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Abstract

This paper contributes to a growing body of evidence that—when coupled with appropriate
machine-learning techniques—linguistically motivated, information-rich representations can out-
perform one-hot encodings of linguistic data. In particular, we show that phonological features
outperform character-based models using the PanPhon resource. PanPhon is a database relating
over 5,000 IPA segments to 21 subsegmental articulatory features. We show that this database
boosts performance in various NER-related tasks. Phonologically aware, neural CRF models
built on PanPhon features are able to perform comparably to character-based models on monolin-
gual Spanish and Turkish NER tasks. On transfer models (as between Uzbek and Turkish) they
have been shown to perform better. Furthermore, PanPhon features also contribute measurably to
Orthography-to-IPA conversion tasks.

1 Introduction

This paper introduces PanPhon1, a resource consisting of a database that relates over 5,000 IPA segments
(simple and complex) to their definitions in terms of 21 articulatory features (see Tab. 1) as well as a
Python package for interacting with this database and manipulating the representations that it provides.
While our previous publications (summarized in §4) have described experiments using it, this is the
first full description of PanPhon. Combined with a sister package, Epitran2, it allows the conversion of

syl son cons cont delrel lat nas strid voi sg cg ant cor distr lab hi lo back round tense long

/p/ - - + - - - - 0 - - - + - 0 + - - - - 0 -
/pʰ/ - - + - - - - 0 - + - + - 0 + - - - - 0 -
/pʲ/ - - + - - - - 0 - - - + - 0 + + - - - 0 -
/pʰʲ/ - - + - - - - 0 - + - + - 0 + + - - - 0 -

Table 1: Illustration of IPA segments and feature vectors from PanPhon

orthographic texts to sequences of articulatory feature vectors. The Epitran-Panphon pipeline is illustrated
in Fig. 1. The input to Epitran consists of word tokens in orthographic representation. Take, for example,
the Spanish word Madrid. Epitran converts this string to a phonemic (not phonetic) representation in IPA,
in this case /madɾid/. Epitran then calls a PanPhon function to convert this IPA string into a sequence of
feature vectors. It then returns this sequence, aligned with the orthographic representation, capitalization,
and Unicode character category features.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/

1https://github.com/dmort27/panphon
2https://github.com/dmort27/epitran
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tokens Epitran:
orthography to IPA

PanPhon:
IPA to feature vector

sequences

feature vectors
(aligned with orth,

cat, and cap)

Figure 1: Feature vector pipline

This paper also shows that subsegmental features, as encoded in PanPhon, are useful in NLP tasks. The
specific tasks for which PanPhon has been shown to improve performance are named entity recognition
and conversion of lossy orthographies3 to IPA.

Phonologists have long held that articulatory features play a role in three central aspects of phonol-
ogy: contrast, distribution, and alternation. These constitute the distinctiveness of speech sounds, the
restrictions on where they can occur in the speech-stream, and the phonologically-derived differences in
the various realizations of the same morpheme. These may be illustrated through examples from Turkish
(Lees, 1963) as illustrated in Tab. 2. The difference between /i/ and /e/ is sufficient to distinguish two

nom.sg gen.sg nom.pl gen.pl gloss

ip ip-in ip-ler ip-ler-in ‘rope’
el el-in el-ler el-ler-in ‘hand’
kız kız-ın kız-lar kız-lar-ın ‘girl’

Table 2: Turkish vowel harmony (nom = nominative, gen = genitive, sg = singular, and pl = plural)

words, evidence that the feature [±high]4 is contrastive (sufficient to make lexical contrasts) in Turkish.
The vowels in the suffixes (-ler/-lar and -in/-ın) alternate to assimilate in quality to the preceding vowel.
This can be easily expressed in terms of the phonological feature [±back]: The vowels ⟨i⟩ and ⟨e⟩ are
[−back] while ⟨a⟩ and ⟨ı⟩ are [+back]5. The alternation consists of the smallest change that allows agree-
ment in the specification of this feature between the vowels in the root at the vowel in the suffix. In this
way, phonological features allow a degree of generalization, even over orthographic patterns, that purely
character-based (and also phoneme-based) models do not. Finally, the static observation that, in all but
a minority of “disharmonic” words, each vowel in a word shares the same specification for [±high] and
[±back] is a matter of distribution. These linguistic insights behind articulatory features translate into
practical benefits for NLP systems.

The usefulness of articulatory features in natural language processing, this paper will show, is most
valuable for replacing character-level models where characters bear some predictable relationship to
phonemes or phones. In such a scenario, treating characters as atomic entities is rather like treating
the chords of a musical score as unanalyzable units. While this approach may be adequate for many
purposes, we will argue that it ignores aspects of phonological structure that have demonstrable utility.
Articulatory features represent the parts in a layered articulatory score. Operations on this score target
these individual features, not the segment as a whole (“the chord”), contrary to the assumption made in
strictly character-based approaches. We have found, from a variety of perspectives, that exploiting these
components can improve the performance of relevant NLP systems.

2 Past Use of Phonological Features in NLP

Within both formal and empirical linguistics, it is rare to encounter discussion of structural patterns in
sounds without some mention of phonological features. Even radically empirical phonologists, rather
than denying the existence of such phonological features, tend to simply deny that there is a universal

3“Lossy orthographies” are ambiguous writing systems that lose segmental information present in the speech stream.
4In the linguistic subfield of phonology, features are often represented in square brackets with the name on the right and the

value presented as +, −, or ± (indicating that the feature is binary but that the value is not known).
5Note that alternate feature systems use the feature [±front] to account for this contrast.
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and innate feature inventory (Mielke, 2008). Likewise, in the speech sciences and speech technology,
phonological features have been the subject of widespread inquiry (Bromberg et al., 2007; Metze, 2007).
This contrasts with NLP, where phonological features have been subject to less experimentation, perhaps
because of the perceived lower relevance of phonology than morphology, syntax, and semantics to NLP
tasks. However, some promising NLP results have been achieved using phonological features.

In one of the more widely-cited cases of this kind, Gildea and Jurafsky (1996) added phonological
biases—stated in terms of phonological features—to aid the OSTIA (the Onward Subsequential Trans-
ducer Inferance Algorithm) in learning phonological rules. Subsequently , Tao et al. (2006) used hand-
weighted articulatory feature edit distance (augmented with “pseudofeatures”) to facilitate the translitera-
tion of named entities. This feature-based system outperformed a temporal algorithm on a English/Hindi
language pair and contributed to the performance of the best model the authors tested. In a successor
study, Yoon et al. (2007) employed the model of Tao et al. (2006) but with features weighted by the win-
now algorithm rather than by hand; they achieved comparable results without engineered weights. In a
related strain of research, Kondrak and Sherif (2006) explored phonological similarity measures based,
in some cases, on a kind of phonological feature system (but with a multivalued place feature unlike the
binary and ternary features integral to PanPhon).

3 PanPhon and Its Functionality

PanPhon facilitates further experimentation with phonological (specifically, articulatory) features. Our
goal in implementing PanPhon was not to implement a state-of-the-art feature system (from the stand-
point of linguistic theory) but to develop a methodologically solid resource that would be useful for NLP
researchers. Contemporary feature theories posit hierarchical and non-linear feature structures; they can-
not be easily expressed in terms of vectors of binary or ternary values like the earlier-vintage system
represented in PanPhon. Linear phonological models like that instantiated in PanPhon are arguably less
explanatory than non-linear and feature-geometric models, but they can also be said to hew closer to the
empirical ground. One limitation of PanPhon involves the representation of tone, one area in which non-
linear representations are almost universally conceded to hold the upper hand. PanPhon is segmental by
design and tone is suprasegmental by nature.

In constructing PanPhon, our approach was to start with a subset of the International Phonetic Alphabet
(or IPA) where every segment represents a sound that is distinct from the others. Contrary to its design
principles, the IPA allows multiple transcriptions for the same sound in a variety of cases. An attempt
was made, using consensus definitions, to classify each of these segments according to binary (and oc-
casionally, ternary) features. This consensus feature set and the accompanying definitions were based on
a survey of the phonological literature.

PanPhon’s contribution lies in the following attributes:

Universal. PanPhon will, when queried with a legal, segmental Unicode IPA string, return a sequence
of valid vectors of articulatory feature values. Currently, it defines 5,395 simple and complex IPA
characters in terms of 21 articulatory features.

Empirically verified. The general feature system used in PanPhon has been widely tested by linguists
across a great range of phenomena and languages and found to be effective at modeling the phono-
logical and morphophonological patterns of the world’s languages.

Unicode compliant. PanPhon uses the Unicode encoding of the International Phonetic Alphabet both in-
ternally and externally. This provides human readability (or, at least, readability to human linguists)
in a way that ASCII mappings of all or part of the IPA, like ARPAbet, WorldBet, SAMPA, and X-
SAMPA do not. Compare German müde ‘tired’ in ARPAbet /M <no_symbol> D AH/, WordBet
/m y: d &/, SAMPA /m y: d @/, X-SAMPA /m y: d @/ with IPA /myːdə/. The development of
convenient input methods and appropriate rendering technologies for IPA mitigate much of the past
difficulty involved in using it in computing applications.
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Open source. Unlike many existing phonological feature resources6, PanPhon is freely available under
a liberal license (MIT).

PanPhon consists of a collection of components:

1. A database relating unmodified IPA segments to vectors of 21 features. These form the core of the
database. The features are listed here in the canonical order in which they appear in the database:

syl [±syllabic]. Is the segment the nucleus of a syllable?
son [±sonorant]. Is the segment produced with a relatively unobstructed vocal tract?
cons [±consonantal]. Is the segment consonantal (not a vowel or glide, or laryngeal consonant)?
cont [±continuant]. Is the segment produced with continuous oral airflow?
delrel [±delayed release]. Is the segment an affricate?
lat [±lateral]. Is the segment produced with a lateral constriction?
nas [±nasal]. Is the segment produced with nasal airflow?
strid [±strident]. Is the segment produced with noisy friction?
voi [±voice]. Are the vocal folds vibrating during the production of the segment?
sg [±spread glottis]. Are the vocal folds abducted during the production of the segment?
cg [±constricted glottis]. Are the vocal folds adducted during the production of the segment?
ant [±anterior]. Is a constriction made in the front of the vocal tract?
cor [±coronal]. Is the tip or blade of the tongue used to make a constriction?
distr [±distributed]. Is a coronal constriction distributed laterally?
lab [±labial]. Does the segment involve constrictions with or of the lips?
hi [±high]. Is the segment produced with the tongue body raised?
lo [±low]. Is the segment produced with the tongue body lowered?
back [±back]. Is the segment produced with the tongue body in a posterior position?
round [±round]. Is the segment produced with the lips rounded?
tense [±tense]. Is the segment produced with an advanced tongue root.

Feature vectors from PanPhon for a few example segments (both simple and complex) are shown in
Tab. 1.

2. A collection of rules, written in user-editable YAML, that describe diacritics and modifiers—the
Unicode codepoint of the modifier, the feature specifications that provide the necessary context for
adding the diacritic or modifier, and the feature specifications changes that take place if the diacritic
or modifier is added to a segment. An example of one of these YAML rules is shown below:

Listing 1: Diacritic rule
− marker: ʷ

name: Labialized
position: post
conditions:
− syl: ”−”

exclude:
− w
− ʍ
− ɥ

content:
round: ”+”
back: ”+”
hi: ”+”

6But see also PHOIBLE’s phonological feature set (Moran et al., 2014).
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This example shows a rule (named “Labialized”) that adds the modifier (marker) “ʷ” after a
segment—post(fix), if the segment has the feature [−syllabic] and is not /w/, /ʍ/, or /ɥ/. The new
segment has the same features as the input segment except that is it [+round], [+back], and [+hi].

3. A script for applying diacritics and modifiers, as defined in 2, to segments, as defined in 1 and the
comprehensive segment database produced by this script.

4. A set of Python convenience functions and classes for accessing, manipulating, and employing the
phonological feature vectors associated with any segment, whether simple or complex:

(a) Greedily parsing IPA strings into segments defined in the database.
(b) Converting such a sequence of segments into a sequence of articulatory feature vectors.
(c) Querying sets of segments based upon their features.
(d) Pattern matching against strings using feature specifications to define character classes.
(e) Computing phonological distance: weighted and unweighted feature edit distance.
(f) Computing phonological distance: Levenshtein distance between strings with collapsed,

phonologically-based segment equivalence classes.

In some applications, PanPhon is used with a sister library, Epitran, or another—more specialized—
package for converting orthography to IPA. Epitran provides a simple interface for quickly implementing
grapheme to phoneme mappings for languages with phonemically adequate orthographies. It includes
mappings for a variety of languages including Spanish, Dutch, Turkish, and Uyghur.

4 Empirical Evaluation of PanPhon
It is not simply the case that the articulatory features available through PanPhon are well founded in
terms of linguistic theory. It is also true that they have been demonstrated to improve the performance
of certain machine learning models at certain NLP tasks. This section summarizes the contribution of
PanPhon to two classes of tasks: orthography-to-IPA character transduction and named entity recognition
(NER). While the second set of experiments (on NER) were prompted by a need to test a particular class of
model—phonologically aware LSTM-CRFs—the first set were motivated by the need to solve a particular
problem: how best to convert Sorani Kurdish (a Northwestern Iranian language of Iraq and Iran) from
orthographic to IPA representation.

4.1 Orthography-IPA Character Transduction
As part of a NER system for the low-resource Sorani Kurdish language, we developed a Sorani-
orthography-to-IPA converter Littell et al. (2016). This was challenging because the Sorani orthogra-
phy, like many Perso-Arabic scripts, badly underdetermines the equivalent phonetic representation. The
following steps summarize the workflow behind building the Sorani-to-IPA converter:

1. Human linguists identify the orthographic units (i.e., characters and multigraphs) in the script.

2. Human linguists identify the possible IPA representations of each orthographic unit, using knowl-
edge of the language and the writing system.

3. The system generates all possible hypotheses for a subset of tokens of the language using the mapping
developed in the previous step.

4. Human linguists generate training data using a grammar and lexicon (Thackston, 2006) by picking
one or more valid pronunciations (or, if unknown, one or more likely hypotheses) for a selection of
tokens.

5. Character-level chain conditional random field (CRF) is trained (Lafferty et al., 2001; Dyer et al.,
2010) on resulting data.
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The hypothesis space within which the CRF operates was determined by the symbol-level IPA map de-
veloped in the first step of our work-flow. It is important to note that we allowed many-to-many mapping
between orthographic input character sequences and IPA output character sequences in the sense that a
single input character can be mapped to multiple IPA symbols and an input multigraph (consisting of
multiple orthographic characters) can be mapped to a single IPA symbol.

PanPhon feature vectors were used to create one set of features that were consumed by the CRF.
This move was motivated by the insight that phonotactic patterns—patterns in the sequences of speech
sounds—tend to be based around the very sorts of classes that phonological features are intended to de-
scribe. For the purposes of these experiments, we divided these features into six classes which correspond
largely to classes widely used by phonologists:

• Major Class features—represent the major classes of sounds: [±syllable], [±sonorant],
[±consonantal], [±continuant].

• Laryngeal features—specify the glottal states of sounds: [±voice], [±spread glottis], [±constricted
glottis].

• Major place features—focus on the place of articulation: [±anterior], [±coronal], [±labial] and
[±distributed]7.

• Minor Place features—related to the position of the dorsum in the tongue: [±high], [±low] and
[±back].

• Manner features—categorize IPA symbols according to their manner of articulation: [±nasal],
[±lateral], [±delayed release] and [±strident].

• Minor Manner features—the attributes in this group were [±round] and [±tense].
We then generated the training data with 244 instances (types)8 and report performance of their IPA

predictor on 402 instances. In Table 3 (adapted from Littell et al. (2016)), we compare the accuracy and
character error rate (CER) of the predictor, when using PanPhon features compared to, and along with:

• Basic features pertaining to the usage of orthography-to-IPA symbol translation rules, and whether
the IPA symbols were identified as consonants and vowels9.

• Phon features derived from the PanPhon IPA-to-feature-vector package.

• Kurmanji features derived from a 4-gram language model, built using SRILM (Stolcke, 2002), from
the IPA-ized Kurmanji corpus. Kurmanji is a “sister” language of Sorani having a phonologically
unambiguous orthography.

• Tajik features, derived as above, from the IPA-ized Tajik corpus. Tajik is a close cousin of Sorani
having a phonologically unambiguous orthography.

While the single most important class of features, all told, were those derived from the Kurmanji lan-
guage model, the inclusion of PanPhon features gave similar gains to the inclusion of the Tajik features,
and the best results overall came from the inclusion of both Kurmanji and PanPhon features. This is a
welcome result—while not all languages have a close sister variety with an unambiguous orthography,
PanPhon-based features are universally available.

Among the PanPhon features, the most valuable features for this task were the major class features,
laryngeal features, and place features. Unsurprisingly, having a language model from a sister language
(in this case, Kurmanji) is the most useful single source of features for IPA conversion. However, it is
surprising to find that just having the universal features derived from PanPhon vectors were as useful as
having a language model from a cousin language (in this case, Tajik).

7Phonologists do not generally consider the feature [±distributed] to be a major place feature. This appears to have been an
error in our implementation of the feature classes.

8It is worth noting that when reducing the training set to a quarter of this, we observed only slightly worse results, suggesting
that very little manual effort would be necessary to generate training data for a task like this.

9The consonant/vowel feature should have been largely equivalent to the feature [±syllabic].
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Features Accuracy CER
Basic 0.635 0.237
Basic+phon. 0.669 0.234
Basic+Kurmanji 0.701 0.223
Basic+Kurmanji+phon. 0.721 0.221
Basic+Tajik 0.661 0.231
Basic+Tajik+phon. 0.664 0.228
All features 0.721 0.221

Table 3: IPA prediction for Sorani, trained on 244 tokens, tested on 402 tokens

4.2 NER with Phonologically-Aware Neural Models
We subsequently experimented with PanPhon—and its sister package, Epitran—in performing NER
with a character-based LSTM-CRF architecture (Bharadwaj et al., 2016). We made this architecture
phonologically-aware by substituting phonological feature vectors from PanPhon for characters. We used
the resulting features in a series of NER experiments in both monolingual and transfer scenarios. As a
baseline, we employed a character based LSTM-CRF NER system with features from pre-trained word
vectors.

In a series of monolingual experiment using CoNLL 2002 data from Spanish (see Tab. 4, adapted from
(Bharadwaj et al., 2016)) it was found that substituting PanPhon and phonological attention features for or-
thographic and orthographic attention features (in a model also incorporating word vector, capitalization,
and Unicode character category features) raised F1 from 85.25 to 85.81 and yielded the best-performing
model in the series. In a second series of monolingual experiments using the LDC2014E115 BOLT Turk-

Features F1
WVec 83.61
WVec+Phon 84.08
WVec+Orth 84.52
WVec+Phon+Orth+PhonAttn 84.53
WVec+Orth+OrthAttn 84.64
WVec+Phon+PhonAttn 84.88
WVec+Phon+Cap+Cat 84.89
WVec+Orth+Cap+Cat 84.91
WVec+Phon+Orth+Cap+Cat 84.92
WVec+Orth+OrthAttn+Cap+Cat 85.25
WVec+Phon+PhonAttn+Cap+Cat 85.81
WVec+Phon+Orth+OrthAttn+Cap+Cat 85.32
WVec+Phon+PhonAttn+Orth+Cap+Cat 84.84
All features 84.75

Table 4: Ablation tests on Spanish NER; bold indicates best model; factors are pre-trained word vec-
tors (WVec), PanPhon features (Phon), phonological attention features (PhonAttn), orthographic features
(Orth), orthographic attention features (OrthAttn), capitalization features (Cap), and Unicode category
features (Cat)

ish Language Pack, Bharadwaj et al. (2016) found that the best model incorporated PanPhon as well as
orthographic features (see Tab. 5. The second-best scoring model uses only PanPhon features and phono-
logical attention features (in addition to pretrained word vectors) and because it is character-independent,
it is more suitable for cross-lingual transfer. Finally, Bharadwaj et al. (2016) conducted a series of Uzbek-
to-Turkish cross-lingual transfer experiments using the LDC2015E89 BOLT data pack for Uzbek and the
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Features F1
WVec 49.2
WVec+Orth 65.41
WVec+Orth+OrthAttn 64.76
WVec+Orth+Cap+Cat 60.57
WVec+Orth+Cap+Cat+OrthAttn 60.87
WVec+Phon 63.04
WVec+Phon+PhonAttn 66.07
WVec+Phon+Cap+Cat 59.08
WVec+Phon+Cap+Cat+PhonAttn 62.46
WVec+Phon+Orth+PhonAttn 63.43
WVec+Phon+Orth+Cap+Cat+PhonAttn 63.46
All features 66.47

Table 5: Ablation tests on Turkish NER; Boldface indicates the best model (66.47); factors are pre-trained
word vectors (WVec), PanPhon features (Phon), phonological attention features (PhonAttn), orthographic
features (Orth), orthographic attention features (OrthAttn), capitalization features (Cap), and Unicode
category features (Cat)

LDC2014E115 BOLT data pack for Turkish. Unsurprisingly, monolingual models with no training data
achieve an F1 of zero. In a transfer situation, with no Turkish training data, word vectors alone give an
F-score of 2.09. However, using phonological features and phonological attention features with zero train-
ing data in the target language (but training in the transfer language) yields an F-score of 11.9. Adding
capitalization and Unicode category features allowed the resulting model to achieve an F1 of 26.92 in a
zero-shot scenario.

Features Source Target
0-shot

5%
data

20%
data

40%
data

60%
data

80%
data

All
data

WVec 41.87 2.09 23.44 35 42.75 46.32 48.81 50.34
WVec+Phon+PhonAttn 61.24 11.9 34.06 47.84 56.1 53.5 64.72 65.2
WVec+Phon+Cap+Cat 60.92 15.55 39.42 60.14 63.23 62.54 65.24 65.63
All features 61.85 26.92 47.21 58.58 60.32 60.7 62.84 63.58

Monolingual Models Target
0-shot

5%
data

20%
data

40%
data

60%
data

80%
data

All
data

LSTM-CRF (Lample et al., 2016) 0 33.44 50.61 53.25 57.41 60 61.11
S-LSTM (Lample et al., 2016) 0 15.41 39.33 42.99 51.92 51.55 56.58

Table 6: Model transfer from Uzbek to Turkish at different target data availability thresholds compared to
monolingual Turkish baseline, also at different data availability thresholds; factors are pre-trained word
vectors (WVec), PanPhon features (Phon), phonological attention features (PhonAttn), capitalization fea-
tures (Cap), and Unicode category features (Cat)

What do these experiments reveal about the value of PanPhon for NER? The monolingual experiments
may not seem compelling, but they drive home an important point: even though conversion from or-
thography to PanPhon vectors entails a significant loss of information, it does not seem to entail a loss
of performance. It is even possible that phonological features facilitate NER in the monolingual case by
helping a neural NER system to identify phonologically aberrant tokens which are more likely to reflect
borrowed lexical items which, in turn, are more likely to be named entities. The real benefit of using
phonological feature representations in NER, however, is manifest in transfer scenarios like the Uzbek-
Turkish transfer scenario we explored in Bharadwaj et al. (2016). By projecting both the source and target
language into a common phonological space, similarities that would be masked in an orthographic space
become accessible to a neural NER system. The value of such an approach is most obvious when it is
applied to relatively closely-related languages that are written in different orthographies like Uzbek and
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Turkish10.

5 Conclusion
This paper has reported the creation of a new resource, PanPhon, a database of IPA segment-phonological
feature correspondences with a collection of code for exploiting these relationships. Additionally, we
briefly documented the PanPhon database and modules. Most significantly, we showed that PanPhon
features can improve performance in two NLP tasks: orthography-to-IPA conversion and NER. At this
point, the PanPhon feature mapping has still not be tested against other phonological feature implemen-
tations (which have typically not been made widely available) in these tasks, so it cannot be claimed that
PanPhon boosts performance more than these other databases. However, it can be said conclusively that
systems like PanPhon are a useful component in some NLP systems.
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