
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: System Demonstrations,
pages 161–165, Osaka, Japan, December 11-17 2016.

The Open Framework for Developing Knowledge Base
And Question Answering System

Jiseong Kim, GyuHyeon Choi, Jung-Uk Kim, Eun-Kyung Kim, Key-Sun Choi
Machine Reading Laboratory

Semantic Web Research Center
Department of Computer Science

KAIST, Daejeon, Korea
{jiseong, wiany11, prismriver, kekeeo, kschoi}@kaist.ac.kr

Abstract

Developing a question answering (QA) system is a task of implementing and integrating modules
of different technologies and evaluating an integrated whole system, which inevitably goes with
a collaboration among experts of different domains. For supporting a easy collaboration, this
demonstration presents the open framework that aims to support developing a QA system in
collaborative and intuitive ways. The demonstration also shows the QA system developed by our
novel framework.

1 Introduction

Recently, a system of a question answering capability, so-called question answering (QA) system, is on
the rise by being applied on diverse domains, e.g., quiz show (IBM Watson), personal assistant (Apple
Siri, Microsoft Cortana), home device (Amazon Echo), and so on.

Developing a QA system is a work of implementing and integrating modules of different technologies
(e.g., natural language processing, disambiguation, graph manipulation), and then evaluating an inte-
grated whole system. Each module is developed by different groups of specialists with such different
technologies. All modules must be linked into one integrated system to reach a QA capability, which
results in needs of a framework for collaboration.

It is not an easy work to collaborate among experts of different domains to build an integrated working
system together. To ease the integration, for developers and researchers, a framework that supports
logging I/O, exception handling, flexible system configuration, and so on is of need.

There has been many studies on a QA system over the past years. However, the integration environ-
ment for supporting collaborative developments is still lacking.

In this context, open knowledge base and question answering (OKBQA)1 community has been devel-
oping a OKBQA framework for exchanging and harmonizing resources developed by different groups
scattered over the world to promote an effective and efficient open collaboration for developing a QA
system.

In this demonstration, we introduce the OKBQA framework with a state-of-the-arts-based novel QA
pipeline, and the interfaces of the OKBQA framework that supports a development of a QA system in
collaborative and intuitive ways.

In Section 2, we introduce the architecture and modules of the OKBQA framework in detail. In
Section 4, we demonstrate interfaces of the OKBQA framework. Lastly, in Section 5, we conclude.

2 Architecture of The OKBQA Framework

The architecture of the OKBQA framework comprises a pipeline of OKBQA modules based on the
state-of-the-art researches: template generation (Unger et al., 2012), graph search-based named entity
disambiguation (Usbeck et al., 2014), SPARQL query generation (Jindong and Cohen, 2014), NLQ50
benchmark2, and so on. Figure 1 shows the overall pipeline of the OKBQA framework that executes
modules in a waterfall manner. The role of each module is detailed in the following section.

1http://www.okbqa.org
2http://2015.okbqa.org/nlq

161



3.6 Evaluation

3.5 Workflow Management

question

answer

Benchmark Q/A

3.4 Answer Generation

3.3 Query Generation

3.2 Disambiguation

3.1 Template Generation

KB

Figure 1: The architecture of the OKBQA framework: Each module is described in detail at each sub-
section of Section 3

3 OKBQA Modules

3.1 Template Generation
A template generation module (TGM) is for constructing a SPARQL query template from a question
expressed in natural language. A template comprises pseudo SPARQL query and set of slots, which
of a pseudo SPARQL query is a SPARQL query with unbounded variables for resources, classes, and
properties specified in a KB, and a slot is description of variable. For example, the following shows an
example of a template for a natural language question.

• Question: Which rivers flow through Seoul?

• Template:

– Pseudo query: SELECT ?v4 WHERE { ?v4 ?v2 ?v6 ; ?v7 ?v3 . }
– Slots (description of variables):

1. v7 is bound to <http://lodqa.org/vocabulary/sort of>.
2. v6 is either a resource or a literal value.
3. v6 is verbalized into “Seoul”.
4. v2 is a property.
5. v2 is verbalized into “flow”.
6. v3 is a class.
7. v3 is verbalized into “rivers”.

A template is generated from a question by analyzing a semantic structure of a question from lexical
entries and syntactic structure of a question (Unger et al., 2012).

162



3.2 Disambiguation

A disambiguation module (DM) is for identifying a URI (Uniform Resource Identifier) specified in a
KB from verbalization of lexical entries on a question. For example, the following shows an example of
disambiguated results.

• Question: Which rivers flow through Seoul?

• Disambiguated results:

– The lexical entry “Seoul” means the entity <http://dbpedia.org/ontology/Seoul> defined in a
KB.

– The lexical entry “flow” means the entity <http://dbpedia.org/ontology/city> defined in a KB.
– The lexical entry “rivers” means the entity <http://dbpedia.org/ontology/River> defined in a

KB.

3.3 Query Generation

A query generation module (QGM) is for generating and ranking a candidate SPARQL query for a
question using results of TGM and DM. For example, the following shows the most top-ranked candidate
SPARQL query generated by QGM.

• Question: Which rivers flow through Seoul?

• SPARQL query:

• SELECT ?v4 WHERE {
?v4 <http://dbpedia.org/ontology/city> <http://dbpedia.org/resource/Seoul> .
?v4 ?v7 <http://dbpedia.org/ontology/River> .

}

The above example query means retrive all entities can be bound to v4 that is a river and located in
city “Seoul”.

3.4 Answer Generation

After candidate SPARQL queries for an input question are generated, they are filtered and selected by
scores to get the most right answers from a KB. An answer generation module (AGM) is for filtering and
selecting final SPARQL queries from candidate SPARQL queries and retrieving answers for an input
question from RDF (Resource Description Framework) KB.

3.5 Workflow Management

A control module (CM) supports a function of workflow management to link all of modules in collabora-
tive and intuitive ways. CM constructs an integrated system of the QA capability. To ease collaboration,
CM provides the functions of diverse pipeline configuration, inter-module linking, logging I/O flow and
exceptional messages, and so on. Examples of the functions are shown in Section 4.

3.6 Evaluation

After a QA system is integrated, the pipeline of a QA system is evaluated to qualify the QA capability.
An evaluation module (EM) is for evaluating an integrated whole QA system to measure an accuracy of
a QA capability. To measure the accuracy, EM uses the NLQ50 benchmark dataset 3 to qualifying a QA
system.

3http://2015.okbqa.org/nlq

163



4 Demonstration

The OKBQA framework supports Web-based interfaces for workflow management and evaluation. De-
velopers can build and evaluate their own QA system with the interfaces in intuitive and collaborative
ways. In the followings, we show the demonstration of the interfaces and QA results of a QA system
developed by the OKBQA framework.

4.1 Web-based interface for workflow management

The Web-based CM interface4 supports developers to build a custom QA pipeline with different config-
urations. The figure 2 shows a configuration page of the CM interface. Currently, the interface supports
configuration of module address, execution sequence of modules, and the limit of the execution time of
each module.

Figure 2: A configuration page of the interface of CM: The first field of each line is an configuration item
to be configured and the remaining fields are configuration values for an item.

Figure 3: Results of a QA system developed by the OKBQA framework: Answers (left-side) of an input
question with informative log messages (right-side) for collborative development

4http://ws.okbqa.org/web_interface

164



4.2 Web-based interface for evaluation
The Web-based EM interface supports measuring an accuracy of arbitrary QA pipelines. The interface
uses CM to build a pipeline and evaluate with the NLQ50 benchmark dataset. The interface supports
simple and intuitive design that can be checked on the Web page5.

5 Conclusion

We showed the OKBQA framework with a state-of-the-arts-based novel QA pipeline and intuitive user
interfaces for supporting a collaborative development and evaluation of a KB-based QA system. With
our open framework, any developers can join the development of their own QA system with open col-
laboration. We argue that with our framework, a QA system can be built based on the sate-of-the-art
researches and already implemented modules with the reduced efforts by decreased trial and error. Our
already implemented modules are available on our repository6, which can be a good starting point for
beginners. We are persistently going to enhancing and qualifying supports of the framework with hoping
to build a QA system of the qualified QA capability and the beyond.

Acknowledgements

This work was supported by Institute for Information & communications Technology Promotion(IITP)
grant funded by the Korea government(MSIP) (No. R0101-16-0054, WiseKB: Big data based
self-evolving knowledge base and reasoning platform). And also this work was supported by the
Bio & Medical Technology Development Program of the NRF funded by the Korean government,
MSIP(2015M3A9A7029735).

References
Unger, Christina and Bühmann, Lorenz and Lehmann, Jens and Ngonga Ngomo, Axel-Cyrille and Gerber, Daniel

and Cimiano, Philipp. 2012. Template-based question answering over RDF data. Proceedings of the 21st
international conference on World Wide Web (pp. 639–648). ACM.

Usbeck, Ricardo and Ngomo, Axel-Cyrille Ngonga and Röder, Michael and Gerber, Daniel and Coelho, Sandro
Athaide and Auer, Sören and Both, Andreas. 2014. AGDISTIS-graph-based disambiguation of named entities
using linked data. International Semantic Web Conference (pp.457-471). Springer.

Kim, J. D. and Cohen, K.. 2014. Triple pattern variation operations for flexible graph search. Workshop on
Natural Language Interfaces for Web of Data.

5http://ws.okbqa.org/web_evaluation
6http://repository.okbqa.org

165


