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Abstract

We present a novel way for designing complex joint inference and learning models using Saul (Ko-
rdjamshidi et al., 2015), a recently-introduced declarative learning-based programming language
(DeLBP). We enrich Saul with components that are necessary for a broad range of learning based
Natural Language Processing tasks at various levels of granularity. We illustrate these advances
using three different, well-known NLP problems, and show how these generic learning and
inference modules can directly exploit Saul’s graph-based data representation. These properties
allow the programmer to easily switch between different model formulations and configurations,
and consider various kinds of dependencies and correlations among variables of interest with
minimal programming effort. We argue that Saul provides an extremely useful paradigm both for
the design of advanced NLP systems and for supporting advanced research in NLP.

1 Introduction

Most of the problems in natural language processing domain can be viewed as a mapping from an input
structure to an output structure that represents lexical, syntactical or semantic aspects of the text. For
example, Part-of-Speech (POS) tagging provides a syntactic representation, Semantic Role Labeling (SRL)
is a (shallow) semantic representation, and all variations of information extraction such as Entity-Relation
(ER) extraction provide a lightweight semantic representation of unstructured textual data. Even though
the text data looks initially unstructured, solving such problems requires one to consider various kinds of
relationships between linguistic components at multiple levels of granularity.

However, designing machine learning models that deal with structured representations is a challenging
problem. Using such representations is challenging in that designing a new learning model or tackling a
new task requires a significant amount of task-specific and model-specific programming effort for learning
and inference. Additionally, global background knowledge in these models is usually hard-coded, and
changing or augmenting it is extremely time-consuming. There are several formal frameworks (Tsochan-
taridis et al., 2004; Chang et al., 2013) for training structured output models but these provide no generic
solution for doing inference on arbitrary structures. Likewise, probabilistic programming languages
(Pfeffer (2009), McCallum et al. (2009) inter alia) try to provide generic probabilistic solutions to arbitrary
inference problems but using them in the context of training arbitrary structured output prediction models
for real world problems is a challenge; in addition, encoding structured features and high-level background
knowledge necessary for these problems is not a component of those frameworks.

In this paper we build on the abstractions made available in Sau/ programming language (Kordjamshidi
et al., 2015), in order to create a unified and flexible machine learning programming framework using the
generic Constrained-Conditional-Model (CCM) paradigm (Chang et al., 2012).

Specifically, we build upon Saul’s graph-based data representation and enrich it with primitive structures
and sensors for the NLP domain that facilitate operating at arbitrary levels of ‘globality’ for learning
and inference. For example, a programmer can easily decide if he or she needs to operate at document,
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sentence, or phrase level. In other words, without any programming effort the user can specify at which
level of granularity the context should be considered, and how ‘global’ should learning and inference be.
This ability also better supports the declarative specification of the structured features and is useful in a
wide range of tasks that involve mapping the language to its syntactic or semantic structure. Using this
new framework, we show how one can design structured output prediction models in an easy and flexible
way for several well-known and challenging NLP tasks and achieve comparable results to the existing
state-of-the-art models.

The paper is structured as follows: Section 2, describes the general formulation used for structured
output prediction and its possible configurations. Section 3 explains how the structured input and output
spaces are represented as a graph, the form of the objective and the way arbitrary dependencies can be
represented in Saul. In Section 4, various model configurations are presented for our case study tasks,
alongside experimental results. Section 5 provides a brief overview of related work. Section 6 concludes.

2 Structured Output Prediction

Punyakanok et al. (2005) describe three fundamentally different and high level solutions towards designing
structured output prediction models,

(a) Learning Only (LO): Local classifiers are trained to predict each output component independently;

(b) Learning plus inference (L+I): Training is performed locally as in the LO model, but global
constraints/dependencies among components are imposed during prediction (Chang et al., 2012). In
the context of training probabilistic graphical models this is referred to as piecewise training (Sutton
and McCallum, 2009);

(c) Inference based training (IBT): Here, during the training phase, predictions are made globally
so that constraints and dependencies among the output variables are incorporated into the training
process (Collins, 2004; Taskar et al., 2002; Tsochantaridis et al., 2004).

When training structured output models there is a spectrum of configurations (model compositions)
between the two extremes — only local training as in the LO and L+I schemes and the full global training
as in the IBT scheme (Samdani and Roth, 2012). The key here is choosing the best decomposition of the
variables/structures which is largely an empirical question; having an expressive and flexible machinery for
modeling the data and for learning from it is thus useful and eases in designing, assessing, decomposing
and improving the models (Kordjamshidi and Moens, 2013). With this as motivation, we aim here to
enrich Saul with components that facilitate these analyses in the NLP domain (see Section 4).

We first introduce the notation and the formal framework for designing global (IBT) models in
Saul. In supervised structured learning we are given a set of examples i.e. pairs of input and output,
E = {(z®,y®) ¢ X x Y :i = 1...N}, where both inputs (X) and outputs ()’) can be complex
structures; the goal is learning the mapping, g : X x ) — R (Bakir et al., 2007). Making predictions in this
formulation requires an inference procedure over g, that finds the best ¢ for a given a. Thus the prediction
function h is, h(x; w) = argmaxgcy g(x, y; w). In the generalized linear models (Tsochantaridis et
al., 2005), the function g is assumed to be a linear model of the input and output features f(x,y), i.e.
g(z,y;w) = (w, f(x,y)), where w denotes the parameters of the model (weight vector). A commonly
used discriminative training method is to minimize the following convex upper bound of the loss function
over the training data (Tsochantaridis et al., 2004):

N
L= max |g(@, g;w) - g(a',y'sw) + Ay',§)
= ey
The inner maximization is called loss-augmented inference and quantifies the most violated output per
training example. This is a crucial inference problem to be solved during training of such models. Here
we assume that the distance function A is decomposed in the same way as the feature function. During
training and at prediction time, there is a need to solve the same inference problem to find the best g
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given the objective g(x, y; w). This will be the focus of the paper: to show how we can write high level
specifications of g and model it in a generic, efficient and flexible fashion.

3 Graph Representation

Saul is a powerful programming paradigm which uses graphs to explicitly declare the structure of the data
that serves as the model of the domain. This graph is called data-model' and is comprised of nodes, edges
and properties that describe nodes. The data-model is a global structure that facilitates designing a wide
range of learning and inference configurations, based on arbitrary model decompositions.

Inputs & and outputs y are sub-graphs of the data-model and each learning model can pick specific
correlations and substructures from it. In other words, « is a set of nodes {z1, ..., 2k} and each node
has a type p. Each x;, € x is described by a set of properties; this set of properties will be converted to a
feature vector ¢,,. For instance, an input type can be a word (atomic node) or a pair of words (composed
node), and each type is described by its own properties (e.g. a single word by its part of speech, the
pair by the distance of the two words). The output y is represented by a set of labels l = {l1,...,lp}
each of which is a property of a node. The labels can have semantic relationships. We conceptually (not
technically) distinguish between two types of labels: the single labels and linked labels that refer to an
independent concept and to a configuration of a number of related single labels respectively. Linked labels
can represent different types of semantic relationships between single labels.

For convenience, to show which labels are connected by a linked label, we represent the linked labels
by a concatenation of the labels’ names that are linked together and construct a bigger semantic part of the
whole output. For example an SRL predicate-argument relation (see Figure 1 in Section 4) can be denoted
by pred-arg meaning that it is composed-of the two single labels, pred (predicate), and arg (argument).
The labels are defined with a graph query that extracts a property from the data-model. The l,(z},) or
shorter [, denotes an indicator function indicating whether component x, has the label /,,. Kordjamshidi
et al. (2015) introduced the term relational constrained factor graph to represent each possible learning
and inference configuration (Taskar et al., 2002; Taskar et al., 2004; Bunescu and Mooney, 2007; Martins
etal., 2011).

The structure of the learning/inference i.e. the relational constraint factor graph is specified with a set
of templates which can be constraint templates or feature templates, C = {Ci,..,Cp}. Each template
Cp € C is specified by three main components: 1) A subset of joint features, denoted by fy(xx,l,),
where x, is an input component that is a node in the data-model graph, and [, is a single/linked label
(a property in the data-model). In the case of constraint templates, [, is a Boolean label denoting the
satisfiability of the constraint. 2) A candidate generator, that generates candidate components upon which
the specified subset of joint features is applicable, the set of candidates for each template is denoted
by C},. For constraint templates the candidate generator is the propositionalization of the constraint’s
first-order logical expression. 3) A block of weights w,,, which is a part of the main weight vector w of
the model and is associated to the local joint feature function of C,. In general, w,, can also be defined
for the constraint templates. The main objective g is written in terms of the instantiations of the (feature)
templates and their related blocks of weights w), in w = [wq, w2, ..., wp),

9(x,y;w) = Z Z (wp, fo(Tr,lp)) = Z Z (wp, dp(wk)) Lk = Z <'wp7 Z (¢p(wk)lpk)>v (M

IpELz,ECY, lpELzLECY, lyel zR€Cy,

where the local joint feature vector f,(xy,[,), is an instantiation of the template Clp for candidate x.
This feature vector is computed by scalar multiplication of the input feature vector of xj, (i.e. ¢p(xy)),
and the output label [,

Given this objective, we can view the inference task as a combinatorial constrained optimization
given the polynomial g which is written in terms of labels, subject to the constraints that describe the
relationships between the labels (either single or linked labels). For example, the is-a relationships can
be defined as the following constraint, (I(x.) is 1) = (I'(x.) is 1), where [ and I’ are two distinct

'Kordjamshidi et al. (2015) used the term model-graph.
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Figure 1: An instantiation of the data-model for the NLP domain. The colored ovals are some observed
properties, while the white ones show the unknown labels. For the POS and Entity Recognition tasks, the
boxes represent candidates for single labels; for the SRL and Relation Extraction tasks, they represent
candidates for linked labels.

labels that are applicable on the node with the same type of .. These constraints are added as a part
of Saul’s objective, so we have the following objective form, which is in fact a constrained conditional
model (Chang et al., 2012), g = (w, f(x,y)) — (p, c(x,y)) , where c is the constraint function and p is
the vector of penalties for violating each constraint. This representation corresponds to an integer linear
program, and thus can be used to encode any MAP problem. Specifically, the g function is written as the
sum of local joint feature functions which are the counterparts of the probabilistic factors:

|C]

g(m,y;w) = Z Z <wpvfp(mk7lpk)> + Z pmcm(mvy)v (2)

lp€lxe{r}

where C'is a set of global constraints that can hold among various types of nodes. g can represent a general
scoring function rather than the one corresponding to the likelihood of an assignment. The constraints are
used during training for loss-augmented inference as well as during prediction.

4 Calling Saul: Case Studies

For programming global models in Saul the programmer needs to declare a) the data-model which is a
global structure of the data and b) the templates for learning an inference decompositions. The templates
are declared intuitively in two forms of classifiers using Learnable construct and first order constraints
using ConstrainedClassifier construct. With these components have been specified, the programmer
can easily choose which templates to use for learning (training) and inference (prediction). In this way the
global objective is generated automatically for different training and testing paradigms in the spectrum of
local to global models.

One advantage of programming in Saul is that one can define a generic data-model for various
tasks in each application domain. In this paper, we enrich Saul with an NLP data-model based on
EDISON, a recently-introduced NLP library which contains raw data readers, data structures and feature
extractors (Sammons et al., 2016) and use it as a collection of Sensors to easily generate the data-model
from the raw data. In Saul, a Sensor is a ‘black-box’ function that can generate nodes, edges and properties
in the graph. An example of a sensor for generating nodes and edges is a sentence tokenizer which receives
a sentence and generates its tokens. Here, we will provide some examples of data-model declaration
language but more details are available on-line”.

In the rest of the paper, we walk through the tasks of Semantic Role Labeling (SRL), Part-of-Speech
(POS) tagging and Entity-Relation (ER) extraction and show how we can design a variety of local to
global models by presenting the related code?.

>https://github.com/IllinoisCogComp/saul/blob/master/saul-core/doc/DATAMODELING.md
3https://github.com/IllinoisCogComp/saul/tree/master/saul-examples/src/main/scala/edu/illinois/cs/cogcomp/saulexamples/nlp
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val sentences = node[TextAnnotation]

val predicates = node[Constituent]

val arguments = node[Constituent]

val pairs = node[Relations]

val pos—-tag = property (arguments)

val word-form = property (arguments)

val relationsToArguments = edge(relations, arguments)
relationsToArguments.addSensor (relToArgument _)

Figure 2: An Example of data-model declarations for nodes, edges, properties and using sensors. The
sentences nodes are of type TextAnnotation class, which is a part of Saul’s underlying NLP library;
many predefined sensors can be applied on it to generate various nodes of type Constituent and
Relations, properties of those nodes and establish edges between them.

4.1 Semantic Role Labeling

SRL (Carreras and Marquez, 2004) is a shallow semantic analysis framework, whereby a sentence is
analysed into multiple propositions; each one consisting of a predicate and one or more core arguments,
labeled with protosemantic roles (agents [Arg0], patient/theme [Argl], beneficiary [Arg2], etc.), and zero
or more optional arguments, labeled according to their semantic function (temporal, locative, manner,
etc.). See Figure 1 for an example annotation.

4.1.1 Input-Output Spaces

Each sentence is a node in the data-model, comprised of constituents (derived from a tokenizer Sensor).
These constituents are atomic components of x (see Figure 1) and are identified as @ = {z1,..., 24},
where x; is the identifier of the ith constituent in the sentence. Each constituent is described by a number
of properties (word-form, pos-tag, ...) and the corresponding feature vector representation of these
properties is denoted by ¢constituent (). There are also composed components — pairs of constituents;
their descriptive vectors are referred to as ¢pqir (2, ;). The feature vector of a composed component
such as a pair, ¢pqir (21, 22) is usually described by the local features of 1, 22 and the relational features
between them, such as the order of their position, etc.

The main labels set for the SRL model is I = {l;spred; lisarg: largType } Which indicate whether a
constituent is a predicate, whether it is an argument and the argument role respectively. l;jsa-4 and
largType are linked labels, meaning that they are defined with respect to another constituent (the predicate).
Depending on the type of correlations we aim to capture, we can introduce new linked labels in the model.
These labels are not necessarily the target of the predictions but they help to capture the dependencies
among labels. For example, to capture the long distance dependencies between two different arguments
of same predicate we can introduce a linked label linking the label of two pairs and impose consistency
constraints between this new linked label and the label of each pair. Figure 2 shows some declarations
of the data-model’s graph representing input and output components of the learning models. The graph
can be queried using our invented graph traversal language and the queries are directly used as structured
machine learning features later.

4.1.2 Classifiers and Constraints

As mentioned in Section 3, the structure of a learning model is specified by templates which are defined
as classifiers (feature templates) and global constraints (constraint templates) in Saul. SRL has four
main feature templates: 1) Predicate template: connects an input constituent to a single label ;5 p;eq.
The input features of this template are generated based on the properties of the constituents ¢copstituent-
The candidate generator of this template is a filter that takes all constituents whose pos-tag is VP; 2)
Argument template: connects a pair of constituents to a linked label l;s 4. The candidate generator of
this template is a set of rules that are suggested by Xue and Palmer (2004); 3) ArgumentType template:
connects a pair of constituents to the linked label l,¢7ype. Same Xue-Palmer heuristics are used; 4)
ArgumentTypeCorrelations template: connects two pairs of pairs of constituent (i.e. relations between
relations) to their join linked label. The candidates are the pairs of Xue-Palmer candidates.
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object ArgTypelearner extends Learnable (pairs) {

def label = argumentLabelGold

def feature = using(containsMOD, containsNEG,

W _ clauseFeatures, chunkPathPattern, chunkEmbedding,
argType . .
= chunkLength, constituentlLength, argPOSWindow,
I argWordWindow, headwordRelation, syntacticFrameRelation

, pathRelation, phraseTypeRelation, predPosTag,
predLemmaR, linearPosition)

¢
}

Figure 3: Left: shows the components of the ArgumentType feature template. l4,g7ype is One linked label
as a part of the objective in Equation 1, along with the corresponding block of weights and the pair
candidates (diamonds show dot products). Right: shows the code for the template. 1abel and feature
are respectively one property and a list of properties of pair nodes declared in the data-model, these serve
as the output and input parts of this template. This template can be used as a local classifier or as a part of
the objective of a global model, depending on the indicated learning paradigm by the programmer.

val legalArgumentsConstraint = constraint (sentences) { x =>
val constraints = for {
predicate <- sentences(x) ~> sentenceToPredicates
candidateRelations = (predicates(y) ~> -relationsToPredicates)

arglegallist = legalArguments (y)
relation <- candidateRelations
} yield classiferLabellIslLegal (argumentTypelearner, relation, arglLegallList)
or (argumentTypelearner on relation is "none™)

}

def classiferLabelIsLegal (classifier, relation, legallabels) = {
legallabels._exists { 1 => (classifier on relation is 1) }

}

Figure 4: Given a predicate, some argument types are illegal according to PropBank Frames (e.g. the
verb ‘cover® with sense 03 can take only Arg0 or Argl), which means that they should be excluded from
the inference. The legalarguments (y) returns the predefined list of legal arguments for a predicate
y. In line 3, graph traversal queries (using the ~> operator) are applied to use an edge and go from a
sentence node to all contained predicate nodes in the sentence and then apply the constraint to all of
those predicates. Each constraint imposes the argumentTypeLearner to assign a legal argument type
to each candidate argument or does not count it as an argument at all, i.e., to assign none value to the
argument type.

The feature templates are instances of Learnable in Saul and in fact they are treated as local classifiers.
The script of Figure 3 shows the ArgumentType template. The Constraints are specified by means of
first-order logical expressions. We use the constraints specified in Punyakanok et al. (2008) in our models.
The script in Figure 4, shows an example expressing the legal argument constraints for a sentence.

4.1.3 Model Configurations

Programming for learning and inference configurations in Sau/ is simply composing the basic building
blocks of the language, that is, feature and constraint templates in different ways.
Local models. Training local models is as easy as calling the train function over each specified feature
template separately (e.g. ArgTypeLearner.train ()). The test on these models also is simply done by
calling test for each template (e.g. ArgTypeLearner.test ()). In addition, TestClassifeirs(/+a list
of classifiers+/) and TrainClassifiers(/+a list of classifiers«/) can be used to train/test
a number of classifiers independently by passing a list of classifier’s names to these functions. The training
algorithm can be specified when declaring the Learnable; here we have used averaged perceptrons in the
experiments which is the default model.
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Model Precision ‘ Recall ‘ F1

ArgTypeLearnerG(GOLDPREDS) 85.35 85.35 | 85.35
ArgTypeLearnerG(GOLDPREDS) +C 85.35 85.36 | 85.35
ArgTypeLearnerxue(GOLDPREDS) 82.32 80.97 | 81.64
ArgTypeLearnerxue(GOLDPREDS) +C 82.90 80.70 | 81.79
AquypeLearnerxue(PREDPREDS) 82.47 80.79 | 81.62
ArgTypeLearnerxue(PREDPREDS) +C 83.62 80.54 | 82.05
ArgIdentifierXW:’ArgTypeLearnerxmKPREDPREDS) 82.55 81.59 | 82.07
ArgIdentifier(PREDPREDS) 95.51 94.19 | 94.85

Table 1: Evaluation of SRL various labels and configurations. The superscripts over the different Learners
refer to the whether gold argument boundaries (G) or the Xue-Palmer heuristics (Xue) were used to
generate argument candidates as input. GOLD/PREDPREDS refers to whether the L.earner used gold
or predicted predicates. ‘C’ refers to the use of constraints during prediction and |denotes the pipeline
architecture.

Pipeline. Previous research on SRL (Punyakanok et al., 2008) shows that a good working model is the
one that first decides on argument identification and then takes those arguments and decides about their
roles. This configuration is made with a very minor change in the templates of the local models. Instead
of using Xue-Palmer candidates, we can use the identified arguments by a isargument classifier as input
candidates for the ArgTypeLearner model. The rest of the model is the same.

L+I model. This is simply a locally trained classifier that uses a number of constraints on prediction time.
We define a constrained argument predictor based on a previously trained local Learnable as follows:

object ArgTypeConstraintClassifier extends ConstrainedClassifier (ArgTypelearner)

{

def subjectTo = srlConstraints

}

where the srlConstraints is a constraint template. Having this definition we only

need to call the ArgTypeConstraintClassifier constraint predictor during the test time as
ArgTypeConstraintClassifier (x) which decides for the label of x in a global context.
IBT model. The linguistic background knowledge about SRL that is described in Section 4.1.2 provides
the possibility of designing a variety of global models. The constraints that limit the argument arrangement
around a specific predicate help to make sentence level decisions for each predicate during training phase
and/or prediction phase. To train the global models we simply call the joint train function and provide the
list of all declared constraint classifiers as parameters.

The results of some versions of these models are shown in Table 1. The experimental settings, the data
and the train/test splits are according to (Punyakanok et al., 2008) and the results are comparable. As the
results show the models that use constraints are the best performing ones. For SRL the global background
knowledge on the arguments in IBT setting did not improve the results.

4.2 Part-Of-Speech Tagging

This is perhaps the most often used application in ML for NLP. We use the setting proposed by Roth and
Zelenko (1998) as the basis for our experiments. The graph of an example sentence is shown in Figure 1.
We model the problem as a single-node graph representing constituents in sentences. We make use of
context window features and hence our graph has edges between each token and its context window. This
enables us to define contextual features by traversing the relevant edges to access tokens in the context.
The following code uses the gold POS-tag label (POSLabel) of the two tokens before the current token
during training and POS-tag classifier’s prediction (POSTaggerKnown) of the two tokens before the
current token during the test.
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val labelTwoBefore = property(tokens) { x: Constituent =>
// Use edges to jump to the previous constituent
val cons = (tokens(x) ~> constituentBefore ~> constituentBefore) .head
if (POSTaggerKnown.isTraining)
POSLabel (cons)
else POSTaggerKnown (cons)

}

4.2.1 Model configurations

Here, we point to a few interesting settings for this problem and report the results we obtained by Saul in
Table 2.

Count-based baseline. The simplest scenario is to create a simple count-based baseline: for each
constituent choose the most popular label. This is trivial to program in Saul.

Independent classifiers. We train independent classifiers for known and unknown words. Though both
classifiers use similar sets of features, the unknown classifier is trained only on tokens that were seen
fewer than 5 times in the training data. Here the ‘Learnable‘ is defined as exampled in Section 4.1.2.

Classifier combination. Given the known and unknown classifiers, one easy extension is to combine
them, depending whether the input instance is seen during the training phase or not. To code this, the
defined Learnables for the two classifiers are simply reused in an ‘if* construct.

Sequence tagging. One can extend the previous configurations by training higher-order classifiers,
i.e. classifiers trained on pair/tuple of neighboring constituents (similar to HMM or chain-CRF). At the
prediction time one needs to choose the best structure by doing constrained inference on the predictions
of the local classifiers. The following snippet shows how one can simply write a consistency constraint,
given a pairwise classifier POSTaggerPairwise which scores two consecutive constituents.

def sentencelabelsMatch = constraint (sentences) {
t: TextAnnotation =>
val constituents = t.getView (ViewNames.TOKENS) .getConstituents

// Go through a sliding window of tokens

constituents.sliding(3) ._forall { cons: List[Constituent] =>
POSTaggerPairwise on (cons(0), cons(l)).second === POSTaggerPairwise on (

cons(l), cons(2)).first }

4.3 Entity-Relation extraction

This task is for labeling entities and recognizing semantic relations among them. It requires making
several local decisions (identifying named entities in the sentence) to support the relation identification.
The models we represent here are inspired some well-known previous work (Zhou et al., 2005; Chan and
Roth, 2010). The nodes in our models consists of Sentences, Mentions and Relations.

4.3.1 Features and Constraints

For the entity extraction classifier, we define various lexical features for each mention — head word,
POStags, words and POStags in a context window. Also, we incorporate some features based on gazetteers
for organization, vehicle, weapons, geographic locations, proper names and collective nouns. The
relation extraction classifier uses lexical, collocation and dependency-based features from the baseline
implementation in Chan and Roth (2010). We also use features from the brown word clusters (Brown et al.,
1992). The features for each word are based on a path from the root in its Brown clustering representation.
These features are easily available in our NLP data-model. We also use a decayed down-sampling of
negative examples between training iterations.
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Scenario Precision ‘ Recall ‘ F1

Setting Accuracy
Count-based baseline 91.80% g | Mention Coarse-Label 77.14 | 70.62 | 73.73
Unknown Classifier 77.090/ Mention Fine-Label 73.49 65.46 | 69.24

e . (4]

Known Classifier 94.92 9 Basic . 54.09 43.89 50.48
Combined Known-Unknown | 96.69% |7 Sampling 52.48 56.78 | 54.54
+ Sampling + Brown 54.43 5423 | 54.33
Table 2: The performance of the + Sampling + Brown + HCons 55.82 5342 | 54.59

POStagger, tested on sections 22—
24 of the WSJ portion of the Penn
Treebank (Marcus et al., 1993).

Table 3: 5-fold CV performance of the fine-grained entity
(E) and relation (R) extraction on Newswire and Broadcast
News section of ACE-2005.

Relation hierarchy constraint. Since the coarse and fine labels follow a strict hierarchy, we leverage
this information to boost the prediction of the fine-grained classifier by constraining its prediction upon
the (more reliable) coarse-grained relation classifier.

4.3.2 Model Configuration

Entity type classifier. For the entity type task, we train two independent classifiers - one for coarse-label
and the second for the fine-grained entity type. We generate the candidates for entities by taking all nouns
and possessive pronouns, base noun phrases, selective chunks from the shallow parse and named entities
annotated by the NE tagger of Ratinov and Roth (2009).

Relation type classifier. For the relation types, we train two independent classifiers - coarse-grained
relation type label and fine-grained relation type label. We use features from our unified data-model which
are properties defined on the relations node in the data-model graph. We also incorporate the
Relation Hierarchy constraint during inference so that the predictions of both classifiers are coherent. We
report some of our results in Table 3.

5 Related Work

This work has been done in the context of Saul, a recently developed declarative learning based program-
ming language. DeLBP is a new paradigm (Roth, 2005; Rizzolo, 2011; Kordjamshidi et al., 2015) which
is related to probabilistic programming languages (PPL) (Pfeffer, 2009; McCallum et al., 2009) (inter
alia), sharing the goal of facilitating the design of learning and inference models. However, compared
to PPL, it is aimed at non-expert users of machine learning, and it is a more generic framework that
is not limited to probabilistic models. It focuses on learning over complex structures where there are
global correlations between variables, and where first order background knowledge about the data and
domain could be easily considered during learning and inference. The desideratum of this framework is
the conceptual representation of the domain, data and knowledge, in a way that is suitable for non-experts
in machine learning and, it considers the aspect of relational feature extraction; this is different also
from the goals of Searn (Hal et al., 2009) and Wolf (Riedel et al., 2014). DeLLBP focuses on data-driven
learning and reasoning for problem solving and handling collections of data from heterogeneous resources,
unlike Dyna (Eisner, 2008) which is a generic declarative problem solving paradigm based on dynamic
programming. This paper exhibits the capabilities and flexibility of Saul for solving problems in the NLP
domain. Specifically, it shows how a unified predefined NLP data-model can help performing various
tasks at various granularity levels.

6 Conclusion

We presented three examples of NLP applications as defined in the declarative learning-based programming
language Saul. The main advantage of our approach compared to traditional, task-specific, systems is
that Saul allows one to define all the components of the models declaratively, from feature extraction to
learning and inference with arbitrary structures. This allows designers and researchers a way to explore
different way to decompose, learn and do inference and easily gain insights into the impact of these on the
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task. We enriched Saul with an extensive NLP data-model that enables users to perform various tasks
at different levels of granularity and eventually to perform multiple tasks jointly. This work will help
pave the way for more learning-based programming applications which will allow both practitioners and
researchers in the field to develop quick solutions to advanced NLP tasks and to focus on exploring the
tasks while staying at a sufficient level of abstraction from the component’s implementation.

Acknowledgments

The authors would like to thank all the students who have helped in the implementation of this project,
as well as the anonymous reviewers for helpful comments. This research is supported by NIH grant
U54-GM114838 awarded by NIGMS through funds provided by the trans-NIH Big Data to Knowledge
(BD2K) initiative (www.bd2k.nih.gov), and Allen Institute for Artificial Intelligence (allenai.org).
This material is based on research sponsored by DARPA under agreement number FA8750-13-2-0008.
The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of DARPA or the U.S. Government nor NIH.

References

G. H. Bakir, T. Hofmann, B. Scholkopf, A. J. Smola, B. Taskar, and S. V. N. Vishwanathan. 2007. Predicting
Structured Data (Neural Information Processing). The MIT Press.

P. F. Brown, P. V. Desouza, R. L. Mercer, V. J. D. Pietra, and J. C. Lai. 1992. Class-based n-gram models of
natural language. Computational linguistics, pages 467—479.

R. Bunescu and R. J. Mooney. 2007. Statistical relational learning for natural language information extraction. In
L. Getoor and B. Taskar, editors, Introduction to Statistical Relational Learning, pages 535-552. MIT Press.

X. Carreras and L. Marquez. 2004. Introduction to the CoNLL-2004 shared tasks: Semantic role labeling. In
Proceedings of the Annual Conference on Computational Natural Language Learning (CoNLL), pages 89-97.
Boston, MA, USA.

Y. Chan and D. Roth. 2010. Exploiting background knowledge for relation extraction. In Proc. of the International
Conference on Computational Linguistics (COLING), Beijing, China.

M. Chang, L. Ratinov, and D. Roth. 2012. Structured learning with constrained conditional models. Machine
Learning, 88(3):399-431, 6.

K.-W. Chang, V. Srikumar, and D. Roth. 2013. Multi-core structural svm training. In Proc. of the European
Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML
PKDD).

M. Collins. 2004. Parameter estimation for statistical parsing models: theory and practice of distribution-free
methods. In New Developments in Parsing Technology, pages 19-55. Kluwer.

J. Eisner. 2008. Dyna: A non-probabilistic programming language for probabilistic AI. Extended abstract for talk
at the NIPS#2008 Workshop on Probabilistic Programming.

D. Hal, J. Langford, and D. Marcu. 2009. Search-based structured prediction. Machine Learning, pages 297-325,
June.

P. Kordjamshidi and M-F. Moens. 2013. Designing constructive machine learning models based on generalized
linear learning techniques. In NIPS Workshop on Constructive Machine Learning.

P. Kordjamshidi, D. Roth, and H. Wu. 2015. Saul: Towards declarative learning based programming. In Proc. of
the International Joint Conference on Artificial Intelligence (IJCAI).

M. P. Marcus, B. Santorini, and M. Marcinkiewicz. 1993. Building a large annotated corpus of English: The Penn
Treebank. Computational Linguistics, 19(2):313-330, June.

A. FT. Martins, M. AT. Figeuiredo, P. MQ. Aguiar, N. A. Smith, and E. P. Xing. 2011. An augmented Lagrangian
approach to constrained MAP inference. In International Conference on Machine Learning (ICML).

3039



A. McCallum, K. Schultz, and S. Singh. 2009. FACTORIE: Probabilistic Programming via Imperatively Defined
Factor Graphs. In The Conference on Advances in Neural Information Processing Systems (NIPS).

A. Pfeffer. 2009. Figaro: An object-oriented probabilistic programming language. Technical report, Charles River
Analytics.

V. Punyakanok, D. Roth, W. Yih, and D. Zimak. 2005. Learning and inference over constrained output. In Proc.
of the International Joint Conference on Artificial Intelligence (IJCAI), pages 1124—-1129.

V. Punyakanok, D. Roth, and W. Yih. 2008. The importance of syntactic parsing and inference in semantic role
labeling. Computational Linguistics.

L. Ratinov and D. Roth. 2009. Design challenges and misconceptions in named entity recognition. In Proc. of the
Conference on Computational Natural Language Learning (CoNLL).

S. Riedel, S. Singh, V. Srikumar, T. Rocktischel, L. Visengeriyeva, and J. Noessner. 2014. WOLFE: strength
reduction and approximate programming for probabilistic programming. Statistical Relational Artificial Intelli-
gence.

N. Rizzolo. 2011. Learning Based Programming. Ph.D. thesis, University of Illinois, Urbana-Champaign.
http://cogcomp.cs.illinois.edu/papers/Rizzolo11.pdf.

D. Roth and D. Zelenko. 1998. Part of speech tagging using a network of linear separators. In The 17th Interna-
tional Conference on Computational Linguistics (COLING-ACL), pages 1136—1142.

D. Roth. 2005. Learning based programming. Innovations in Machine Learning: Theory and Applications.

R. Samdani and D. Roth. 2012. Efficient decomposed learning for structured prediction. In Proc. of the Interna-
tional Conference on Machine Learning (ICML).

M. Sammons, C. Christodoulopoulos, P. Kordjamshidi, D. Khashabi, V. Srikumar, P. Vijayakumar, M. Bokhari,
X. Wu, and D. Roth. 2016. Edison: Feature Extraction for NLP, Simplified. In LREC.

C. Sutton and A. McCallum. 2009. Piecewise training for structured prediction. Machine Learning, pages 165—
194.

B. Taskar, P. Abbeel, and D. Koller. 2002. Discriminative probabilistic models for relational data. In Proceedings
of the Eighteenth Conference on Uncertainty in Artificial Intelligence, UAI, pages 485-492. Morgan Kaufmann
Publishers Inc.

B. Taskar, M. Fai Wong, P. Abbeel, and D. Koller. 2004. Link prediction in relational data. In Sebastian Thrun,
Lawrence Saul, and Bernhard Schoélkopf, editors, Advances in Neural Information Processing Systems 16. MIT
Press.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. 2004. Support vector machine learning for interde-
pendent and structured output spaces. In Proceedings of the International Conference on Machine Learning
(ICML).

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. 2005. Large margin methods for structured and interde-
pendent output variables. In Journal of Machine Learning Research (JMLR), pages 1453—1484.

N. Xue and M. Palmer. 2004. Calibrating features for semantic role labeling. In Proceedings of the Conference
on Empirical Methods for Natural Language Processing (EMNLP), pages 88-94, Barcelona, Spain.

G. Zhou, J. Su, J. Zhang, and M. Zhang. 2005. Exploring various knowledge in relation extraction. In Proceedings
of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL), pages 427-434. Association
for Computational Linguistics.

3040



