
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: System Demonstrations,
pages 93–97, Osaka, Japan, December 11-17 2016.

A Customizable Editor for Text Simplification

John Lee, Wenlong Zhao
Dept. of Linguistics and Translation

City University of Hong Kong
Hong Kong SAR, China

jsylee@cityu.edu.hk
wenlzhao@gmail.com

Wenxiu Xie
Cisco School of Informatics

Guangdong University of Foreign Studies
Guangzhou, China

vasiliky@outlook.com

Abstract

We present a browser-based editor for simplifying English text. Given an input sentence, the
editor performs both syntactic and lexical simplification. It splits a complex sentence into shorter
ones, and suggests word substitutions in drop-down lists. The user can choose the best substitu-
tion from the list, undo any inappropriate splitting, and further edit the sentence as necessary. A
significant novelty is that the system accepts a customized vocabulary list for a target reader pop-
ulation. It identifies all words in the text that do not belong to the list, and attempts to substitute
them with words from the list, thus producing a text tailored for the targeted readers.

1 Introduction

The task of text simplification aims to rewrite a sentence so as to reduce its lexical and syntactic com-
plexity, while preserving its meaning and grammaticality. Consider the complex sentence “The professor,
carrying numerous books, entered the room.” It can be rewritten into two simple sentences, “The teacher
entered the room.” and “He was carrying many books.” The rewriting process involves both syntac-
tic and lexical simplification. The former decomposes the complex sentence, extracting the participial
phrase “carrying numerous books” and turning it into a separate sentence. The latter replaces the word
“professor” with the simpler word “teacher”, and “numerous” with “many”.

It is well known that sentences with difficult vocabulary, passive voice or complex structures, such as
relative and subordinated clauses, can be challenging to understand. Text simplification has been found
to be beneficial for language learners (Shirzadi, 2014), children (Kajiwara et al., 2013), and adults with
low literacy skills (Arnaldo Candido Jr. and Erick Maziero and Caroline Gasperin and Thiago A. S.
Pardo and Lucia Specia and Sandra M. Aluisio, 2009) or language disabilities (John Carroll and Guido
Minnen and Darren Pearce and Yvonne Canning and Siobhan Devlin and John Tait, 1999; Luz Rello
and Ricardo Baeza-Yates, 2014). To cater to these target reader populations, language teachers, linguists
and other editors are often called upon to manually adapt a text. To automate this time-consuming task,
there has been much effort in developing systems for lexical simplification (Zhu et al., 2010; Biran et al.,
2011) and syntactic simplification (Siddharthan, 2002; Siddharthan and Angrosh, 2014).

The performance of the state-of-the-art systems has improved significantly (Horn et al., 2014; Sid-
dharthan and Angrosh, 2014). Nonetheless, one cannot expect any single system, trained on a particular
dataset, to simplify arbitrary texts in a way that would suit all readers — for example, the kinds of English
words and structures suitable for a native speaker in Grade 6 are unlikely to be suitable for a non-native
speaker in Grade 4. Hence, human effort is generally needed for modifying the system output.

To support human post-editing, a number of researchers have developed specialized editors for text
simplification. While the editor described in Max (2006) shares similar goals as ours, it requires hu-
man intervention in much of the simplification process. The Automatic Text Adaptation tool suggests
synonyms (Burstein et al., 2007), but does not perform syntactic simplification. Conversely, the Simpli-

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

93



fica tool, developed for Brazilian Portuguese, does not perform lexical simplification. Other packages for
lexical simplification, such as LEXenstein (Paetzold and Specia, 2015), are not designed for post-editing.

To fill this gap, we developed a customizable, browser-based editor for simplifying English text. Be-
sides performing automatic lexical and syntactic simplification, it facilitates user post-editing, for ex-
ample in choosing candidate substitutions or undoing sentence splits. Importantly, the user can supply
a vocabulary list tailored for a target reader population. This list serves to specify which words are
considered “simple,” thus guiding the system in tailoring lexical substitution for the target readers.

2 Lexical Simplification

The lexical simplification task generally consists of three steps (Paetzold and Specia, 2015). The first
step, substitution generation, produces a list of candidate words to substitute for the target word w.
Typically, the context of w in the input sentence is not considered in this step. In the second step,
substitution selection, the system selects the best candidates to replace w in the input sentence. Finally,
the substitution ranking step re-ranks the candidates in terms of their simplicity.

Often, the expected vocabulary level of a target reader population is explicitly prescribed. For exam-
ple, many governments have drawn up graded vocabulary lists to guide students of English as a foreign
language; likewise, developers of machine translation systems have specified controlled languages with
restricted vocabulary. In this context, lexical simplification can be defined as follows: to rewrite a sen-
tence by replacing all words that are not in the given vocabulary list (and hence presumed to be difficult
for the reader) with those from the list (and hence presumed to be simple). For example, Kajiwara et
al. (2013) performed lexical simplification based on 5,404 words that elementary school children are
expected to know.

2.1 Algorithm

By default, the editor uses a list of approximately 4,000 words that all students in Hong Kong are ex-
pected to know upon graduation from primary school (EDB, 2012). However, the user can also upload
his or her own vocabulary list. Given an input sentence, we first identify the target words, namely those
words that do not appear in the vocabulary list. Following Horn et al. (2014), our system simplifies
neither proper nouns, as identified by the Natural Language Toolkit (Bird et al., 2009), nor words in our
stoplist, which are already simple. In terms of the three-step framework described above, we use the
word2vec model1 to retrieve candidates for substitution in the first step. We trained the model with all
sentences from Wikipedia. For each target word, the model returns a list of the most similar words; we
extract the top 20 in this list that are included in the user-supplied vocabulary list. In the next step, substi-
tution selection, we re-rank these 20 words with a language model. We trained a trigram model with the
kenlm (Heafield, 2011), again using all sentences from Wikipedia. We then place the 10 words with the
highest probabilities in a drop-down list in our editor2; for example, Figure 1 shows the ten candidates
offered for the word “municipal”. If none of the candidates are appropriate, the user can easily revert to
the original word, which is also included in the drop-down list; alternatively, the user can click on the
text to directly edit it.

2.2 Evaluation

We evaluated the performance of our algorithm on the Mechanical Turk Lexical Simplification Data
Set (Horn et al., 2014). This dataset contains 500 manually annotated sentences; the target word in each
sentence was annotated by 50 independent annotators. To simulate a teacher adapting an English text for
Hong Kong pupils, we used the vocabulary list from the Hong Kong Education Bureau (EDB, 2012). To
enable automatic evaluation, we considered only the 249 sentences in the dataset whose target word is
not in our vocabulary list, but whose human annotations contain at least one word in the list. Precision is
at 31% for the top candidate; it is at 57% for the top ten candidates. In other words, for 57% of the target
words, a valid substitution can be found in the drop-down list in the editor.

1http://code.google.com/archive/p/word2vec/
2We regard all words in the vocabulary list to be sufficiently simple, and do not perform the third step, substitution ranking.

94



Figure 1: The input sentence is “City of Faizabad, the headquarters of Faizabad District, is a municipal
board in the state of Uttar Pradesh, India, and situated on the banks of river Ghaghra.” For syntactic
simplification (Section 3), the system first splits its coordinated clauses into two sentences, S1=“City of
Faizabad ... state of Uttar Pradesh, India.”; and S2=“City of Faizabad is situated on the banks of river
Ghaghra”. It then further extracts the appositive phrase “the headquarters of Faizabad District” from
S1, and turns into a separate sentence. For lexical simplification (Section 2), the system offers eight
substitution candidates for the word “municipal” in a drop-down list.

3 Syntactic Simplification

The editor performs automatic syntactic simplification for seven grammatical constructs. In a complex
sentence, it identifies relative clauses, adverbial clauses, coordinated clauses, subordinated clauses, par-
ticipial phrases and appositive phrases; it then splits the sentence into two simpler ones. Further, it
transforms passive voice into active voice when the agent is explicitly mentioned. Examples of these
constructs and their simplifications are listed in Table 1.

3.1 Algorithm

The system follows the three-step framework of analysis, transformation and regeneration, as laid out
in Siddharthan (2002). In the analysis step, it parses the input sentence with the Stanford dependency
parser (Manning et al., 2014). In the transformation step, it scans the parse tree of the input sentence
to match subtree patterns that have been manually crafted for each of the seven constructs in Table 1.
In Figure 1, the input sentence matches the subtree pattern for coordination; it is therefore split into
two shorter sentences, S1=“City of Faizabad ... India.” and S2=“and situated ... river Ghaghra”. Since
S1 then matches the pattern for appositive phrase, the phrase “the headquarters of Faizabad District” is
taken out to form its own sentence. If the user finds a sentence split to be inappropriate, he or she can
click on the “Merge” button to undo the split. Finally, in the regeneration step, the editor restores the
subject (e.g., “City of Faizabad”) to newly formed sentences. Often, this step also requires generation
of referring expressions, determiners, conjunctions and sentence re-ordering. Since most of these tasks
require real-world knowledge, the editor currently leaves it to the user for post-editing.

3.2 Evaluation

We evaluated the quality of syntactic simplification on the first 300 sentences in the Mechanical Turk
Lexical Simplification Data Set (Horn et al., 2014). For each sentence, we asked a professor of linguistics
to mark the types of syntactic simplification (Table 1) that are applicable, without regard to regeneration
requirements. Compared with this human gold standard, the system achieved 79% precision and 64%
recall.

95



Type Example
Coordination “I ate an apple and he ate an orange.” → “I ate an apple. He ate an orange.”
Subordination “Since he was late, I left.”→ “He was late. So, I left.”
Adverbial clauses “Impatient, he stood up.” → “He was impatient. He stood up.”
Participial phrases “Peter, sweating hard, arrived.” → “Peter arrived. He was sweating hard.”
Relative clauses “Peter, who liked fruits, ate an apple”→ “Peter liked fruits. He ate an apple.”
Appositive phrases “Peter, my friend, ate an apple”→ “Peter was my friend. He ate an apple.”
Passive voice “An apple was eaten by Peter”→ “Peter ate an apple.”

Table 1: Types of syntactic simplification supported by the editor.

4 Conclusions and Future Work

We have presented a browser-based editor that performs lexical and syntactic simplification and supports
human post-editing. The editor takes a customized vocabulary list as input, such that its lexical substi-
tutions are tailored to the needs of the target reader population. Evaluation shows that, for a majority of
sentences in a test set, the editor is able to propose appropriate word substitutions and to split up complex
syntactic structures. In future work, we aim to further improve the quality of simplification, and to offer
annotations for difficult words that cannot be simplified.3 We also intend to perform empirical studies,
to measure the editor’s effectiveness in assisting teachers in language lesson planning.

Acknowledgements

This work was supported by the Innovation and Technology Fund (Ref: ITS/132/15) of the Innovation
and Technology Commission, the Government of the Hong Kong Special Administrative Region.

References
Arnaldo Candido Jr. and Erick Maziero and Caroline Gasperin and Thiago A. S. Pardo and Lucia Specia and Sandra

M. Aluisio. 2009. Supporting the Adaptation of Texts for Poor Literacy Readers: a Text Simplification Editor
for Brazilian Portuguese. In Proc. NAACL-HLT Workshop on Innovative Use of NLP for Building Educational
Applications.

Or Biran, Samuel Brody, and Noémie Elhadad. 2011. Putting it Simply: a Context-aware Approach to Lexical
Simplification. In Proc. NAACL-HLT.

Steven Bird, Edward Loper, and Ewan Klein. 2009. Natural Language Processing with Python. O’Reilly Media
Inc.

Jill Burstein, Jane Shore, John Sabatini, Yong-Won Lee, and Matthew Ventura. 2007. The Automated Text
Adaptation Tool. In Proc. NAACL-HLT Demonstration Program.

EDB. 2012. Enhancing English Vocabulary Learning and Teaching at Secondary Level.
http://www.edb.gov.hk/vocab learning sec.

Kenneth Heafield. 2011. KenLM: Faster and Smaller Language Model Queries. In Proc. 6th Workshop on
Statistical Machine Translation.

Colby Horn, Katie Manduca, and David Kauchak. 2014. Learning a Lexical Simplifier Using Wikipedia. In Proc.
ACL.

John Carroll and Guido Minnen and Darren Pearce and Yvonne Canning and Siobhan Devlin and John Tait. 1999.
Simplifying Text for Language-Impaired Readers. In Proc. EACL.

Tomoyuki Kajiwara, Hiroshi Matsumoto, and Kazuhide Yamamoto. 2013. Selecting Proper Lexical Paraphrase
for Children. In Proc. 25th Conference on Computational Linguistics and Speech Processing (ROCLING).

Luz Rello and Ricardo Baeza-Yates. 2014. Evaluation of DysWebxia: A Reading App Designed for People with
Dyslexia. In Proc. W4A, Seoul, South Korea.
3For example, Burstein et al. (2007) used marginal notes.

96



Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP Natural Language Processing Toolkit. In Proc. ACL System Demonstrations,
pages 55–60.

Aurélien Max. 2006. Writing for Language-Impaired Readers. In Proc. CICLing.

Gustavo Paetzold and Lucia Specia. 2015. LEXenstein: A Framework for Lexical Simplification. In Proc. ACL-
IJCNLP System Demonstrations.

Solmaz Shirzadi. 2014. Syntactic and Lexical simplification: the Impact on EFL Listening Comprehension at
Low and High Language Proficiency Levels. Journal of Language Teaching and Research, 5(3):566–571.

Advaith Siddharthan and M. A. Angrosh. 2014. Hybrid Text Simplification Using Synchronous Dependency
Grammars with Hand-Written and Automatically Harvested Rules. In Proc. EACL.

Advaith Siddharthan. 2002. An Architecture for a Text Simplification System. In Proc. Language Engineering
Conference (LEC).

Zhemin Zhu, Delphine Bernhard, and Iryna Gurevych. 2010. A Monolingual Tree-based Translation Model for
Sentence Simplification. In Proc. COLING.

97


