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Abstract

Any real world events or trends that can affect the company’s growth trajectory can be considered
as Risk. There has been a growing need to automatically identify, extract and analyze risk related
statements from news events. In this demonstration, we will present a risk analytics framework
that processes enterprise project management reports in the form of textual data and news doc-
uments and classify them into valid and invalid risk categories. The framework also extracts
information from the text pertaining to the different categories of risks like, their possible cause
and impacts. Accordingly, we have used machine learning based techniques and studied differ-
ent linguistic features like n-gram, POS, dependency, future timing, uncertainty factors in texts
and their various combinations. A manual annotation study from management experts using risk
descriptions collected for a specific organization was conducted to evaluate the framework. The
evaluation showed promising results for automated risk analysis and identification.

1 Introduction

A real world event that has an associated probability of causing damage, injury, liability, loss or any
other negative impact is termed as a risk(Lu et al., 2009; Slywotzky and Drzik, 2005; Beasley et al.,
2005; Lu et al., 2009). Organizations are always on the look out for information related to such events
caused by internal and external vulnerabilities such that the possible negative impacts may be avoided
through preemptive action. Sources of risk can be many. The difficulty of risk identification arises from
the diversity of the sources. Risks can arise from uncertainty in financial markets(Leidner and Schilder,
2010; Ykhlef and Algawiaz, 2014), industrial processes or due to project failures. Unexpected events
like natural disasters, legal issues, deliberate attacks from adversaries or certain competitor moves can
all lead to situations that can impact an organization and hence can be termed as risks.

Generally, a risk has the following characteristics: The risk type RT or a name for the description of
the risk that characterizes the nature of the adversarial potential, The cause RC or the event that may
cause the specified risk and the impact RI that deals with the severity of the damage caused once it
materialize.

Like all expert-driven activities that involve knowledge about handling uncertainties and predictive
capabilities, risk analysis is a complex task that requires expertise that is acquired with experience. It is
difficult to document. Besides, experts differ in their opinions. Sifting through a large number of such
analyst reports and summarizing them is a tedious activity(Kogan et al., 2009). In this work, we present
text mining techniques that can analyze large volumes of analyst reports to automatically extract risk
statements, aggregate them and summarize them into risks of various categories.

As mentioned earlier, experts predict risks as probable future events that can impact business out-
comes. The proposed methods employ machine learning based techniques to learn linguistic features
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and their dependencies from labeled samples of risk statements. The learned classifiers are applied to
input text, wherein every sentence in the text is subjected to binary classification as ”risk” or ”not a risk”.

The salient contributions of this demonstration are as follows:

1. A machine learning and computational linguistics based framework to analyze textual News events
and classify them into true risk and false alarm categories,

2. Extract different categories of risk factors like causes and their possible impacts.

2 Proposed Risk Classification Framework
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Figure 1: Architecture of the risk identification framework

The overall architecture of the risk classification and analysis framework is depicted in Figure 1. The
proposed architecture has four primary modules: a) The Linguistic pre-processing unit b) Feature ex-
traction unit c) Risk classifier unit and d) the Risk analysis unit. The input text is first passed to the
preprocessing unit that removes html tags, and foreign language characters from the text. The prepro-
cessed text is then passed to the Stanford parts-of-speech(POS) tagger and parser to label each word with
their corresponding POS and to extract different dependency relations within the sentences. From the
output of the POS tagger, root verbs are extracted and passed to an English morphological analyzer to
identify the tense, aspect and modality of the root verb.

The syntactically analyzed text is then passed to the feature extraction unit. The features considered
can be broadly classified into three types a) Future timing in texts, b) Uncertainty in texts and c) tradi-
tional linguistic features.

Future timing refers to the expressions that indicate (possible) upcoming events or states. For instance,
the verb “expects” in the sentence Testing of OCR division is expecting an overall fall in performance in
the next few months, indicate future timing.

Uncertainty mainly ”concerned with the speaker’s assumptions, or assessment of possibilities, and,
in most cases, it indicates the speaker’s confidence or lack of confidence in the truth of the proposition
expected” (Coates, 1987). Various levels of uncertainty can be inferred from the expression. As a
preliminary study, we have used only the presence of epistemic modal expressions like, modal auxiliaries,
epistemic lexical verbs, adverb, adjectives and nouns to determine uncertainty in a text (Coates, 1987).

In traditional linguistic features we have considered N-gram counts (N), POS features(POS), De-
pendency features (D) that includes dependency length, and occurrence of adverbial clause modifier,
auxiliary, negation modifier, marker, referent, open clausal complement, clausal complement, expletive,
coordination, passive auxiliary, nominal subject, direct object, copula, and conjunct.

2.1 SVM based risk classification Model
Once the textual feedback is provided as an input to the system, it is first preprocessed and analyzed by
the linguistic processing unit. The classifier learns each of the above linguistic features from a training
sample of 5000 news articles collected from various online sources. We have primarily employed support
vector machines (SVM) to develop a binary classifier that, given a news event would assign label ”Risk”
or ”Not a risk” based on the textual properties. The SVM was implemented using the LIBSVM (Chang
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and Lin, 2011) software. Further, we have applied the SVM recursive feature elimination method (Duan
et al., 2005) to significantly reduce the number of features from the training sample. We have tested
four types of kernels namely linear, polynomial, radial basis and sigmoid on the data, but we have
presented results against only linear and polynomial kernels as the other two functions were found to be
significantly poor performers.

2.2 The risk analyzer
Once ”risks” are identified, they are passed to the risk analysis module for the identification of risk causes
and their possible impacts. For this, we have followed a similar technique as discussed in (Chang and
Choi, 2004). The identified risk along with its associated metadata like cause, impact, and time of arrival
are stored into the risk register to generate risk reports. Determination of cause-effect pair from the risk
statement consists of two parts.(a) Sentence Segmentation,(b) Cause-Effect classifier

We define a probable candidate for cause or effect phrase as a verb-rooted syntactic tree, which con-
nects one noun phrase to the other with causal relation. Here, we propose a novel and robust dependency
tree based sentence segmentation algorithm which considers the syntactic variation in the sentences such
as the passive and verbal chains to effectively extract the probable cause-effect phrases from a risk state-
ment spread across a single long sentence or multiple sentences. The algorithm of the segmentation
module is depicted as follows:

Algorithm 1 *

dependency tree based sentence segmentation algorithm
1: Input: Valid Risk statement: S;
2: Output: A set of causality candidates: C
3: POS tag S and get the dependency tree (or trees for multiple sentences) D of S
4: Q=set of nodes of D which are verbs(in any form or tense) and the root(s) node of D
5: C=””
6: Visited[q]=FALSE for all nodes q ;
7:

8: for each node q ∈ Q do
9: segment=TRAVERSE(q)

10: C = C ∪ segment
11:

12: end for
13:

14: TRAVERSE (Node x)
15: S=x
16:

17: for each child c of x do
18: if (visited[c] = FALSEandc /∈ Q) then
19: Visited[c]=TRUE
20: S=S ∪ TRAVERSE (c)
21: end if
22: end for
23: return S

end
The cause-effect classifier classifies the candidate ti ∈ T into cause (C0) or effect (C1) or none (C2).

In a long sentence or in a multiple sentence statement there may be some parts which expresses neither
cause nor effect. To capture this, we have introduced the class C2 which denotes neither cause nor effect.
For example, in the sentence:
Requirements for a project may change over its lifetime. Change in requirements will lead to change
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in test cases and test data. This will affect the schedule planned for testing which in turn may lead to
schedule-slippage of the entire project.

The cause/impact candidates we get are: t1 : ”Requirements for a project may change over its lifetime”
, t2 : ”Change in requirements will lead”, t3 : ”to change in test cases and test data” , t4 : ”This will
affect the schedule” , t5 : ”planned for testing” , and t6 : ”which in turn may lead to schedule-slippage
of the entire project”. Here, the candidates t1 and t5 belongs to neither cause nor effect. Since, we are
driven towards finding a solution using unsupervised learning method, it is difficult to learn the classifier
parameter for C2. Thus, we will compute the optimal class C∗ of the candidate ti as:

C∗ = argmaxC=C0,C1P (C|ti), if Dist(ti) > µ

= C2, otherwise
(1)

Where,

Dist(ti) = | log(P (C0|ti))− log(P (C1, ti))
log(P (C0|ti)) + log(P (C1, ti))

| (2)

and,

P (C|ti) =
P (C) ∗ P (ti|C)

P (t)
≈ P (Ti|C) (3)

We have considered unigram, as the features of the candidate ti. All these features are considered inde-
pendent of each other. Therefore P (ti|C) can be written as

∏k=|ti|
k=1 P (Wk,ti |c).

Where, |ti| denotes the total no of words in ti after removal of stop words, and Wk,ti denotes the kth

word in ti. All the above defined probabilities can be learn from the cause-effect annotated data-set.
In this paper we have considered raw corpora instead of annotated corpora to automatically learn these
probabilities. In the following subsection we will discuss the technique in details.

There are three training stages. In the first stage, initial probabilities of naive bayes classifier was
learned from bootstrapping. From the raw corpora, we have extracted few cause-effect pair automati-
cally using some predefined patterns. From these extracted cause-effect pairs, initial probabilities of the
classifier are learned. For example, some of the sample pairs are as follows:

X may result Y , If X then Y , X will affect Y, Y because of X.
Here, X is the cause phrase and Y is the effect phrase. We compute the Unigram probability as,

P (w|c) =
(No of occurrences of w in class c+ 1)

(N + |V |) (4)

where N= no of words in class c and V=vocabulary size of the corpus. The parameters are estimated with
Laplace smoothing method for out of vocabulary words in the training data. The second stage is called
the expectation step. The remaining training corpus where cause-effect pair are not been identified by
bootstrapping is classified with the current classifier. The final training stage is called the maximization
step. From the newly cause-effect classified data parameters are re-estimated. Parameters trained in
EM are word probability P (wk,ti |c). The parameters are estimated using Laplace smoothing method
for words unseen in the training data. The expectation and maximization step are repeated while the
classifier parameters improve.

3 Experimentation and Evaluation

We have collected a corpus of around 7000 risk descriptions of a specific organization over the period
of seven months. Each of the chosen risk descriptions were manually annotated by a group of project
management experts. The annotation process involves identifying risk statements, their potential causes
and impacts. 60% of the data is used for training the model and the rest for testing. We have evaluated the
performance of both the risk classification system and risk analysis system by comparing its output with
that of the expert annotations. We quantify the performance score in terms of the precision(P), recall(Re),
F-measure(F) and accuracy(A) values (See Table 1). We have tested four type of kernels namely linear,
polynomial, radial basis and sigmoid on the data. However, we have presented results against only linear
and polynomial kernels as the other two functions were found to be significantly poor performers. To
evaluate the quality of the classifications for SVM, multiple correlations (R) have been used.
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Table 1: Evaluating the risk classifier. ALL is the combination of U,POS, D and Un features.
Linear Polynomial

Features P Re F A R P Re F A R
U 82 89 85 83 .51 74 71 72 68 .46
B 71 73 72 74 .43 67 77 71 69 .40

POS 57 66 61 55 .67 51 63 56 51 .23
D 67 78 72 68 .63 69 78 73 74 .27

Wn 65 41 50 43 .43 54 47 50 53 .21
S 79 81 80 81 .39 72 76 74 73 .56

Un 77 76 76 79 .67 70 79 74 70 .67
ALL 86 90 88 87 .71 80 88 84 85 .73

4 Conclusion

In this demonstration we have presented a framework that processes human-reported risk descriptions to
classify them into true risk and false alarm categories. In order to achieve this, we have used the SVM
based machine learning framework and studied different linguistic features to automatically identify and
label text descriptions as valid and invalid risks. The present work also extracts information from the
text to generate reports on different causes of risks and their possible impacts as stated by human experts
in their assessments. We have evaluated the classification framework by comparing the output of the
system with that of the expert annotated dataset. Our evaluation showed promising results for automated
risk identification.
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