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Abstract

Sentence intersection captures the semantic overlap of two texts, generalizing over paradigms
such as textual entailment and semantic text similarity. Despite its modeling power, it has re-
ceived little attention because it is difficult for non-experts to annotate. We analyze 200 pairs of
similar sentences and identify several underlying properties of sentence intersection. We leverage
these insights to design an algorithm that decomposes the sentence intersection task into several
simpler annotation tasks, facilitating the construction of a high quality dataset via crowdsourcing.
We implement this approach and provide an annotated dataset of 1,764 sentence intersections.

1 Introduction

Various paradigms exist for comparing the meanings of two texts and modeling their semantic overlap.
Paraphrase detection (Dolan et al., 2004), for example, tries to identify whether two texts express the
same information. It cannot, however, capture cases where there is only partial information overlap. One
paradigm that addresses this issue is textual entailment (Dagan et al., 2006), which asks whether one
text can be inferred from another. While textual entailment models when the information of one text is
subsumed by another, it falls short when neither text strictly subsumes the other, yet a significant amount
of information is common to both. A more recent paradigm, semantic text similarity (Agirre et al., 2012),
allows for these cases by measuring “how much” similar two sentences are.

In this paper, we consider an additional paradigm for modeling the semantic overlap between two texts.
The task of sentence intersection, as defined in several variants (Marsi and Krahmer, 2005; McKeown et
al., 2010; Thadani and McKeown, 2011), is to construct a sentence containing all the information shared
by the two input sentences (Figure 1). While sentence intersection was originally proposed for abstractive
summarization, we argue that it is an interesting generic paradigm for modeling information overlap,
which generalizes over several previous approaches. In particular, it is expressive enough to capture
partial semantic overlaps that are not modeled by textual entailment or even partial textual entailment
(Nielsen et al., 2009; Levy et al., 2013). Furthermore, rather than quantifying the amount of shared
information as in semantic text similarity, sentence intersection captures what this shared information is.

Although sentence intersection has existed for over a decade, it has received little attention due to a
lack of annotated data. Previous annotation attempts have either used experts, which did not scale, or
crowdsourcing, which yielded unreliable annotations (McKeown et al., 2010). We also observe that an-
notating sentence intersection is difficult for non-experts. We hypothesize that this difficulty stems from
the task’s requirement that the annotator indicate all the shared information when constructing the inter-
section, necessitating a high level of attention to fine details in two different sentences simultaneously.

This paper addresses the issue of annotating sentence intersection. We clarify some ambiguous aspects
of sentence intersection by defining extractive sentence intersection (§3): the set of all intersections that
can be composed only from words in the input sentences. Though less ambiguous, this task is still chal-
lenging for non-experts to annotate correctly (§4). Our main observation is that extractive intersections
have a common underlying structure – an aligned partition (§6). In a nutshell, the dependency tree of
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s1 Obama visited Canada yesterday.
s2 The president flew to Ottawa to meet Trudeau.
∩ The president visited Canada.
∪ Obama flew to Ottawa yesterday to meet Trudeau.

Figure 1: Sentence intersection (∩) versus union (∪). Union
captures all the information in the input sentences, whereas
intersection captures all the shared information.

s1 Sanders disagrees with HRC on Super PACs.
s2 Bernie criticizes Hillary on campaign funding.

∩
Sanders disagrees with HRC on campaign funding.
Sanders disagrees with Hillary on campaign funding.
Bernie disagrees with HRC on campaign funding.
Bernie disagrees with Hillary on campaign funding.

Figure 2: Extractive intersection is a combinatorial problem,
because the common information between two sentences can
often be expressed in various equivalent ways.

an intersection sentence can be partitioned into subtrees, each one originating from one of the input sen-
tences. The interesting property is that for every subtree originating from one input sentence, there exists
another subtree in the other input sentence, which entails the first. For this purpose, we define subtree
entailment (§5), an extension of the well-studied inference rules paradigm (Lin and Pantel, 2001).

We then design a semi-automatic algorithm that helps the annotator construct an aligned partition and
eventually the extractive intersection set (§7). Our process decomposes the complex task of extractive
sentence intersection into a collection of simpler local subtree entailment queries. The entailment queries
(which are easy for humans but hard for machines) are annotated manually, while the combinatorial
aspect of generating intersections is completely automated. Finally, we apply our process and annotate
1,764 examples via crowdsourcing (§8). These annotations are superior to direct manual crowdsourced
annotations.1

2 Background: Sentence Intersection

The ability to combine two (or more) semantically-similar sentences into one is a core requirement
of abstractive summarization. Various flavors of this combination task, dubbed sentence fusion, have
been studied. Barzilay et al. (1999; 2003; 2005) focused on generating a single sentence from the most
important parts of the input sentences. The importance criterion was argued to be too vague for consistent
human annotation (Daume III and Marcu, 2004), giving rise to the more accurately-defined notions of
sentence union and intersection (Marsi and Krahmer, 2005). Sentence union aspires to create a single
sentence containing all the information in the input sentences, while sentence intersection tries to isolate
all the information that they have in common – i.e. the consensus. Figure 1 demonstrates this difference.

Annotation Efforts Perhaps the most pressing issue in making sentence intersection an appealing se-
mantic task is creating enough high-quality annotated data. However, prior art appears to lack a method
for annotating sentence intersection that is both efficient (scalable) and accurate. The previous attempt
to annotate sentence intersection via crowdsourcing (McKeown et al., 2010) resulted in unreliable an-
notations. Annotators were presented with two similar sentences, and asked to combine them “into a
single sentence conveying only the information they have in common”. Each pair of input sentences
was given to 5 different workers, and the most agreed-upon (centroid) annotation was selected. Results
showed that only 54% of the annotation were indeed valid intersections. On the other hand, sentence
union annotations over the same sentence pairs had 95% accuracy. Krahmer et al. (2008) also observed
intersection annotations to be less consistent than unions while studying query-based sentence fusion.

More recently, Thadani and McKeown (2013) proposed a different dataset, which relied on pre-
existing pyramid annotated data (Nenkova and Passonneau, 2004). This dataset is more consistent, but
does not comply with the definition of sentence intersection. In practice, it models a simpler task: gen-
erating a sentence that contains only shared information, not necessarily all of the shared information. It
seems that this distinction – the need to identify every piece of common information at once – is what
makes sentence intersection a combinatorial problem, explaining why it is so difficult for humans to
perform this task consistently.

Algorithms The sentence fusion literature typically takes an alignment-based algorithmic approach
(Barzilay and McKeown, 2005; Filippova and Strube, 2008), which was also adopted by Thadani and

1Our code and dataset are available online: bitbucket.org/omerlevy/extractive_intersection
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s1 Bill traveled back in time.
s2 Ted traveled back in time.

∩
A person traveled back in time.
A man traveled back in time.
Someone traveled back in time.

Figure 3: Possible lexical abstractions. The best choice of
words is not always obvious.

s1 Akiko ate cake.
s2 Akiko ate pudding.
∩ Akiko ate [something].

Figure 4: An intersection containing a placeholder.

McKeown (2011) for sentence intersection. In general, they (lexically) align the input sentences, and
then select a subset of the aligned components when generating the fused sentence. Our annotation
method is inspired by this approach, though it differs in various ways, such as the kind of alignments it
creates (subtree entailments), the output it generates (a set of sentences), and the fact that it is interactive.

3 Extractive Sentence Intersection

We define a new variant of sentence intersection, extractive sentence intersection, which departs from
the original task in two aspects: specifying a set of intersection sentences, while limiting their scope to
be based on the lexical elements in the input sentences.

First, we observe that several different output sentences may satisfy the original definition of sentence
intersection. In Figure 2, we see two input sentences conveying very similar information that are ex-
pressed by completely different words. Since many of the terms are synonymous, choosing one over
another is arbitrary (e.g. “Bernie” = “Sanders” in this context). Combining different words from the in-
put sentences creates several intersections – each one as valid as the other. Therefore, instead of defining
sentence intersection as a single sentence that contains all the information shared by the input sentences,
we define it as the set of all such sentences.

Second, we observe that, according to its original definition, an intersection sentence might include
words that do not appear in any of the two input sentences. This may happen in two situations: (a)
lexical variability – when introducing an unmentioned synonym (e.g. using “Clinton” instead of “HRC”
or “Hillary”); (b) lexical abstraction – where creating an intersection requires introducing a new word
that subsumes two terms from the input sentences (Figure 3). Intersections that require lexical abstraction
are difficult to define and annotate consistently because the desired level of abstraction is often unclear.
We avoid the issues of lexical variability and abstraction by focusing on intersections that are extractive,
i.e. intersections that only contain lexical elements from the input sentences.

To maintain grammaticality, we make an exception to this rule. Placeholders, such as [something],
[somewhere], and [sometime], can be used when the input sentences provide different information on an
entity that cannot be omitted for syntactic reasons (e.g. subjects). In many cases, there is a specific word
that could fit instead of a placeholder, but this word does not appear in the input sentences (Figure 4).
The task of finding such words requires lexical abstraction, which is beyond our current scope.

Combining both these criteria – output set and extractiveness – we define extractive sentence inter-
section as the set of all sentences that each contains all the information common to the input sentences,
while being composed only of words that appeared in the input sentences and placeholders.2

The entire set of extractive intersections allows for more accurate automatic evaluation, since the
evaluation mechanism does not need to overcome issues in lexical variability; instead, it can simply
select the most similar expert-crafted sentence from the set using simple metrics such as BLEU (Papineni
et al., 2002) or ROUGE (Lin, 2004). Having multiple possible solutions is not a foreign concept to NLP,
and is widely used in translation and summarization.

2While this paper discusses intersections between two input sentences, one can theoretically extend this setting to multiple
input sentences by consecutively applying the intersection operation. For example, if we have three sentences s1, s2, s3, we
could first find the intersection between s1 and s2, and then for each sentence s′ in s1 ∩ s2, intersect that with s3. We would
essentially take the union of the latter set of intersection sets, i.e. s1 ∩ s2 ∩ s3 = (s1 ∩ s2) ∩ s3 =

⋃{s′ ∩ s3|s′ ∈ s1 ∩ s2}.
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s1
It was Rehnquist who presided over the swearing-in ceremony when Roberts
took his seat on the U.S. Court of Appeals for the District of Columbia.

s2
Roberts, nominated to succeed retiring justice Sandra Day O’Connor, easily won senate
confirmation to the U.S. Court of Appeals for the District of Columbia two years ago.

∩ Roberts won senate confirmation to the U.S. Court of Appeals for the District of Columbia.

Figure 5: An example pair of sentences from our dataset and their (expert-annotated) intersection.

4 Annotation Feasibility

We wish to create a large gold-standard annotated dataset of extractive intersection via crowdsourcing.
Since the previous crowdsourced intersection dataset was of mixed quality (McKeown et al., 2010), we
annotate the same data with both experts and crowdsourcing to determine the annotation’s feasibility.

Evaluation Metrics We present two complementary methods for evaluating extractive sentence inter-
section: a strict method based on sentence equality, and a softer measure similar to ROUGE (Lin, 2004).
The methods essentially compare a candidate set of sentences C to a gold-standard set G, yielding pre-
cision and recall scores that are averaged across the dataset.

The sentence equality method follows directly from the task’s definition: Precision = |C ∩G|/|C|,
Recall = |C ∩G|/|G|. Note that the underlying sentence equality measure is simple string equality.

Sentence equality can sometimes be too harsh for measuring intersection. For example, if an intersec-
tion sentence contains exactly all the shared information except for one minor detail, we would want to
partially penalize it rather than completely rejecting it. We therefore adopted a more lenient evaluation
measure, based on ROUGE (Lin, 2004). In automatic summarization, ROUGE measures the n-gram
overlap between a single candidate summary and a set of several gold-standard summaries. Whereas
ROUGE tries to maximize agreement with all gold summaries, we are satisfied if there exists even
one gold intersection sentence that is sufficiently similar to the given candidate sentence. Therefore,
to calculate the precision of a given candidate intersection sentence c ∈ C, we take the best-matching
gold sentence g, and calculate the portion of n-grams in c that are covered by g. Similarly, a gold
sentence’s recall is measured versus the best-matching c ∈ C. We define an intersection set’s pre-
cision and recall by taking the averages. Formally: Precision = 1

|C|
∑

c∈C maxg∈G (Cover (c, g)),
Recall = 1

|G|
∑

g∈G maxc∈C (Cover (g, c)), where the portion of n-grams covered is Cover (a, b) =
|ngrams(a) ∩ ngrams(b)| /|ngrams(a)|. To avoid deviating too much from the sentence equality
measure, we select a conservative definition of n-grams (n = 4). Note that replacing Cover with
equality in the equations above is exactly the sentence equality method.

Annotation We annotated a random sample of 200 sentence pairs, half from Columbia’s sentence
fusion dataset (McKeown et al., 2010) and half from MSR’s paraphrase dataset (Dolan et al., 2004).
Columbia’s dataset contains 297 pairs of related sentences, annotated for sentence intersection and union.
MSR’s dataset contains 1,500 pairs of related sentences, originally annotated for a paraphrase detection
task, and later with semantic text similarity scores (Agirre et al., 2012). Existing annotations are ignored,
and replaced by our new annotations (see Figure 5).

The first author annotated the data (as an expert), and Mechanical Turk workers were hired to annotate
the same sentence pairs. Workers were told to “extract” a new sentence by selecting words from the
input sentences or a bank of placeholders, and encouraged to create as many intersections as possible.
Each sentence pair was given to 5 workers, of which the most consistent 3 were selected to reduce the
effect of poor annotations (agreement between two workers was measured using the ROUGE-like F1).
We also used the set of both input sentences as a simple annotation baseline (the “input” baseline), which
captures (with some error) the cases in which one sentence is completely entailed by another.

Results Table 1 shows very poor crowd-expert agreement rates when measured using sentence equality.
The crowdsourced annotation is slightly better than the input baseline (precision-wise), and does not
seem to improve coverage. Even using the softer ROUGE-like metric, the crowdsourced data does not
seem to provide enough added value beyond the simple input baseline (its F1 is only 0.014 higher).
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Sentence Equality ROUGE-like
P R F1 P R F1

Input 0.080 0.124 0.097 0.611 0.952 0.744
Direct 0.130 0.124 0.127 0.735 0.781 0.758

Table 1: The agreement between crowd (“Direct”) and ex-
pert annotations. “Input” is a baseline where the two input
sentences are also the output.

s Oswald killed JFK.
σ(s, JFK,Kennedy) Oswald killed Kennedy.

σ(s, killed, assassinated) Oswald assassinated JFK.
σ(s, killed,was shot by) JFK was shot by Oswald.

σ(s, killed, died) JFK died.

Figure 6: Four examples of the substitution function.

Extractive intersection is clearly a difficult task for non-expert annotators. We suggest that this stems
from the many nuanced pieces of information in each sentence (precision) and the many possible com-
binations that reflect valid extractive intersections (recall). From our own annotation effort, we noticed
that these two difficulties pertain to an underlying structure that consistently appears in extractive inter-
sections. In the following sections, we describe this structure (§6) and propose a way of exploiting it to
generate high-quality annotations (§7).

5 Subtree Entailment in Context

In this section, we describe a new textual relation, subtree entailment in context, which will assist in
defining the underlying structure of extractive intersection. Subtree entailment in context models infer-
ence between rich lexical-syntactic patterns (subtrees of syntactic dependency trees), while considering
internal context (instantiated arguments) and external context (substitution in a complete sentence). As
such, it generalizes over previous ideas presented separately in prior art; subtrees were used in TEASE
(Szpektor et al., 2015) and PPDB (Pavlick et al., 2015), internal context was considered in context-
sensitive relation inference (Zeichner et al., 2012; Melamud et al., 2013; Levy and Dagan, 2016), and
external context is studied in the lexical substitution task (McCarthy and Navigli, 2007; Biemann, 2013;
Kremer et al., 2014). Subtree entailment in context is the first notion that combines all these traits. In
addition to these advantages, we also introduce a new mechanism for handling changes in arity, in case
one subtree contains more/less arguments than another.

The Substitution Function To define subtree entailment in context, we must first define an auxiliary
operation – subtree substitution. The substitution function σ is given a sentence tree s, a subtree within
that sentence t, and another subtree t′, which is not necessarily part of s. It creates a new sentence s′ by
replacing t with t′ (see Figure 6): s′ = σ (s, t, t′).

Slot Assignments The substitution function does not specify how the child nodes of t connect to t′.
This is not always trivial; e.g. in the third example in Figure 6, the subject of “killed” is attached as the
object of “was shot by”. Moreover, the arity of t (the number of expected child nodes) might be different
from that of t′, as in the fourth example.

The missing piece of the puzzle is slot assignments. A slot is a dangling edge whose head is part of
a subtree (either t or t′) but its modifier is not. Slot assignments match these outgoing edges, and are
especially useful when going from passive to active and when there is a change in arity. We denote slot
assignment as a function α from the slots of t′ to those of t, and extend the definition of the substitution
function to include it: s′ = σ (s, t, t′, α).

The fact that α is a function means that not all of t’s child nodes will necessarily appear in the new
sentence s′. In addition, the slots of t′ can be assigned a null value (∅), which means that none of t’s
child nodes will fill this slot, leaving it empty. When generating a natural language expression with an
empty slot, it is often the case that a placeholder will fill it (see §3). For example, let us invert the fourth
example in Figure 6: s′ = σ (“JFK died.”, died, killed, α). If α(subject) = ∅, then s′ will be “[someone]
killed JFK”, where “[someone]” is a placeholder.

Definition Given a sentence s, we can say that tp (p for premise), a subtree of s, entails some other
subtree th (h for hypothesis) in the context of s, if: s � σ (s, tp, th, α), where α assigns the slots of th,
and � is textual entailment. In other words, if s is true, then replacing tp with th in s should create a new
sentence that is also true. Considering the second example from Figure 6, “killed” entails “assassinated”
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disagrees

with

HRC

Sanders on

PACs

Super

criticizes

HillaryBernie on

funding

campaign

Figure 7: The aligned partition of the example in Figure 2.
Subtrees marked by the same color are aligned, and those
surrounded by dark borders are entailed by their counterpart.

confirms

:CNN wins

Trump Kentucky

taken

hasTrump Kentucky

Figure 8: Two input sentences whose aligned partition does
not include s1’s root.

(in the context of s) if given that “Oswald killed JFK”, it is also true that “Oswald assassinated JFK”.
Subtree entailment is always in the context of a full premise s; we therefore use the shorthand notation
tp �s th.

Notice that, in fact, we are reducing the subtree entailment question to a textual entailment question,
where both premise and hypothesis are full sentences (instantiated predicates). This is essential, since
one cannot ask “given that ‘killed’ is true, is ‘assassinated’ true too?”; an uninstantiated predicate (or
worse, a noun) does not yield a truth value.

6 Properties of Extractive Intersections

When examining the dependency trees of sentences created by extractive intersection, we observe that
almost all of them (93%–99.5%, see footnote 5 in §8) exhibit three particular properties, which we define
using subtree entailment in context.

Aligned Partition The dependency tree of a sentence created by extractive intersection can be par-
titioned into subtrees, each one originating from one of the input sentences. Interestingly, for every
subtree t1 originating from s1 (without loss of generality), there exists another subtree t2 in the other
input sentence s2, which entails t1 (t2 �s2 t1). The entailment relation between t1 and t2 can be mutual
or asymmetric, but it is always one-to-one, i.e. no other subtree within s2 entails t1, and vice versa. This
induces a partition of the input sentences’ dependency trees (seen in Figure 7), where each subtree t1 is
either unaligned or in an entailment relation with exactly one subtree from s2. This also means that each
aligned subtree (except for the root) has exactly one parent, which we denote as π(t, s) (t being a subtree
in sentence s).

We observe that the vast majority of output sentences can be easily created from such an aligned
partition of the input sentences. This is not surprising, because every intersection sentence is entailed
by both input sentences (Marsi and Krahmer, 2005). It makes sense that the same quality exists at the
subtree level, which we model with aligned partitions.

Inverse Inheritance of Alignment The second property, inverse inheritance of alignment, describes
how subtrees in the output sentence connect. Given a subtree t1, its parent in the output sentence’s tree
is either its original parent π(t1, s1) or its “parent-in-law” π(t2, s2) (the parent of its aligned subtree).
Looking back at the input sentences, this means that every pair of aligned subtrees also has aligned
parents, i.e. the parents “inherit” the alignment from their children. However, this does not mean that
the direction of entailment needs to be the same; in Figure 7, “Super PACs” entails “campaign funding”
(t1 �s1 t2), while “X criticizes Y on Z” entails “X disagrees with Y over Z” (π(t2, s2) �s2 π(t1, s1)).

Entailed Embedded Clauses Figure 8 shows that the input sentences are not necessarily aligned at the
root, and that the common information might be contained in an embedded clause. In such cases, if there
is a valid (non-empty) intersection, we typically observe that the embedded clause is entailed by the orig-
inal sentence. In terms of subtree entailment, this means that the subtree wrapping the embedded clause
entails the empty subtree (a single slot with no nodes); e.g. if “CNN confirms: X”, then “X” is typically
true. Conversely, if the embedded clause is not entailed by the original sentence (e.g. s3 =“Carson will

2896



quit if Trump wins Kentucky”) then there is no intersection (s1 ∩ s3 = s2 ∩ s3 = ∅, assuming s1 and s2
from Figure 8).

7 A Semi-Automatic Algorithm

Based on the properties discussed in §6, we describe a semi-automatic algorithm for annotating extractive
intersection. It requires relatively simple human interaction throughout the process, while automating the
combinatorial aspect, which is difficult for humans. Our algorithm also masks the underlying syntactic
tree from the annotator, making the entire process crowdsourcable. The core of our algorithm is creating
an aligned partition of the input sentences. Once the aligned partition is obtained, we can determinis-
tically create the set of output dependency trees, from which natural language sentences are generated.
Some minor technical details are omitted from this description, and will be made available with our code
and its documentation upon publication.

7.1 Creating the Aligned Partition
Given the dependency trees3 of two sentences, we create their aligned partition over 4 steps. We first
elicit lexical alignments from the annotators; these are used to detect the aligned partition’s root in each
sentence, and then as a seed for automatically deriving subtree alignments. The final step validates that
the subtrees are indeed in an entailment relation, and also annotates the entailment’s direction.

Step 1: Lexical Alignment We present both sentences in natural language, and ask the annotators
to mark words (or phrases) that appear in different sentences yet have similar meanings. This phase is
recall-oriented, and its goal is to capture as many potential entailments by annotating a slightly looser
notion. We limit the number of alignments to one per token; this constraint is essential for inducing an
aligned partition. Despite detailed guidelines and examples, non-expert annotators mainly mark nouns,
typically ignoring verbs and other predicates unless they are identical. We address this issue in Step 3.

Step 2: Root Detection As discussed in §6, the root of an aligned partition does not always contain the
roots of both input sentences. We therefore apply a heuristic, on each sentence separately, which finds
the root of the embedded clause participating in the aligned partition: the lowest common ancestor of
nodes that have a lexical alignment. This technique is motivated by our observation that, for intersection
purposes, the original sentence can be replaced with the embedded clause since it contains all the aligned
components. In Figure 8, for example, if an annotator were to only align “Trump” and “Kentucky” with
themselves, the heuristic would detect “wins” and “taken” as the roots of s1 and s2, respectively.

Step 3: Subtree Alignment Since annotators rarely align predicates, we introduce a heuristic method
for automatically deriving subtree alignments from the lexical ones provided manually (Step 1). Figure 9
shows a typical lexical alignment. Our heuristic makes greedy local changes until the following four
constraints are satisfied:

Inverse Inheritance of Alignment: In §6 we saw that if two subtrees are aligned, then so are their
parents. To enforce this property, we create new alignments between parents of already-aligned subtrees.
In our example (Figure 9), this yields two new alignments: “primary”− “wins” and “to”− “wins”.

Include Function Modifiers: Annotators also tend to ignore function words. We observe that for
certain dependency types4 that connect function words to content words as modifiers, the modifiers
should always be part of the same alignment as their heads. Therefore, if the head participates in an
alignment, the modifier is added as well; e.g. “the” modifies “primary” and is therefore added to its
alignment.

No Overlapping Alignments: Since aligned partitions induce a partition of each input sentence, each
node take part in one alignment at most. Therefore, if a node participates in more than one alignment,
those two alignments are merged. In our example, “wins” participates in two alignments. After merging,
we are left with a single alignment (excluding the initial ones): “the”, “primary”, “to”− “wins”.

3We used the Stanford converter on top of the Berkeley parser (Petrov and Klein, 2007), which produced correct dependency
trees for most of our data.

4The following Stanford dependencies: det, aux, auxpass, neg, prt, attr.
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goes

Iprimary

Floridathe

to

Hillary

wins

IClinton Florida

Figure 9: The information provided by a typical annotator in
the lexical alignment phase is usually limited to nouns.

Sentence Equality ROUGE-like
P R F1 P R F1

Input 0.080 0.124 0.097 0.611 0.952 0.744
Direct 0.130 0.124 0.127 0.735 0.781 0.758

Semi-Auto 0.360 0.305 0.330 0.820 0.902 0.859

Table 2: The agreement between crowd and expert annota-
tions. “Semi-Auto” is the semi-automatic annotation pro-
cess, “Direct” is the direct annotation process described in
§4, and “Input” is a baseline where the two input sentences
are also the output.

Subtrees Only: Subtree entailment in context (§5) requires every alignment to be between two sub-
trees. If an aligned component is not a subtree, (i.e. is non-contiguous in the dependency tree) that
subgraph will be turned into a subtree by adding the nodes all the way up to the lowest common ances-
tor. In our case, (“the”, “primary”, “to”) is non-contiguous; adding the lowest common ancestor to this
alignment (“goes”) yields the subtree alignment: “the”, “primary”, “goes”, “to”− “wins”.

Step 4: Entailment Questions The previous step yields a potential aligned partition, where aligned
subtrees have not yet been tested for entailment. Based on this structure, we generate a set of yes/no sub-
tree entailment questions. Starting at the root, we traverse the aligned partition, and for each alignment
(t1, t2), two subtree entailment questions are generated: t1 �s1 t2 and t2 �s2 t1.

Reusing the example from Figure 9, let t1 = “the”, “primary”, “goes”, “to” and t2 = “wins”. In the
entailment question t1 �s1 t2, the premise is the original sentence in which t1 appeared (“The Florida
primary goes to Hillary.”). The hypothesis is created by substituting t1 with t2: σ (s1, t1, t2, α). The slot
assignment α is deduced directly from the existing subtree alignments; if a child node of t2 is aligned
to a child node of t1, their slots will be assigned accordingly. If no such alignment exists for a given
slot, it will be assigned ∅ and manifest as a placeholder. In our example, this yields the assignment:
“the X primary goes to Y”− “Y wins X”, because (X) “Florida” is aligned to itself, and (Y) “Hillary” is
aligned to “Clinton”. Therefore, the hypothesis we generate is: “Hillary wins Florida.”

Annotators are asked if given that the premise is true, the hypothesis is true too. This step determines
both the validity and direction of each alignment, creating the final aligned partition.

7.2 Creating the Intersection Set

The aligned partition contains all the information necessary for constructing the intersection set. We
create this set by traversing the aligned partition and generating every combination of subtrees, in which
only one subtree from each alignment is chosen. Given an alignment between two subtrees, if only
subtree is entailed, this subtree is always chosen. If the subtrees are mutually entailing, the number of
generated trees is doubled, each one containing a different subtree. If there is no entailment, the subtrees
are not aligned, and will not participate in any of the generated sentences.

Overall, this process creates 2n sentences, where n is the number of mutually entailing subtrees in the
aligned partition. For example, the aligned partition in Figure 7 contains 2 mutually-entailing subtrees
(“Bernie” = “Sanders”, “Hillary” = “HRC”), resulting in 4 intersection sentences (Figure 2). Finally,
we generate natural language sentences from the intersection sentences’ trees.

8 Annotated Dataset

We hired Mechanical Turk workers to annotate the entire set of 1,800 examples from the sentence fusion
(McKeown et al., 2010) and paraphrase (Dolan et al., 2004) datasets presented in §4 using our semi-
automatic algorithm. After removing spam annotations, we had an annotated dataset of 1,764 extractive
sentence intersections. Again, we retained the 3 most consistent annotations out of 5, per example. For
evaluation, we compared the same 200 examples we analyzed in §4. We call this annotation “Semi-
Auto”, the expert annotation “Expert”, and the manual annotation in §4 “Direct”.

In terms of measured agreement with Expert, Table 2 shows that Semi-Auto substantially improves
over Direct in both the sentence equality and ROUGE-like metrics. Semi-Auto has much higher precision
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than both Direct and the input baseline. We hypothesize that explicitly decomposing the intersection
task into several local subtree entailment queries allows the annotators to focus on the finer details and
nuances of each sentence. Semi-Auto’s recall is also better than Direct’s because the combinatorial
component of creating the entire intersection set is automated.

Although Semi-Auto significantly increases agreement with experts, the agreement is still not perfect.
To determine whether these errors stem from annotator quality or algorithmic issues, we sampled 25 input
sentence pairs and examined the intersection sentences constructed by Semi-Auto that were not produced
by Expert. From this sample of false-positives, 42.2% were actually valid intersections, which were not
covered by Expert because of the task’s subjective nature. While we used only a single expert, multiple
expert annotators could potentially reduce the subjectivity factor. An additional 51.1% stem from real
annotation errors by Mechanical Turk workers. A deeper look reveals that these errors result from low-
quality annotators who did not follow our instructions. Having said that, the vast majority of these errors
manifest as a single missing or superfluous word (in some cases, it is even a function word), while getting
the core aspects of the intersection correct. Only 6.7% of the cases were traced to algorithmic errors,
most of which are caused by the way English dependency parsers represent coordinations.5 Overall, it
appears that the major cause of error is a portion of Mechanical Turk annotators who failed to follow our
instructions accurately. Our semi-automatic algorithm, on the other hand, seems relatively robust.

9 Conclusions

This work resurrects the task of sentence intersection, and addresses the main reason it has remained dor-
mant: lack of annotated data. We show that our new variant of the task, extractive sentence intersection,
can be decomposed into several simpler tasks, allowing for high-quality annotation via crowdsourcing.
We hope our insights, data, and algorithmic framework provide a foundation for future work on sentence
intersection and semantic overlap.
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In Joaquin Quiñonero Candela, Ido Dagan, Bernardo Magnini, and Florence d’Alché Buc, editors, Machine
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tures in dependency treebanks. In Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 517–527, Sofia, Bulgaria, August. Association for Computational
Linguistics.

Idan Szpektor, Hristo Tanev, Ido Dagan, Bonaventura Coppola, and Milen Kouylekov. 2015. Unsupervised acqui-
sition of entailment relations from the web. Natural Language Engineering, 21:3–47, 1.

Kapil Thadani and Kathleen McKeown. 2011. Towards strict sentence intersection: Decoding and evaluation
strategies. In Proceedings of the Workshop on Monolingual Text-To-Text Generation, pages 43–53, Portland,
Oregon, June. Association for Computational Linguistics.

Kapil Thadani and Kathleen McKeown. 2013. Supervised sentence fusion with single-stage inference. In
Proceedings of the Sixth International Joint Conference on Natural Language Processing, pages 1410–1418,
Nagoya, Japan, October. Asian Federation of Natural Language Processing.

Naomi Zeichner, Jonathan Berant, and Ido Dagan. 2012. Crowdsourcing inference-rule evaluation. In Proceed-
ings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),
pages 156–160, Jeju Island, Korea, July. Association for Computational Linguistics.

2901


