistics, WordForce can propose different types of controversial
words ,i.e., aspects or events that people of different stance are arguing about.

From Controversial Word Visualization to Suggestion After training, we gather all the word embed-
dings from the user-dependent transformation. For each corpus word, we collect their transformed word
embeddings x′w and project them into a two-dimensional space via t-SNE (Maaten and Hinton, 2008).
The two dimensions of the t-SNE plot implicitly present latent sentiment or semantic so that similar
words would have similar vector representations as in many related work (Iyyer et al., 2014; Melamud
et al., 2015).

Now with the positions of embeddings of one word, WordForce can further calculate their intra- and
inter-group distance. The intra-group distance (dispersion) of group g is defined as the average Euclidean
distance to the group mean shown in equation 2.

Dispersion (g) =
1
Ng

∑
n

‖vn,g − µg‖ (2)

where Ng is the size (number of dots) of this group, vn,g is the n-th vector, and µg is the mean of the
group g, respectively. The inter-group distance (distance) is the average link between two groups as in
equation 3.

Distance (gi, gj) =
1

Ngi ·Ngj

∑
vn∈gi,vm∈gj

‖vn − vm‖ (3)

where Ngi and Ngj are the sizes of group i and j, respectively; vn and vm are the n-th vector of group
i and the m-th vector of group j, respectively. A low dispersion value indicates posts and their engaged
users of the same stance group agree in its semantic, while a high distance value indicates posts and their
engaged users vary a lot among groups and can be separated. With the dispersion and distance value of
each word calculated from its embeddings, WordForce is then able to propose controversial words by
ordering their dispersion value ascendingly and the distance value discendingly.

Table 2 shows some words with a high inter-group distance, a low intra-group dispersion or a high
TFIDF value, which confirms that WordForce can propose different controversial words in addition to
the conventional topical words. WordForce also lists these words for users to see their word embedding
distribution plots and statistics.
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Controversial Word Type Example (Translation)

Top high TFIDF 龍門(lonmen),絕食(hunger strike),夏天(summer)
Top high distance 日光(solar),廢氣(air pollution),煙囪(chimney)
Top low dispersion 核融合(nuclear fusion),國庫(exchequer),偵檢器(radiation-detector)

Table 2: Example controversial words proposed by WordForce.

Figure 2: Word embedding distribution plots for絕食(hunger strike) and廢氣(air pollution).

Discussion We select some cases to illustrate WordForce. Figure 1 shows the plot and statistics of the
word上漲(rise). The dispersion of the neutral group is much larger than that of both the supportive group
and the unsupportive groups, and the large inter-group distance tells that supportive to unsupportive
posts are more different than neural to supportive or neutral to unsupportive posts. The trend these
numbers tell can be easily captured by reading the plot. From the plot we also find that the unsupportive
posts are clustered into several sub-groups. These sub-groups represent different related arguments. For
example, the sub-group on the far right collects news articles discussing the disadvantages of abandoning
nuclear, while the one in the middle includes some personal criticisms. All these observations confirm
that WordForce can facilitate deeper analysis.

In Figure 2 we show another two word embedding examples: 絕食(hunger strike) at the right-hand
side and廢氣(air pollution) at the left-hand side. The word絕食(hunger strike) seems to be unrelated to
the nuclear issue but the word embeddings tell differently and are clearly separated: going deeper we find
a former politician has organized a hunger strike against the nuclear power. Hence some related posts
support the hunger strike to opt for the anti-nuclear, and the others say the hunger strike is a publicity
stunt so that to be against the anti-nuclear.

Unlike hunger strike, air pollution is related as the thermal generation supplies most electricity in
Taiwan but produces much air pollution. However, the word embeddings from posts of different stances
are mixed up. Going deeper we find that both supportive and unsupportive posts express the same opinion
towards it: air pollution is a disaster. In supportive posts, users dislike air pollution and suggest to use
clean energy such as the solar or hydroelectric power. On the other hand in unsupportive posts, users
dislike air pollution either but suggest to use nuclear power as it produce almost no air pollution.

4 Conclusion

We present WordForce, a user-dependent word embedding visualization and analysis system for debate
issues, to demonstrate how to analyze transformed word embeddings from the stance aspect. WordForce
can provide two-dimensional scatter plots as well as the dispersion and the distance values to demonstrate
the word force for debatable topics. In the future, we plan to apply it on the research problems related to
more debate issues.
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