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Abstract
We demonstrate our large-scale NLP systems: WISDOM X, DISAANA, and D-SUMM. WIS-
DOM X provides numerous possible answers including unpredictable ones to widely diverse
natural language questions to provide deep insights about a broad range of issues. DISAANA
and D-SUMM enable us to assess the damage caused by large-scale disasters in real time using
Twitter as an information source.

1 Introduction

This paper describes three large-scale NLP systems we have developed at NICT: WISDOM X, DIS-
AANA, and D-SUMM. The first system, WISDOM X1, is an open-domain question-answering (QA)
system for Japanese using 4-billion web pages as an information source. It was designed to enable users
to obtain a wide and deep perspective on a broad range of issues. The range of questions that humans
can pose is unlimited and web texts are a valuable information source for compiling a comprehensive list
of answers. Such answers are expected to include unknown unknowns in the infamous words of Donald
Rumsfeld, which are things that “we don’t know we don’t know” (Torisawa et al., 2010). For instance,
even though global warming is a severe and widely discussed problem that might result in devastating
unknown unknowns for many people in the future, no exhaustive list of answers has been compiled to the
question: “What happens if global warming worsens?” Although many documents available on the web
actually describe the possible consequences of global warming, only a few can be discovered using com-
mercial search engines because they merely provide a huge number of documents that users have to read.
By contrast, WISDOM X, for instance, provides hundreds of answers to the question, and furthermore
suggests new questions related to the first question to have deeper knowledge related to the issue.

Our other two systems, DISAANA2 and D-SUMM3, were developed to help disaster victims and
rescue workers in the aftermath of large-scale disasters. One lesson from the 2011 Great East Japan
Earthquake was that a large-scale disaster can destroy a wide range of infrastructure, disrupt lives, and
cause many unpredictable situations. Immediately after the disaster, much useful information was trans-
mitted into cyberspace, especially for such social media as Twitter. Nevertheless, because most people
were overwhelmed by the huge amount of information, they were unable to make proper decisions and
much confusion ensued. DISAANA provides a list of answers to questions such as “What is in short
supply in City X?” and displays locations related to each answer on a map (e.g., locations where food is
in short supply) in real time using Twitter as an information source. D-SUMM summarizes the disaster
reports from a specified area in a compact format and enables rescue workers to quickly grasp the dis-
aster situations from a macro perspective. In the 2016 Kumamoto Earthquake (M7.0), DISAANA was
actually used by the Japanese government4 and provided a wide range of useful information, including
such unpredictable one as the shortage of Halal foods5.
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

1publicly available at http://wisdom-nict.jp (in Japanese)
2publicly available at http://disaana.jp (in Japanese)
3publicly available at http://disaana.jp/d-summ (in Japanese)
4“Analyzing tweets to comprehend necessities,” Yomiuri Shimbun Evening edition, p.1, 2016, May 11.
5The Muslim population in Japan is quite small.
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(a) Results from the factoid QA system.
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(b) Results from the why-QA system.
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(c) Results from the what-happens-if QA system.

Figure 1: Example screenshots of WISDOM X.

In the following, we provide an overview of WISDOM X, DISAANA, and D-SUMM.

2 WISDOM X: Information Analysis System

WISDOM X, which discovers answers to given questions from about 4-billion web pages by several
kinds of deep semantic processing, consists of four QA systems, each of which deals with different types
of questions: factoid (e.g., What prevents global warming?), why-type (Oh et al., 2012; Oh et al., 2013;
Oh et al., 2016) (e.g., Why did the global warming worsen?), what-happens-if-type (Hashimoto et al.,
2012; Hashimoto et al., 2014) (e.g., What happens if global warming worsens?), and definition type
(e.g., What is global warming?). It also has a functionality that suggests questions to users. These QA
systems use a large-scale knowledge base for entailment recognition(Saeger et al., 2009; Hashimoto et
al., 2009; Saeger et al., 2011; Hashimoto et al., 2011; Kloetzer et al., 2013; Sano et al., 2014; Kloetzer
et al., 2015) and semantic noun clusters (Kazama and Torisawa, 2008). We also developed a middleware
RaSC (Tanaka et al., 2016) to efficiently run various NLP tools on hundreds of computation nodes.

We designed WISDOM X to provide a wide range of pin-point answers, e.g., a noun phrase for factoid
questions and a sentence for what-happens-if-type questions. This feature constitutes a major difference
from commercial search engines, which merely give web pages for a given query and rely on human
effort to ascertain pin-point answers. In addition, WISDOM X can provide numerous answers to a given
question. For instance, the current version of WISDOM X provides around 800 answers to the question,
“What is AI used for?” (Figure 1a). Since all the answers are presented as noun phrases, it is relatively
easy to find useful or interesting answers from them. It would be extremely difficult to find 800 answers
for the same question by reading the documents provided by search engines. This feature of WISDOM
X is expected to be useful for the discovery of relatively unknown ideas in AI applications, for instance,
and for the creation of novel and innovative ideas using such unknown but already written ideas as hints.
WISDOM X also enables us to search for relatively unknown future risks, such as the undesirable side
effects of the Tokyo Olympic games in 2020.

264



Moreover, WISDOM X enables us to create valuable hypotheses, which are not described in our
information source, i.e., 4-billion web pages. Figure 1c portrays the process of hypothesis creation.
Initially, a user poses a question, “What happens if global warming worsens?” and one answer is that
“the sea temperature will rise.” If the user clicks on that answer, the system suggests another question,
“What happens if the sea temperature rises?” and the answer includes “Vibrio parahaemolyticus swells.”
By repeating this process, the user can create the following hypothesis: “if global warming worsens,
the sea temperature rises and an increase of food poisoning will be caused by Vibrio parahaemolyticus.”
This is actually a chain of causalities. Although we were unable to find any web pages that describe the
entire hypothesis in our web archive, Baker-Austin et al. (2013) partly confirmed it.

In the above hypothesis creation process, the question suggestion played an important role. WISDOM
X suggests other types of questions as well, including “Why does Vibrio parahaemolyticus swell if the
sea temperature rises?” (Figure 1b) and “What is Vibrio parahaemolyticus?” The first question can be
regarded as a question asking for textual support for the causality between the rise of the sea temperature
and Vibrio parahaemolyticus. Such questions can be used to identify highly reliable answers among those
provided by WISDOM X. In addition, when a user gives a keyword instead of a question as a query,
WISDOM X lists answerable questions related to it. For example, when a user inputs “smartphone,”
WISDOM X suggests roughly five hundred questions, such as “What can smartphones resolve?”

WISDOM X sorts the answers according to their confidence scores, whose computation varies de-
pending on the question type. For instance, the scores of answers to the why-type questions are provided
by a supervised classifiers (Oh et al., 2013). In addition, semantically similar answers to factoid ques-
tions are grouped together as far as possible to help users to find answers that are valuable to them. The
semantic similarities are computed using unsupervised word clustering (Kazama and Torisawa, 2008).

3 DISAANA and D-SUMM: Disaster Information Analyzer and Summarizer

DISAANA analyzes tweets in real time, discovers disaster-related information, and presents it in or-
ganized formats. It has two modes: QA and problem-listing. In the QA mode, for example, a user
can enumerate goods in short supply in Kumamoto merely by asking, “What is in short supply in Ku-
mamoto?” (Figure 2a). The answers are classified by such semantic categories as medical supplies for
readability. A user can also enumerate them on a map (Figure 2c). In the problem-listing mode, a user
can obtain a list of problems, such as “people were buried alive,” which are occurring in a specified area
(prefecture, city or town) without questions by using Varga et al. (2013)’s method (Figure 2b).

We constructed a million-scale location DB, which includes part-of relations between locations (e.g.,
Mashiki town is part-of Kumamoto prefecture) and each latitude and longitude of locations, to identify
locations in tweets and display them related to the answers on a map. We did not use geotags attached
to tweets because only a small fraction of them are actually geotagged due to privacy issues and the
reported locations are often different from the locations from which users post tweets. When an area is
specified in queries, the answers and problems related to the subparts are also presented to users. This is
yet another function that has not been provided by commercial search engines.

One problem with DISAANA is that it often provides too many answers, which are difficult to grasp
instantly. To address this problem, we developed D-SUMM (Figure 3), which summarizes the list of
problems in a specified area provided by DISAANA. Similar problem reports such as “buildings col-
lapsed” and “houses were demolished” were merged into a single problem report. In addition, the reports
were classified according to their subparts of a specified area.

Another important issue is false rumors. In past disaster situations, numerous false rumors were
spread widely on Twitter (e.g., “Drinking iodine protects against radiation” during the 2011 Great East
Japan Earthquake). DISAANA and D-SUMM give an alert to users by retrieving not only answers but
also information that contradicts the answers by using a modality analyzer (Mizuno et al., 2015) and
contradictory patterns (Kloetzer et al., 2013). For example, when “acid rain” is one of the answers to the
question, “What happened in a petrochemical complex?” and there is a tweet that contradicts the answer
such as “Acid rain in the petrochemical complex is a false rumor,” DISAANA presents it alongside the
original tweet: the source of the answer. By examining such contradictory information, users can notice
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(b) Results from the problem-listing mode.
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Figure 2: Example screenshots of DISAANA.
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Figure 3: Example screenshot of D-SUMM.

the possibility of false rumors.

4 Conclusion

In this paper, we introduced three systems: WISDOM X, DISAANA and D-SUMM. We are going to add
more intelligent functionality to the systems, such as more advanced reasoning mechanisms (Hashimoto
et al., 2015) and such highly accurate linguistic analysis tools as anaphora resolution (Iida et al., 2016).
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