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Abstract 

This paper presents a meaning-based statistical math word problem (MWP) solver with under-

standing, reasoning and explanation. It comprises a web user interface and pipelined modules 

for analysing the text, transforming both body and question parts into their logic forms, and 

then performing inference on them. The associated context of each quantity is represented with 

proposed role-tags (e.g., nsubj, verb, etc.), which provides the flexibility for annotating the ex-

tracted math quantity with its associated syntactic and semantic information (which specifies 

the physical meaning of that quantity). Those role-tags are then used to identify the desired op-

erands and filter out irrelevant quantities (so that the answer can be obtained precisely). Since 

the physical meaning of each quantity is explicitly represented with those role-tags and used in 

the inference process, the proposed approach could explain how the answer is obtained in a 

human comprehensible way. 

1 Introduction 

The math word problem (MWP) is frequently chosen to study natural language understanding for the 

following reasons: (1) The answer to the MWP cannot be simply extracted by performing key-

word/pattern matching. It clearly shows the merit of understanding and inference. (2) An MWP usual-

ly possesses less complicated syntax and requires less amount of domain knowledge, so the researcher 

can focus on the task of understanding and reasoning. (3) The body part of MWP (which mentions the 

given information for solving the problem) consists of only a few sentences. The understanding and 

reasoning procedure thus could be checked more efficiently. (4) The MWP solver has its own applica-

tions such as Computer Math Tutor and Helper for Math in Daily Life.  

According to the approaches used to identify entities, quantities, and to decide operands and opera-

tions, previous MWP solvers can be classified as: (1) Rule-based approaches (Mukherjee and Garain, 

2008; Hosseini et al., 2014), which make all related decisions based on a set of rules; (2) Purely statis-

tics-based approaches (Kushman et al., 2014; Roy et al., 2015), in which all related decisions are done 

via a statistical classifier; and (3) Mixed approach (Roy and Roth, 2015), which identifies entities and 

quantities with rules, yet, decides operands and operations via statistical classifiers.  

The main problem of the rule-based approaches is that a wide coverage rule-set is difficult and ex-

pensive to construct. Also, it is awkward in resolving ambiguity problem. In contrast, the main prob-

lems of the purely statistics-based approaches are that the performance deteriorates significantly when 

the MWP is complicated, and they are sensitive to the irrelevant information (Hosseini et al., 2014). 

A meaning-based1 statistical framework (Lin et al., 2015) is thus proposed to perform understanding 

and reasoning to avoid the problems mentioned above. The proposed role-tags (e.g., nsubj, verb, etc.) 

provides the flexibility for annotating extracted math quantities with their associated syntactic and se- 

                                                 
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: 

http://creativecommons.org/licenses/by/4.0/ 
1 According to the study reported by Pape (2004), the meaning-based approach for solving MWPs achieves the 

best performance among various behaviours adopted by middle school children. 
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Figure 1: The block diagram of the MWP Solver 

 

semantic (such as co-reference) information (in the context), which can be used to identify the desired 

operand, filter out irrelevant and perform inference to solve MWPs. 

2 System Architecture 

The block diagram of our English MWP solver is shown in Figure 1 (Lin et al., 2015). The sentences 

in a MWP are analyzed by the Language Analyzer (LA) module (i.e., Stanford CoreNLP suite (Man-

ning et al., 2014)) to obtain corresponding linguistic representation (i.e., dependency trees and co-

reference chains). Then, the Solution Type Classifier (STC), which is an SVM classifier adopting line-

ar kernel functions, determines the solution type for each question in the MWP. According to the giv-

en solution type, the Logic Form Converter (LFC) transforms the linguistic representation into logic 

forms. Afterwards, based on the logic forms, the Inference Engine (IE) generates the answer for each 

question. Finally, the Explanation Generator (EG) module generates the explanation text to explain 

how the answer is obtained according to the given reasoning chain (Russell and Norvig, 2009).   

2.1 Solution Type Identification 

The solution type is the key math operation to solve a question in an MWP. In the classroom, children 

are usually taught with various MWPs of the same solution type, such as addition, multiplication, 

greatest common divisor, and so on. Teaching the MWPs of the same solution type at a time is helpful 

for learning because they share the similar patterns (in language usages or in logic representa-

tions/inferences). Once the solution type of an MWP is identified, solving the MWP becomes easier. 

Based on this strategy, the STC is adopted in our system to identify the solution type of MWPs. 

The STC will select a math operation (that LFC should adopt to solve the problem) based on the 

global information across various input sentences. We classify the English MWPs into 6 main solution 

types: “Addition”, “Subtraction”, “Multiplication”, “Division”, “Sum” and “TVQ”. The first five types 

are self-explained with their names. The last one “TVQ” means to get the initial/change/final value of 

a specific Time-Variant-Quantity. Currently, an SVM classifier with linear kernel functions (Chang 

and Lin, 2011) is used, and it adopts three different kinds of feature-sets: (1) Verb Category (Bakman, 

2007; Hosseini et al., 2014) related features, (2) various key-word indicators (such as “total” and “in 

all” which frequently indicate an addition operation), and (3) indicators for various specified aggrega-

tive patterns (e.g. “If the Body contains only two quantities, and their associated verbs are the same” 

which frequently implies the “Addition” solution type). 

2.2 Logical Form Transformation 

A two-stage approach is adopted to transform the linguistic representation into logic forms for solving 

MWPs. In the first stage, the FOL predicates are generated by traversing the input linguistic represen-

tation. For example, “Fred picked 36 roses.” will be transformed into the following FOL predicates 

separated by the logic AND operator “&” and the first arguments, v1, n1 and n2, are the identifiers. 

verb(v1,pack)&nsubj(v1,n1)&dobj(v1,n2)&head(n2,rose)&nummod(n2,36) 

In the second stage, crucial generic math facts associated with quantities and relations between quanti-

ties are generated. For example, the FOL function “quan(qid,unit,object)=number” is used to describe 
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the facts about quantities. The first argument is a unique identifier to represent the quantity fact. The 

other arguments and the function value describe the meaning of this fact. For the above example, a 

quantity fact “quan(q1,#,rose)=36” is generated. Auxiliary domain-independent facts associated with 

domain-dependent facts like quan(. . . ) are also created in this stage to help the IE find the solution. 

For example, the auxiliary fact “verb(q1,pick)” is created for q1 to state “the verb of q1 is pick”.  

The FOL predicate “qmap(mapid,qid1,qid2)”, which denotes the mapping from qid1 to qid2, is used to 

describe a relation between two quantity facts, where the first argument is a unique identifier to repre-

sent this relation. For example, qmap(m1,q3,q4) indicates that there is a relation between “100 candies” 

(quan(q3,#,candidate)=100) and “5 boxes” (quan(q4,#,box)=5) in the example of “Pack 100 candies 

into 5 boxes”. The auxiliary fact “verb(m1,pack)” is created for m1 to state “the verb of m1 is pack”. 

The questions in an MWP are transformed into FOL-like utility functions provided by the IE ac-

cording to the suggested solution type. One utility function is issued for each question to find the an-

swer. According to the solution type provided by the STC, the LFC will select an IE utility and instan-

tiate its arguments. For example, if “How many roses were picked in total?” is labelled with “Sum” by 

the STC, the LFC will transform it to “ASK Sum(quan(?q,rose),verb(?q,pick))”, which asks the IE to 

sum the values of all quantity facts of which verbs are “pick”. 

2.3 Logic Inference 

      
              Figure 2: Logic form and logic inference                   Figure3: The generated explanation 

                           of a Sum operation                                                     tree and explanation text 

 

The IE is used to find the solution of an MWP. Currently, IE provides 9 different utilities to perform 

simple arithmetical operations. It is responsible for providing utilities to select desired facts and then 

obtain the answer by taking math operations on those selected facts. For example, the Addition utility, 

“Addition(value1 , value2) = value”, returns the value of “value1+value2”, where valuei could be a con-

stant number, an FOL function value, or a value returned by a utility; and the Sum utility, 

“Sum(function , condition)”,  returns the sum of the values of FOL function instances which can be 

unified with the function arguments and satisfy the condition arguments. IE is also responsible for us-

ing inference rules to derive new facts from those facts which are directly derived from the description 

of the MWP. Consider the example shown in Figure 2, the IE will first select all qualified quantities 

which match “quan(?q, #, rose)” and with a “pick” verb-tag, and then performs a “Sum” operation on 

them. The irrelevant quantity “quan(q4, #, rose)” in that example is pruned out as its verb-tag is 

“drop”, not “pick”. The answer is then obtained by summing those quantities q1, q2 and q3. 

2.4 Explanation Generation 

The EG is responsible for explaining the associated reasoning steps in fluent natural language based 

on the reasoning chain generated from IE. A math operation oriented approach (Huang et al., 2015) is 

adopted to explain how the answer is obtained. It first converts the given reasoning chain into its cor-

responding Explanation Tree, which represents the associated operations and operands for solving the 

MWP. After that, a specific template is used to generate the explanation text for each kind of operation. 

Consider the example shown in Figure 3, the explanation text “36 roses + 32 roses + 35 roses = 103 

roses. ∴103 roses were picked in total.” will be generated to explain that the obtained answer is a 

summation of “36 roses”, “32 roses” and “35 roses”. 
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3 Experiments 

 

 

 

 

Table 1: Accuracy rates of different systems in AI2-395. “Total”         Table 2: Accuracy rates of 

              denotes the micro-average performance. “Gold Solution                      different systems in 

              Type” reports the accuracy from the gold solution type.                       IL-562 dataset. 

 

We evaluate our system on two publicly available datasets, AI2-395 and IL-562. AI2-395 includes 395 

Addition and Subtraction MWPs which are provided by Hosseini et al. (2014). It includes three sub-

datasets (i.e., MA1, IXL and MA2) with different feature categories. IL-562 is a collection of 562 

arithmetic word problems released by Roy et al. (2015), and each of them can be solved with only one 

math operation among Addition, Subtraction, Multiplication or Division.  

We compare our system with the rule-based approach ARIS (Hosseini et al., 2014), the purely sta-

tistical approach KAZB (Kushman et al., 2014), and the mixed approach UIUC system (Roy and Roth, 

2015). We follow the same evaluation setting adopted in (Hosseini et al., 2014) and (Roy et. al, 2015). 

Table 1 and 2 show that our system significantly outperform theirs in overall performance. 

4 Demonstration Outline 

The MWP solver comprises a web user interface (Figure 4) and a processing server. The web interface 

is used to input the problem and display various outputs generated from the submitted MWP. The 

server will process the submitted problem to get the answer. After an MWP is submitted, various pro-

cessing modules will be invoked in a pipelined manner (Figure 1) to solve the problem. Once the pro-

cess is finished, the user can browse the outputs generated from each module: (1) Corresponding de-

pendency relations, co-reference chains and linguistic representations, which are generated from LA. 

(2) Suggested solution type, which identifies the desired math operation. (3) Obtained logical forms, 

which are transformed from the linguistic representation and the specified solution type. (4) Generated 

reasoning chain and explanation text (Figure 3), which explains how the problem is solved. An online 

demo is available at: http://nlul.iis.sinica.edu.tw/EnglishMathSolver/mathDemo.py. 

 

     
Figure 4: A web interface of the MWP Solver  

 MA1 IXL MA2 Total 

3-fold Cross validation 

Our System 94.8 73.4 88.4 85.3 

UIUC - - - 78.0 

ARIS 83.6 75.0 74.4 77.7 

KAZB 89.6 51.1 51.2 64.0 

Gold Solution Type 

Our System 99.3 97.8 95.0 97.5 
 

STC accuracy 91.8 74.1 79.6 81.7 

 IL-562 

5-fold Cross validation 

Our System 79.5 

UIUC 73.9 

ARIS - 

KAZB 73.7 
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5 Conclusion 

A meaning-based logic form represented with role-tags is first proposed to provide the flexibility 

for annotating the extracted math quantity with its associated syntactic and semantic information in the 

context. Those tags can be used to identify the desired operands and filter out irrelevant quantities. 

Since the physical meaning of each quantity is explicitly expressed and used during inference, the as-

sociated reasoning procedure is human comprehensible and could be easily explained to the user. 

A statistical framework based on the above meaning-based logic form is then proposed in this paper 

to perform understanding and reasoning for solving the given MWP. The combination of the statistical 

framework and logic inference distinguishes the proposed approach from other approaches.  

The main contributions of our work are: (1) Proposing a meaning-based logic representation so that 

the physical meaning of each quantity could be explicitly specified and used in getting the answer; (2) 

Proposing a statistical framework for performing reasoning from the given MWP text. 

6 Future Works 

Currently, the MWP solver assumes that the final answer can be directly obtained from those 

known quantity facts via only one arithmetic operation (i.e., merely handling one-step MWPs). It can-

not solve the problem if multiple arithmetic operations are required. For example, “Mary had 92 piec-

es of candy. She gave 4 pieces each to 9 friends. How many pieces of candy does Mary have left?” is 

not handled now. A goal oriented approach for handling the above multi-step MWP is thus proposed 

and under test. Besides, the current system cannot handle some subtle referring relationships. For in-

stance, the system does not know that “customers” refers to “women” and “men” in the following 

MWP “A waiter had 6 tables he was waiting on, with 3 women and 5 men at each table. How many 

customers total did the waiter have?”. Advanced analysis is required to solve this kind of problems. 
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