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Abstract

Recurrent Neural Network (RNN) is one of the most popular architectures used in Natural Lan-
guage Processsing (NLP) tasks because its recurrent structure is very suitable to process variable-
length text. RNN can utilize distributed representations of words by first converting the tokens
comprising each text into vectors, which form a matrix. And this matrix includes two dimen-
sions: the time-step dimension and the feature vector dimension. Then most existing models
usually utilize one-dimensional (1D) max pooling operation or attention-based operation only
on the time-step dimension to obtain a fixed-length vector. However, the features on the feature
vector dimension are not mutually independent, and simply applying 1D pooling operation over
the time-step dimension independently may destroy the structure of the feature representation.
On the other hand, applying two-dimensional (2D) pooling operation over the two dimensions
may sample more meaningful features for sequence modeling tasks. To integrate the features on
both dimensions of the matrix, this paper explores applying 2D max pooling operation to obtain
a fixed-length representation of the text. This paper also utilizes 2D convolution to sample more
meaningful information of the matrix. Experiments are conducted on six text classification tasks,
including sentiment analysis, question classification, subjectivity classification and newsgroup
classification. Compared with the state-of-the-art models, the proposed models achieve excellent
performance on 4 out of 6 tasks. Specifically, one of the proposed models achieves highest accu-
racy on Stanford Sentiment Treebank binary classification and fine-grained classification tasks.

1 Introduction

Text classification is an essential component in many NLP applications, such as sentiment analysis
(Socher et al., 2013), relation extraction (Zeng et al., 2014) and spam detection (Wang, 2010). There-
fore, it has attracted considerable attention from many researchers, and various types of models have
been proposed. As a traditional method, the bag-of-words (BoW) model treats texts as unordered sets
of words (Wang and Manning, 2012). In this way, however, it fails to encode word order and syntactic
feature.

Recently, order-sensitive models based on neural networks have achieved tremendous success for
text classification, and shown more significant progress compared with BoW models. The challenge
for textual modeling is how to capture features for different text units, such as phrases, sentences and
documents. Benefiting from its recurrent structure, RNN, as an alternative type of neural networks, is
very suitable to process the variable-length text.

RNN can capitalize on distributed representations of words by first converting the tokens compris-
ing each text into vectors, which form a matrix. This matrix includes two dimensions: the time-step
dimension and the feature vector dimension, and it will be updated in the process of learning feature
representation. Then RNN utilizes 1D max pooling operation (Lai et al., 2015) or attention-based oper-
ation (Zhou et al., 2016), which extracts maximum values or generates a weighted representation over
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the time-step dimension of the matrix, to obtain a fixed-length vector. Both of the two operators ignore
features on the feature vector dimension, which maybe important for sentence representation, therefore
the use of 1D max pooling and attention-based operators may pose a serious limitation.

Convolutional Neural Networks (CNN) (Kalchbrenner et al., 2014; Kim, 2014) utilizes 1D convolution
to perform the feature mapping, and then applies 1D max pooling operation over the time-step dimension
to obtain a fixed-length output. However the elements in the matrix learned by RNN are not independent,
as RNN reads a sentence word by word, one can effectively treat the matrix as an ’image’. Unlike in NLP,
CNN in image processing tasks (LeCun et al., 1998; Krizhevsky et al., 2012) applies 2D convolution and
2D pooling operation to get a representation of the input. It is a good choice to utilize 2D convolution
and 2D pooling to sample more meaningful features on both the time-step dimension and the feature
vector dimension for text classification.

Above all, this paper proposes Bidirectional Long Short-Term Memory Networks with Two-
Dimensional Max Pooling (BLSTM-2DPooling) to capture features on both the time-step dimension
and the feature vector dimension. It first utilizes Bidirectional Long Short-Term Memory Networks
(BLSTM) to transform the text into vectors. And then 2D max pooling operation is utilized to obtain a
fixed-length vector. This paper also applies 2D convolution (BLSTM-2DCNN) to capture more mean-
ingful features to represent the input text.

The contributions of this paper can be summarized as follows:

• This paper proposes a combined framework, which utilizes BLSTM to capture long-term sentence
dependencies, and extracts features by 2D convolution and 2D max pooling operation for sequence
modeling tasks. To the best of our knowledge, this work is the first example of using 2D convolution
and 2D max pooling operation in NLP tasks.

• This work introduces two combined models BLSTM-2DPooling and BLSTM-2DCNN, and veri-
fies them on six text classification tasks, including sentiment analysis, question classification, sub-
jectivity classification, and newsgroups classification. Compared with the state-of-the-art models,
BLSTM-2DCNN achieves excellent performance on 4 out of 6 tasks. Specifically, it achieves high-
est accuracy on Stanford Sentiment Treebank binary classification and fine-grained classification
tasks.

• To better understand the effect of 2D convolution and 2D max pooling operation, this paper conducts
experiments on Stanford Sentiment Treebank fine-grained task. It first depicts the performance of
the proposed models on different length of sentences, and then conducts a sensitivity analysis of 2D
filter and max pooling size.

The remainder of the paper is organized as follows. In Section 2, the related work about text classifi-
cation is reviewed. Section 3 presents the BLSTM-2DCNN architectures for text classification in detail.
Section 4 describes details about the setup of the experiments. Section 5 presents the experimental re-
sults. The conclusion is drawn in the section 6.

2 Related Work

Deep learning based neural network models have achieved great improvement on text classification tasks.
These models generally consist of a projection layer that maps words of text to vectors. And then
combine the vectors with different neural networks to make a fixed-length representation. According
to the structure, they may divide into four categories: Recursive Neural Networks (RecNN1), RNN,
CNN and other neural networks.

Recursive Neural Networks: RecNN is defined over recursive tree structures. In the type of recursive
models, information from the leaf nodes of a tree and its internal nodes are combined in a bottom-up
manner. Socher et al. (2013) introduced recursive neural tensor network to build representations of
phrases and sentences by combining neighbour constituents based on the parsing tree. Irsoy and Cardie

1To avoid confusion with RNN, we named Recursive Neural Networks as RecNN.
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(2014) proposed deep recursive neural network, which is constructed by stacking multiple recursive
layers on top of each other, to modeling sentence.

Recurrent Neural Networks: RNN has obtained much attention because of their superior ability
to preserve sequence information over time. Tang et al. (2015) developed target dependent Long Short-
Term Memory Networks (LSTM (Hochreiter and Schmidhuber, 1997)), where target information is auto-
matically taken into account. Tai et al. (2015) generalized LSTM to Tree-LSTM where each LSTM unit
gains information from its children units. Zhou et al. (2016) introduced BLSTM with attention mech-
anism to automatically select features that have a decisive effect on classification. Yang et al. (2016)
introduced a hierarchical network with two levels of attention mechanisms, which are word attention and
sentence attention, for document classification. This paper also implements an attention-based model
BLSTM-Att like the model in Zhou et al. (2016).

Convolution Neural Networks: CNN (LeCun et al., 1998) is a feedforward neural network with 2D
convolution layers and 2D pooling layers, originally developed for image processing. Then CNN is ap-
plied to NLP tasks, such as sentence classification (Kalchbrenner et al., 2014; Kim, 2014), and relation
classification (Zeng et al., 2014). The difference is that the common CNN in NLP tasks is made up of
1D convolution layers and 1D pooling layers. Kim (2014) defined a CNN architecture with two chan-
nels. Kalchbrenner et al. (2014) proposed a dynamic k-max pooling mechanism for sentence modeling.
(Zhang and Wallace, 2015) conducted a sensitivity analysis of one-layer CNN to explore the effect of
architecture components on model performance. Yin and Schütze (2016) introduced multichannel em-
beddings and unsupervised pretraining to improve classification accuracy. (Zhang and Wallace, 2015)
conducted a sensitivity analysis of one-layer CNN to explore the effect of architecture components on
model performance.

Usually there is a misunderstanding that 1D convolutional filter in NLP tasks has one dimension.
Actually it has two dimensions (k, d), where k, d ∈ R. As d is equal to the word embeddings size dw,
the window slides only on the time-step dimension, so the convolution is usually called 1D convolution.
While d in this paper varies from 2 to dw, to avoid confusion with common CNN, the convolution in this
work is named as 2D convolution. The details will be described in Section 3.2.

Other Neural Networks: In addition to the models described above, lots of other neural networks
have been proposed for text classification. Iyyer et al. (2015) introduced a deep averaging network,
which fed an unweighted average of word embeddings through multiple hidden layers before classifica-
tion. Zhou et al. (2015) used CNN to extract a sequence of higher-level phrase representations, then the
representations were fed into a LSTM to obtain the sentence representation.

The proposed model BLSTM-2DCNN is most relevant to DSCNN (Zhang et al., 2016) and RCNN
(Wen et al., 2016). The difference is that the former two utilize LSTM, bidirectional RNN respectively,
while this work applies BLSTM, to capture long-term sentence dependencies. After that the former two
both apply 1D convolution and 1D max pooling operation, while this paper uses 2D convolution and 2D
max pooling operation, to obtain the whole sentence representation.

3 Model

As shown in Figure 1, the overall model consists of four parts: BLSTM Layer, Two-dimensional Con-
volution Layer, Two dimensional max pooling Layer, and Output Layer. The details of different compo-
nents are described in the following sections.

3.1 BLSTM Layer

LSTM was firstly proposed by Hochreiter and Schmidhuber (1997) to overcome the gradient vanishing
problem of RNN. The main idea is to introduce an adaptive gating mechanism, which decides the degree
to keep the previous state and memorize the extracted features of the current data input. Given a sequence
S = {x1, x2, . . . , xl}, where l is the length of input text, LSTM processes it word by word. At time-step
t, the memory ct and the hidden state ht are updated with the following equations:
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Figure 1: A BLSTM-2DCNN for the seven word input sentence. Word embeddings have size 3, and
BLSTM has 5 hidden units. The height and width of convolution filters and max pooling operations are
2, 2 respectively.
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ct = ft ⊙ ct−1 + it ⊙ ĉt (2)

ht = ot ⊙ tanh(ct) (3)

where xt is the input at the current time-step, i, f and o is the input gate activation, forget gate activation
and output gate activation respectively, ĉ is the current cell state, σ denotes the logistic sigmoid function
and ⊙ denotes element-wise multiplication.

For the sequence modeling tasks, it is beneficial to have access to the past context as well as the
future context. Schuster and Paliwal (1997) proposed BLSTM to extend the unidirectional LSTM by
introducing a second hidden layer, where the hidden to hidden connections flow in opposite temporal
order. Therefore, the model is able to exploit information from both the past and the future.

In this paper, BLSTM is utilized to capture the past and the future information. As shown in Figure
1, the network contains two sub-networks for the forward and backward sequence context respectively.
The output of the ith word is shown in the following equation:

hi = [
−→
hi ⊕←−hi ] (4)

Here, element-wise sum is used to combine the forward and backward pass outputs.

3.2 Convolutional Neural Networks

Since BLSTM has access to the future context as well as the past context, hi is related to all the other
words in the text. One can effectively treat the matrix, which consists of feature vectors, as an ’image’, so
2D convolution and 2D max pooling operation can be utilized to capture more meaningful information.
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3.2.1 Two-dimensional Convolution Layer

A matrix H = {h1, h2, . . . , hl}, H ∈ Rl×dw
, is obtained from BLSTM Layer, where dw is the size

of word embeddings. Then narrow convolution is utilized (Kalchbrenner et al., 2014) to extract local
features over H . A convolution operation involves a 2D filter m ∈ Rk×d, which is applied to a window
of k words and d feature vectors. For example, a feature oi,j is generated from a window of vectors
Hi:i+k−1, j:j+d−1 by

oi,j = f(m ·Hi:i+k−1, j:j+d−1 + b) (5)

where i ranges from 1 to (l − k + 1), j ranges from 1 to (dw − d + 1), · represents dot product, b ∈ R
is a bias and an f is a non-linear function such as the hyperbolic tangent. This filter is applied to each
possible window of the matrix H to produce a feature map O:

O = [o1,1, o1,2, · · · , ol−k+1,dw−d+1] (6)

with O ∈ R(l−k+1)×(dw−d+1). It has described the process of one convolution filter. The convolution
layer may have multiple filters for the same size filter to learn complementary features, or multiple kinds
of filter with different size.

3.2.2 Two-dimensional Max Pooling Layer

Then 2D max pooling operation is utilized to obtain a fixed length vector. For a 2D max pooling p ∈
Rp1×p2 , it is applied to each possible window of matrix O to extract the maximum value:

pi,j = down(Oi:i+p1, j:j+p2) (7)

where down(·) represents the 2D max pooling function, i = (1, 1+ p1, · · · , 1+ (l− k +1/p1− 1) · p1),
and j = (1, 1+p2, · · · , 1+(dw−d+1/p2−1) ·p2). Then the pooling results are combined as follows:

h∗ = [p1,1, p1,1+p2 , · · · , p1+(l−k+1/p1−1)·p1,1+(dw−d+1/p2−1)·p2
] (8)

where h∗ ∈ R, and the length of h∗ is ⌊l − k + 1/p1⌋ × ⌊dw − d + 1/p2⌋.

3.3 Output Layer

For text classification, the output h∗ of 2D Max Pooling Layer is the whole representation of the input
text S. And then it is passed to a softmax classifier layer to predict the semantic relation label ŷ from a
discrete set of classes Y . The classifier takes the hidden state h∗ as input:

p̂ (y|s) = softmax
(
W (s)h∗ + b(s)

)
(9)

ŷ = arg max
y

p̂ (y|s) (10)

A reasonable training objective to be minimized is the categorical cross-entropy loss. The loss is
calculated as a regularized sum:

J (θ) = − 1
m

m∑
i=1

ti log(yi) + λ‖θ‖2F (11)

where t ∈ Rm is the one-hot represented ground truth, y ∈ Rm is the estimated probability for each class
by softmax, m is the number of target classes, and λ is an L2 regularization hyper-parameter. Training
is done through stochastic gradient descent over shuffled mini-batches with the AdaDelta (Zeiler, 2012)
update rule. Training details are further introduced in Section 4.3.
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Data c l m train dev test |V | |Vpre|
SST-1 5 18 51 8544 1101 2210 17836 12745
SST-2 2 19 51 6920 872 1821 16185 11490
Subj 2 23 65 10000 - CV 21057 17671

TREC 6 10 33 5452 - 500 9137 5990
MR 2 21 59 10662 - CV 20191 16746

20Ng 4 276 11468 7520 836 5563 51379 30575

Table 1: Summary statistics for the datasets. c: number of target classes, l: average sentence length, m:
maximum sentence length, train/dev/test: train/development/test set size, |V |: vocabulary size, |Vpre|:
number of words present in the set of pre-trained word embeddings, CV: 10-fold cross validation.

4 Experimental Setup

4.1 Datasets

The proposed models are tested on six datasets. Summary statistics of the datasets are in Table 1.

• MR2: Sentence polarity dataset from Pang and Lee (2005). The task is to detect positive/negative
reviews.

• SST-13: Stanford Sentiment Treebank is an extension of MR from Socher et al. (2013). The aim is
to classify a review as fine-grained labels (very negative, negative, neutral, positive, very positive).

• SST-2: Same as SST-1 but with neutral reviews removed and binary labels (negative, positive). For
both experiments, phrases and sentences are used to train the model, but only sentences are scored at
test time (Socher et al., 2013; Le and Mikolov, 2014). Thus the training set is an order of magnitude
larger than listed in table 1.

• Subj4: Subjectivity dataset (Pang and Lee, 2004). The task is to classify a sentence as being
subjective or objective.

• TREC5: Question classification dataset (Li and Roth, 2002). The task involves classifying a ques-
tion into 6 question types (abbreviation, description, entity, human, location, numeric value).

• 20Newsgroups6: The 20Ng dataset contains messages from twenty newsgroups. We use the bydate
version preprocessed by Cachopo (2007). We select four major categories (comp, politics, rec and
religion) followed by Hingmire et al. (2013).

4.2 Word Embeddings

The word embeddings are pre-trained on much larger unannotated corpora to achieve better generaliza-
tion given limited amount of training data (Turian et al., 2010). In particular, our experiments utilize
the GloVe embeddings7 trained by Pennington et al. (2014) on 6 billion tokens of Wikipedia 2014 and
Gigaword 5. Words not present in the set of pre-trained words are initialized by randomly sampling from
uniform distribution in [−0.1, 0.1]. The word embeddings are fine-tuned during training to improve the
performance of classification.

2https://www.cs.cornell.edu/people/pabo/movie-review-data/
3http://nlp.stanford.edu/sentiment/
4http://www.cs.cornell.edu/people/pabo/movie-review-data/
5http://cogcomp.cs.illinois.edu/Data/QA/QC/
6http://web.ist.utl.pt/acardoso/datasets/
7http://nlp.stanford.edu/projects/glove/
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4.3 Hyper-parameter Settings

For datasets without a standard development set we randomly select 10% of the training data as the
development set. The evaluation metric of the 20Ng is the Macro-F1 measure followed by the state-of-
the-art work and the other five datasets use accuracy as the metric. The final hyper-parameters are as
follows.

The dimension of word embeddings is 300, the hidden units of LSTM is 300. We use 100 convo-
lutional filters each for window sizes of (3,3), 2D pooling size of (2,2). We set the mini-batch size as
10 and the learning rate of AdaDelta as the default value 1.0. For regularization, we employ Dropout
operation (Hinton et al., 2012) with dropout rate of 0.5 for the word embeddings, 0.2 for the BLSTM
layer and 0.4 for the penultimate layer, we also use l2 penalty with coefficient 10−5 over the parameters.

These values are chosen via a grid search on the SST-1 development set. We only tune these hyper-
parameters, and more finer tuning, such as using different numbers of hidden units of LSTM layer, or
using wide convolution (Kalchbrenner et al., 2014), may further improve the performance.

5 Results

5.1 Overall Performance

This work implements four models, BLSTM, BLSTM-Att, BLSTM-2DPooling, and BLSTM-2DCNN.
Table 2 presents the performance of the four models and other state-of-the-art models on six classification
tasks. The BLSTM-2DCNN model achieves excellent performance on 4 out of 6 tasks. Especially, it
achieves 52.4% and 89.5% test accuracies on SST-1 and SST-2 respectively.

BLSTM-2DPooling performs worse than the state-of-the-art models. While we expect performance
gains through the use of 2D convolution, we are surprised at the magnitude of the gains. BLSTM-CNN
beats all baselines on SST-1, SST-2, and TREC datasets. As for Subj and MR datasets, BLSTM-2DCNN
gets a second higher accuracies. Some of the previous techniques only work on sentences, but not
paragraphs/documents with several sentences. Our question becomes whether it is possible to use our
models for datasets that have a substantial number of words, such as 20Ng and where the content consists
of many different topics. For that purpose, this paper tests the four models on document-level dataset
20Ng, by treating the document as a long sentence. Compared with RCNN (Lai et al., 2015), BLSTM-
2DCNN achieves a comparable result.

Besides, this paper also compares with ReNN, RNN, CNN and other neural networks:

• Compared with ReNN, the proposed two models do not depend on external language-specific fea-
tures such as dependency parse trees.

• CNN extracts features from word embeddings of the input text, while BLSTM-2DPooling and
BLSTM-2DCNN captures features from the output of BLSTM layer, which has already extracted
features from the original input text.

• BLSTM-2DCNN is an extension of BLSTM-2DPooling, and the results show that BLSTM-2DCNN
can capture more dependencies in text.

• AdaSent utilizes a more complicated model to form a hierarchy of representations, and it outper-
forms BLSTM-2DCNN on Subj and MR datasets. Compared with DSCNN (Zhang et al., 2016),
BLSTM-2DCNN outperforms it on five datasets.

Compared with these results, 2D convolution and 2D max pooling operation are more effective for
modeling sentence, even document. To better understand the effect of 2D operations, this work conducts
a sensitivity analysis on SST-1 dataset.

5.2 Effect of Sentence Length

Figure 2 depicts the performance of the four models on different length of sentences. In the figure,
the x-axis represents sentence lengths and y-axis is accuracy. The sentences collected in test set are no
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NN Model SST-1 SST-2 Subj TREC MR 20Ng

ReNN
RNTN (Socher et al., 2013) 45.7 85.4 - - - -
DRNN (Irsoy and Cardie, 2014) 49.8 86.6 - - - -

CNN

DCNN (Kalchbrenner et al., 2014) 48.5 86.8 - 93.0 - -
CNN-non-static (Kim, 2014) 48.0 87.2 93.4 93.6 - -
CNN-MC (Kim, 2014) 47.4 88.1 93.2 92 - -
TBCNN(Mou et al., 2015) 51.4 87.9 - 96.0 - -
Molding-CNN (Lei et al., 2015) 51.2 88.6 - - - -
CNN-Ana (Zhang and Wallace, 2015) 45.98 85.45 93.66 91.37 81.02 -
MVCNN (Yin and Schütze, 2016) 49.6 89.4 93.9 - - -

RNN

RCNN (Lai et al., 2015) 47.21 - - - - 96.49
S-LSTM (Zhu et al., 2015) - 81.9 - - - -
LSTM (Tai et al., 2015) 46.4 84.9 - - - -
BLSTM (Tai et al., 2015) 49.1 87.5 - - - -
Tree-LSTM (Tai et al., 2015) 51.0 88.0 - - - -
LSTMN (Cheng et al., 2016) 49.3 87.3 - - - -
Multi-Task (Liu et al., 2016) 49.6 87.9 94.1 - - -

Other

PV (Le and Mikolov, 2014) 48.7 87.8 - - - -
DAN (Iyyer et al., 2015) 48.2 86.8 - - - -
combine-skip (Kiros et al., 2015) - - 93.6 92.2 76.5 -
AdaSent (Zhao et al., 2015) - - 95.5 92.4 83.1 -
LSTM-RNN (Le and Zuidema, 2015) 49.9 88.0 - - - -
C-LSTM (Zhou et al., 2015) 49.2 87.8 - 94.6 - -
DSCNN (Zhang et al., 2016) 49.7 89.1 93.2 95.4 81.5 -

ours

BLSTM 49.1 87.6 92.1 93.0 80.0 94.0
BLSTM-Att 49.8 88.2 93.5 93.8 81.0 94.6
BLSTM-2DPooling 50.5 88.3 93.7 94.8 81.5 95.5
BLSTM-2DCNN 52.4 89.5 94.0 96.1 82.3 96.5

Table 2: Classification results on several standard benchmarks. RNTN: Recursive deep models for se-
mantic compositionality over a sentiment treebank (Socher et al., 2013). DRNN: Deep recursive neural
networks for compositionality in language (Irsoy and Cardie, 2014). DCNN: A convolutional neural
network for modeling sentences (Kalchbrenner et al., 2014). CNN-nonstatic/MC: Convolutional neu-
ral networks for sentence classification (Kim, 2014). TBCNN: Discriminative neural sentence model-
ing by tree-based convolution (Mou et al., 2015). Molding-CNN: Molding CNNs for text: non-linear,
non-consecutive convolutions (Lei et al., 2015). CNN-Ana: A Sensitivity Analysis of (and Practition-
ers’ Guide to) Convolutional Neural Networks for Sentence Classification (Zhang and Wallace, 2015).
MVCNN: Multichannel variable-size convolution for sentence classification (Yin and Schütze, 2016).
RCNN: Recurrent Convolutional Neural Networks for Text Classification (Lai et al., 2015). S-LSTM:
Long short-term memory over recursive structures (Zhu et al., 2015). LSTM/BLSTM/Tree-LSTM:
Improved semantic representations from tree-structured long short-term memory networks (Tai et al.,
2015). LSTMN: Long short-term memory-networks for machine reading (Cheng et al., 2016). Multi-
Task: Recurrent Neural Network for Text Classification with Multi-Task Learning (Liu et al., 2016).
PV: Distributed representations of sentences and documents (Le and Mikolov, 2014). DAN: Deep un-
ordered composition rivals syntactic methods for text classification (Iyyer et al., 2015). combine-skip:
skip-thought vectors (Kiros et al., 2015). AdaSent: Self-adaptive hierarchical sentence model (Zhao
et al., 2015). LSTM-RNN: Compositional distributional semantics with long short term memory (Le
and Zuidema, 2015). C-LSTM: A C-LSTM Neural Network for Text Classification (Zhou et al., 2015).
DSCNN: Dependency Sensitive Convolutional Neural Networks for Modeling Sentences and Documents
(Zhang et al., 2016).
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Figure 2: Fine-grained sentiment classification
accuracy vs. sentence length.
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Figure 3: Prediction accuracy with different
size of 2D filter and 2D max pooling.

longer than 45 words. The accuracy here is the average value of the sentences with length in the window
[l − 2, l + 2]. Each data point is a mean score over 5 runs, and error bars have been omitted for clarity.

It is found that both BLSTM-2DPooling and BLSTM-2DCNN outperform the other two models. This
suggests that both 2D convolution and 2D max pooling operation are able to encode semantically-useful
structural information. At the same time, it shows that the accuracies decline with the length of sen-
tences increasing. In future work, we would like to investigate neural mechanisms to preserve long-term
dependencies of text.

5.3 Effect of 2D Convolutional Filter and 2D Max Pooling Size

We are interested in what is the best 2D filter and max pooling size to get better performance. We conduct
experiments on SST-1 dataset with BLSTM-2DCNN and set the number of feature maps to 100.

To make it simple, we set these two dimensions to the same values, thus both the filter and the pooling
are square matrices. For the horizontal axis, c means 2D convolutional filter size, and the five different
color bar charts on each c represent different 2D max pooling size from 2 to 6. Figure 3 shows that dif-
ferent size of filter and pooling can get different accuracies. The best accuracy is 52.6 with 2D filter size
(5,5) and 2D max pooling size (5,5), this shows that finer tuning can further improve the performance
reported here. And if a larger filter is used, the convolution can detector more features, and the perfor-
mance may be improved, too. However, the networks will take up more storage space, and consume
more time.

6 Conclusion

This paper introduces two combination models, one is BLSTM-2DPooling, the other is BLSTM-
2DCNN, which can be seen as an extension of BLSTM-2DPooling. Both models can hold not only
the time-step dimension but also the feature vector dimension information. The experiments are con-
ducted on six text classificaion tasks. The experiments results demonstrate that BLSTM-2DCNN not
only outperforms RecNN, RNN and CNN models, but also works better than the BLSTM-2DPooling
and DSCNN (Zhang et al., 2016). Especially, BLSTM-2DCNN achieves highest accuracy on SST-1 and
SST-2 datasets. To better understand the effective of the proposed two models, this work also conducts a
sensitivity analysis on SST-1 dataset. It is found that large filter can detector more features, and this may
lead to performance improvement.
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