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Abstract

Target-dependent sentiment classification remains a challenge: modeling the semantic related-
ness of a target with its context words in a sentence. Different context words have different
influences on determining the sentiment polarity of a sentence towards the target. Therefore, it
is desirable to integrate the connections between target word and context words when building a
learning system. In this paper, we develop two target dependent long short-term memory (LSTM)
models, where target information is automatically taken into account. We evaluate our methods
on a benchmark dataset from Twitter. Empirical results show that modeling sentence represen-
tation with standard LSTM does not perform well. Incorporating target information into LSTM
can significantly boost the classification accuracy. The target-dependent LSTM models achieve
state-of-the-art performances without using syntactic parser or external sentiment lexicons.

1 Introduction

Sentiment analysis, also known as opinion mining (Pang and Lee, 2008; Liu, 2012), is a fundamental
task in natural language processing and computational linguistics. Sentiment analysis is crucial to un-
derstanding user generated text in social networks or product reviews, and has drawn a lot of attentions
from both industry and academic communities. In this paper, we focus on target-dependent sentiment
classification (Jiang et al., 2011; Dong et al., 2014; Vo and Zhang, 2015), which is a fundamental and
extensively studied task in the field of sentiment analysis. Given a sentence and a target mention, the
task calls for inferring the sentiment polarity (e.g. positive, negative, neutral) of the sentence towards
the target. For example, let us consider the sentence: “I bought a new camera. The picture quality is
amazing but the battery life is too short”. If the target string is picture quality, the expected sentiment
polarity is “positive” as the sentence expresses a positive opinion towards picture quality. If we consider
the target as battery life, the correct sentiment polarity should be “negative”.

Target-dependent sentiment classification is typically regarded as a kind of text classification problem
in literature. Majority of existing studies build sentiment classifiers with supervised machine learning
approach, such as feature based Supported Vector Machine (Jiang et al., 2011) or neural network ap-
proaches (Dong et al., 2014; Vo and Zhang, 2015). Despite the effectiveness of these approaches, we
argue that target-dependent sentiment classification remains a challenge: how to effectively model the
semantic relatedness of a target word with its context words in a sentence. One straight forward way
to address this problem is to manually design a set of target-dependent features, and integrate them into
existing feature-based SVM. However, feature engineering is labor intensive and the “sparse” and “dis-
crete” features are clumsy in encoding side information like target-context relatedness. In addition, a
person asked to do this task will naturally “look at” parts of relevant context words which are helpful to
determine the sentiment polarity of a sentence towards the target. These motivate us to develop a power-
ful neural network approach, which is capable of learning continuous features (representations) without
feature engineering and meanwhile capturing the intricate relatedness between target and context words.

!Codes are publicly available at http://ir.hit.edu.cn/~dytang.
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Figure 1: The basic long short-term memory (LSTM) approach and its target-dependent extension TD-
LSTM for target-dependent sentiment classification. w stands for word in a sentence whose length is n,
{wis1, Wiy, ..., wy_1} are target words, {wi, wa, ..., w; } are preceding context words, {wy, ..., wy_1,
wy, } are following context words.

In this paper, we present neural network models to deal with target-dependent sentiment classification.
The approach is an extension on long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997)
by incorporating target information. Such target-dependent LSTM approach models the relatedness of a
target word with its context words, and selects the relevant parts of contexts to infer the sentiment polarity
towards the target. The model could be trained in an end-to-end way with standard backpropagation,
where the loss function is cross-entropy error of supervised sentiment classification.

We apply the neural model to target-dependent sentiment classification on a benchmark dataset (Dong
etal., 2014). We compare with feature-based SVM (Jiang et al., 2011), adaptive recursive neural network
(Dong et al., 2014) and lexicon-enhanced neural network (Vo and Zhang, 2015). Empirical results show
that the proposed approach without using syntactic parser or external sentiment lexicon obtains state-of-
the-art classification accuracy. In addition, we find that modeling sentence with standard LSTM does not
perform well on this target-dependent task. Integrating target information into LSTM could significantly
improve the classification accuracy.

2 The Approach

We describe the proposed approach for target-dependent sentiment classification in this section. We first
present a basic long short-term memory (LSTM) approach, which models the semantic representation
of a sentence without considering the target word being evaluated. Afterwards, we extend LSTM by
considering the target word, obtaining the Target-Dependent Long Short-Term Memory (TD-LSTM)
model. Finally, we extend TD-LSTM with target connection, where the semantic relatedness of target
with its context words are incorporated.

2.1 Long Short-Term Memory (LSTM)

In this part, we describe a long short-term memory (LSTM) model for target-dependent sentiment clas-
sification. It is a basic version of our approach. In this setting, the target to be evaluated is ignored so
that the task is considered in a target independent way.

We use LSTM as it is a state-of-the-art performer for semantic composition in the area of sentiment
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Figure 2: The target-connection long short-term memory (TC-LSTM) model for target-dependent sen-
timent classification, where w stands for word in a sentence whose length is n, {w;41, wit2, ..., wr—1}
are target words, vyqrget 1S target representation, {wi, wo, ..., w;} are preceding context words, {wy, ...,
Wn—1, Wy, } are following context words.

analysis (Li et al., 2015a; Tang et al., 2015). It is capable of computing the representation of a longer
expression (e.g. a sentence) from the representation of its children with multi levels of abstraction. The
sentence representation can be naturally considered as the feature to predict the sentiment polarity of
sentence.

Specifically, each word is represented as a low dimensional, continuous and real-valued vector, also
known as word embedding (Bengio et al., 2003; Mikolov et al., 2013; Pennington et al., 2014; Tang
et al., 2014). All the word vectors are stacked in a word embedding matrix L,, € Rdxm, where d is
the dimension of word vector and |V| is vocabulary size. In this work, we pre-train the values of word
vectors from text corpus with embedding learning algorithms (Pennington et al., 2014; Tang et al., 2014)
to make better use of semantic and grammatical associations of words.

We use LSTM to compute the vector of a sentence from the vectors of words it contains, an illustration
of the model is shown in Figure 1. LSTM is a kind of recurrent neural network (RNN), which is capable
of mapping vectors of words with variable length to a fixed-length vector by recursively transforming
current word vector w; with the output vector of the previous step h;—;. The transition function of
standard RNN is a linear layer followed by a pointwise non-linear layer such as hyperbolic tangent
function (tanh).

hy = tanh(W . [ht—IS wt] + b) (D)

where W € R%*2¢ , ¢ R?, d is dimension of word vector. However, standard RNN suffers the prob-
lem of gradient vanishing or exploding (Bengio et al., 1994; Hochreiter and Schmidhuber, 1997), where
gradients may grow or decay exponentially over long sequences. Many researchers use a more sophisti-
cated and powerful LSTM cell as the transition function, so that long-distance semantic correlations in a
sequence could be better modeled. Compared with standard RNN, LSTM cell contains three additional
neural gates: an input gate, a forget gate and an output gate. These gates adaptively remember input
vector, forget previous history and generate output vector (Hochreiter and Schmidhuber, 1997). LSTM
cell is calculated as follows.

iy = (Wi - [he—1;we] + b;) (2)

t = (Wf The—1;we] + bf) 3)
o = a(Wo - [hg—1;w¢] + bo) 4)
gt = tanh(W,. - [hy—1;w] + ;) (35)
=1t Og+ fr ©c1 (6)
hi = oy © tanh(c) (7

where © stands for element-wise multiplication, o is sigmoid function, W5, b;, Wy, by, W, b, are the

parameters of input, forget and output gates.
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After calculating the hidden vector of each position, we regard the last hidden vector as the sentence
representation (Li et al., 2015a; Tang et al., 2015). We feed it to a linear layer whose output length is
class number, and add a so ftmax layer to output the probability of classifying the sentence as positive,
negative or neutral. Softmax function is calculated as follows, where C' is the number of sentiment
categories.

exp(x;) ®)

softmar; = —5
i=1 exp(Tir)

2.2 Target-Dependent LSTM (TD-LSTM)

The aforementioned LSTM model solves target-dependent sentiment classification in a target-
independent way. That is to say, the feature representation used for sentiment classification remains
the same without considering the target words. Let us again take “I bought a new camera. The picture
quality is amazing but the battery life is too short” as an example. The representations of this sentence
with regard to picture quality and battery life are identical. This is evidently problematic as the sentiment
polarity labels towards these two targets are different.

To take into account of the target information, we make a slight modification on the aforementioned
LSTM model and introduce a target-dependent LSTM (TD-LSTM) in this subsection. The basic idea
is to model the preceding and following contexts surrounding the target string, so that contexts in both
directions could be used as feature representations for sentiment classification. We believe that capturing
such target-dependent context information could improve the accuracy of target-dependent sentiment
classification.

Specifically, we use two LSTM neural networks, a left one LSTMf, and a right one LSTM g, to model
the preceding and following contexts respectively. An illustration of the model is shown in Figure 1. The
input of LSTM/, is the preceding contexts plus target string, and the input of LSTMp, is the following
contexts plus target string. We run LSTM/, from left to right, and run LSTM g from right to left. We favor
this strategy as we believe that regarding target string as the last unit could better utilize the semantics
of target string when using the composed representation for sentiment classification. Afterwards, we
concatenate the last hidden vectors of LSTM, and LSTMg, and feed them to a so ftmax layer to classify
the sentiment polarity label. One could also try averaging or summing the last hidden vectors of LSTM,
and LSTMp, as alternatives.

2.3 Target-Connection LSTM (TC-LSTM)

Compared with LSTM model, target-dependent LSTM (TD-LSTM) could make better use of the target
information. However, we think TD-LSTM is still not good enough because it does not capture the
interactions between target word and its contexts. Furthermore, a person asked to do target-dependent
sentiment classification will select the relevant context words which are helpful to determine the senti-
ment polarity of a sentence towards the target.

Based on the consideration mentioned above, we go one step further and develop a target-connection
long short-term memory (TC-LSTM). This model extends TD-LSTM by incorporating an target con-
nection component, which explicitly utilizes the connections between target word and each context word
when composing the representation of a sentence.

An overview of TC-LSTM is illustrated in Figure 2. The input of TC-LSTM is a sentence consist-
ing of n words {wy, we,...w,} and a target string ¢ occurs in the sentence. We represent target ¢ as
{wyy1,wy49...wr—1} because a target could be a word sequence of variable length, such as “google” or
“harry potter”. When processing a sentence, we split it into three components: target words, preceding
context words and following context words. We obtain target vector vsq,get by averaging the vectors
of words it contains, which has been proven to be simple and effective in representing named entities
(Socher et al., 2013a; Sun et al., 2015). When compute the hidden vectors of preceding and following
context words, we use two separate long short-term memory models, which are similar with the strategy
used in TD-LSTM. The difference is that in TC-LSTM the input at each position is the concatenation of
word embedding and target vector viqrger, While in TD-LSTM the input at each position only includes
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the embedding of current word. We believe that TC-LSTM could make better use of the connection
between target and each context word when building the representation of a sentence.

2.4 Model Training

We train LSTM, TD-LSTM and TC-LSTM in an end-to-end way in a supervised learning framework.
The loss function is the cross-entropy error of sentiment classification.

C
loss = — Z Z PI(s) - log(P.(s)) )

seS c=1
where S is the training data, C' is the number of sentiment categories, s means a sentence, P.(s) is the
probability of predicting s as class ¢ given by the softmaxz layer, P/(s) indicates whether class c is
the correct sentiment category, whose value is 1 or 0. We take the derivative of loss function through
back-propagation with respect to all parameters, and update parameters with stochastic gradient descent.

3 Experiment

We apply the proposed method to target-dependent sentiment classification to evaluate its effectiveness.
We describe experimental setting and empirical results in this section.

3.1 Experimental Settings

We conduct experiment in a supervised setting on a benchmark dataset (Dong et al., 2014). Each instance
in the training/test set has a manually labeled sentiment polarity. Training set contains 6,248 sentences
and test set has 692 sentences. The percentages of positive, negative and neutral in training and test
sets are both 25%, 25%, 50%. We train the model on training set, and evaluate the performance on test
set. Evaluation metrics are accuracy and macro-F1 score over positive, negative and neutral categories
(Manning and Schiitze, 1999; Jurafsky and Martin, 2000).

3.2 Comparison to Other Methods

We compare with several baseline methods, including:

In SVM-indep, SVM classifier is built with target-independent features, such as unigram, bigram,
punctuations, emoticons, hashtags, the numbers of positive or negative words in General Inquirer senti-
ment lexicon. In SVM-dep, target-dependent features (Jiang et al., 2011) are also concatenated as the
feature representation.

In Recursive NN, standard Recursive neural network is used for feature learning over a transfered
target-dependent dependency tree (Dong et al., 2014). AdaRNN-w/oE, AdaRNN-w/E and AdaRNN-
comb are different variations of adaptive recursive neural network (Dong et al., 2014), whose composi-
tion functions are adaptively selected according to the inputs.

In Target-dep, SVM classifier is built based on rich target-independent and target-dependent features
(Vo and Zhang, 2015). In Target-dep™, sentiment lexicon features are further incorporated.

The neural models developed in this paper are abbreviated as LSTM, TD-LSTM and TC-LSTM, which
are described in the previous section. We use 100-dimensional Glove vectors learned from Twitter,
randomize the parameters with uniform distribution U(—0.003,0.003), set the clipping threshold of
softmax layer as 200 and set learning rate as 0.01.

Experimental results of baseline models and our methods are given in Table 1. Comparing between
SVM-indep and SVM-dep, we can find that incorporating target information can improve the classifica-
tion accuracy of a basic SVM classifier. AdaRNN performs better than feature based SVM by making use
of dependency parsing information and tree-structured semantic composition. We can find that target-
dep is a strong performer even without using lexicon features. It benefits from rich automatic features
generated from word embeddings.

Among LSTM based models described in this paper, the basic LSTM approach performs worst. This is
not surprising because this task requires understanding target-dependent text semantics, while the basic
LSTM model does not capture any target information so that it predicts the same result for different
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Method Accuracy Macro-F1
SVM-indep 0.627 0.602
SVM-dep 0.634 0.633
Recursive NN 0.630 0.628
AdaRNN-w/oE 0.649 0.644
AdaRNN-w/E 0.658 0.655
AdaRNN-comb 0.663 0.659
Target-dep 0.697 0.680
Target-dep™ 0.711 0.699
LSTM 0.665 0.647
TD-LSTM 0.708 0.690
TC-LSTM 0.715 0.695

Table 1: Comparison of different methods on target-dependent sentiment classification. Evaluation met-
rics are accuracy and macro-F1. Best scores are in bold.

targets in a sentence. TD-LSTM obtains a big improvement over LSTM when target signals are taken
into consideration. This result demonstrates the importance of target information for target-dependent
sentiment classification. By incorporating target-connection mechanism, TC-LSTM obtains the best
performances and outperforms all baseline methods in term of classification accuracy.

Comparing between Target-dep™ and Target-dep, we find that sentiment lexicon feature could further
improve the classification accuracy. Our final model TC-LSTM without using sentiment lexicon infor-
mation performs comparably with Target-dep™. We believe that incorporation lexicon information in
TC-LSTM could get further improvement. We leave this as a potential future work.

3.3 Effects of Word Embeddings

It is well accepted that a good word embedding is crucial to composing a powerful text representa-
tion at higher level. We therefore study the effects of different word embeddings on LSTM, TD-LSTM
and TC-LSTM in this part. Since the benchmark dataset from (Dong et al., 2014) comes from Twitter,
we compare between sentiment-specific word embedding (SSWE)? (Tang et al., 2014) and Glove vec-
tors’ (Pennington et al., 2014). All these word vectors are 50-dimensional and learned from Twitter.
SSWE;,, SSWE, and SSWE,, are different embedding learning algorithms introduced in (Tang et al.,
2014). SSWE, and SSWE, learn word embeddings by only using sentiment of sentences. SSWE,, takes
into account of sentiment of sentences and contexts of words simultaneously.

0.72F T 3
Il sSWE-h
I SSWE-r
0.7 T sswE-u
[ IGlove.twitter.50d - *
| | I Glove.twitter.100d
0.68 .
I Glove twitter.200d

0.64+

0.62+

0.6 u u
LSTM TD-LSTM TC-LSTM

Figure 3: Classification accuracy of LSTM, TD-LSTM and TC-LSTM with different word embeddings.
We compare between SSWE;,, SSWE,., SSWE,, and Glove vectors.

2SSWE vectors are publicly available at http://ir.hit.edu.cn/~dytang
3Glove vectors are publicly available at http://nlp.stanford.edu/projects/glove/
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From Figure 3, we can find that SSWE;, and SSWE,. perform worse than SSWE,,, which is consistent
with the results reported on target-independent sentiment classification of tweets (Tang et al., 2014).
This shows the importance of context information for word embedding learning as both SSWE;, and
SSWE.,. do not encode any word contexts. Glove and SSWE,, perform comparably, which indicates the
importance of global context for estimating a good word representation. In addition, the target connection
model TC-LSTM performs best when considering a specific word embedding.

50dms | 100dms | 200dms
LSTM 27 95 329
LSTM-TD 20 93 274
LSTM-TC 65 280 1,165

Table 2: Time cost of each model with 50dms, 100dms and 200dms Glove vectors. Each value means
how many seconds cost in each training iteration.

We compare between Glove vectors with different dimensions (50/100/200). Classification accuracy
and time cost are given in Figure 3 and Table 2, respectively. We can find that 100-dimensional word
vectors perform better than 50-dimensional word vectors, while 200-dimensional word vectors do not
show significant improvements. Furthermore, TD-LSTM and LSTM have similar time cost, while TD-
LSTM gets higher classification accuracy as target information is incorporated. TC-LSTM performs
slightly better than TD-LSTM while at the cost of longer training time because the parameter number of
TC-LSTM is larger.

3.4 Case Study

In this section, we explore to what extent the target-dependent LSTM models including TD-LSTM and
TC-LSTM improve the performance of a basic LSTM model.

Example gold | LSTM
i hate my ipod look at my last tweet before the argh one that ’s for you -1 0
okay soooo ... ummmmm .... what is going on with lindsay lohan’ s face? | 0 -1
boring day at the office = perez and tomorrow overload. not good

i heard ShannonBrown did his thing in the lakers game!! got ta love him 0 1
Hey google, thanks for all these great Labs features on Chromium, but how 1 0
about ” Create Application Shortcut”?!

Table 3: Examples drawn from the test set whose polarity labels are incorrectly inferred by LSTM but
correctly predicted by both TD-LSTM and TC-LSTM. For each example, target words are in bold,
“gold” is the ground truth and “LSTM” means the predicted sentiment label from LSTM model.

In Table 3, we list some examples whose polarity labels are incorrectly inferred by LSTM but correctly
predicted by both TD-LSTM and TC-LSTM. We observe that LSTM model prefers to assigning the
polarity of the entire sentence while ignoring the target to be evaluated. TD-LSTM and TC-LSTM could
take into account of target information to some extend. For example, in the 2nd example the opinion
holder expresses a negative opinion about his work, but holds a neutral sentiment towards the target
“lindsay lohan”. In the last example, the whole sentence expresses a neutral sentiment while it holds a
positive opinion towards “google”.

We analyse the error cases that both TD-LSTM and TC-LSTM cannot well handle, and find that 85.4%
of the misclassified examples relate to neutral category. The positive instances are rarely misclassified as
negative, and vice versa. A example of errors is: “freaky friday on television reminding me to think wtf
happened to lindsay lohan, she was such a terrific actress , + my huge crush on haley hudson.”, which
is incorrectly predicted as positive towards target “indsay lohan” in both TD-LSTM and TC-LSTM.
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3.5 Discussion

In order to capture the semantic relatedness between target and context words, we extend TD-LSTM by
adding a target connection component. One could also try other extensions to capture the connection
between target and context words. For example, we also tried an attention-based LSTM model, which
is inspired by the recent success of attention-based neural network in machine translation (Bahdanau et
al., 2015) and document encoding (Li et al., 2015b). We implement the soft-attention mechanism (Bah-
danau et al., 2015) to enhance TD-LSTM. We incorporate two attention layers for preceding LSTM and
following LSTM, respectively. The output vector for each attention layer is the weighted average among
hidden vectors of LSTM, where the weight of each hidden vector is calculated with a feedforward neural
network. The outputs of preceding and following attention models are concatenated and fed to so ftmax
for sentiment classification. However, we cannot obtain better result with such an attention model. The
accuracy of this attention model is slightly lower than the standard LSTM model (around 65%), which
means that the attention component has a negative impact on the model. A potential reason might be that
the attention based LSTM has larger number of parameters, which cannot be easily optimized with the
small number of corpus.

4 Related Work

We briefly review existing studies on target-dependent sentiment classification and neural network ap-
proaches for sentiment classification in this section.

4.1 Target-Dependent Sentiment Classification

Target-dependent sentiment classification is typically regarded as a kind of text classification problem
in literature. Therefore, standard text classification approach such as feature-based Supported Vector
Machine (Pang et al., 2002; Jiang et al., 2011) can be naturally employed to build a sentiment classi-
fier. Despite the effectiveness of feature engineering, it is labor intensive and unable to discover the
discriminative or explanatory factors of data. To handle this problem, some recent studies (Dong et al.,
2014; Vo and Zhang, 2015) use neural network methods and encode each sentence in continuous and
low-dimensional vector space without feature engineering. Dong et al. (2014) transfer a dependency
tree of a sentence into a target-specific recursive structure, and get higher level representation based on
that structure. Vo and Zhang (2015) use rich features including sentiment-specific word embedding and
sentiment lexicons. Different from previous studies, the LSTM models developed in this work are purely
data-driven, and do not rely on dependency parsing results or external sentiment lexicons.

4.2 Neural Network for Sentiment Classification

Neural network approaches have shown promising results on many sentence/document-level sentimen-
t classification (Socher et al., 2013b; Tang et al., 2015). The power of neural model lies in its a-
bility in learning continuous text representation from data without any feature engineering. For sen-
tence/document level sentiment classification, previous studies mostly have two steps. They first learn
continuous word vector embeddings from data (Bengio et al., 2003; Mikolov et al., 2013; Pennington
et al., 2014). Afterwards, semantic compositional approaches are used to compute the vector of a sen-
tence/document from the vectors of its constituents based on the principle of compositionality (Frege,
1892). Representative compositional approaches to learn sentence representation include recursive neu-
ral networks (Socher et al., 2013b; Irsoy and Cardie, 2014), convolutional neural network (Kalchbrenner
etal., 2014; Kim, 2014), long short-term memory (Li et al., 2015a) and tree-structured LSTM (Tai et al.,
2015; Zhu et al., 2015). There also exists some studies focusing on learning continuous representation
of documents (Le and Mikolov, 2014; Tang et al., 2015; Bhatia et al., 2015; Yang et al., 2016).

5 Conclusion

We develop target-specific long short term memory models for target-dependent sentiment classification.
The approach captures the connection between target word and its contexts when generating the repre-
sentation of a sentence. We train the model in an end-to-end way on a benchmark dataset, and show that
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incorporating target information could boost the performance of a long short-term memory model. The
target-dependent LSTM model obtains state-of-the-art classification accuracy.
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