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Abstract

This paper proposes a novel problem setting of selectional preference (SP) between a predicate
and its arguments, called as context-sensitive SP (CSP). CSP models the narrative consistency be-
tween the predicate and preceding contexts of its arguments, in addition to the conventional SP
based on semantic types. Furthermore, we present a novel CSP model that extends the neural SP
model (Van de Cruys, 2014) to incorporate contextual information into the distributed representa-
tions of arguments. Experimental results demonstrate that the proposed CSP model successfully
learns CSP and outperforms the conventional SP model in coreference cluster ranking.

1 Introduction

Selectional Preference (SP) of predicates is a term denoting a bias in co-occurrence of a predicate and
its argument. Predicates tend to take a particular semantic type of phrase as an argument. For example,
the object slot of eat is generally filled by a noun phrase denoting food such as an apple; it is rarely
filled by a phrase that is not food such as a watch. As the knowledge of SP has been recognized as key
for many natural language processing tasks, including semantic role labeling and anaphora resolution,
automatic acquisition of SP knowledge has persisted as a popular research topic. In literature, a variety
of computational models for SP have been proposed, ranging from thesaurus-based approaches (Resnik,
1996), to probabilistic latent variable models (Rooth et al., 1999; Séaghdha and Korhonen, 2014), and
distributed approaches (Van de Cruys, 2014).

Conventionally, SP is defined as the context-independent acceptability of a word as a filler of a predi-
cate in the sense of a semantic type. Suppose that we must identify the referent of him(j):

(1) John(i) beat Bob(j). Mary comforted him(j).

Henceforth, we call a predicate (e.g., comfort) and an argument (e.g., John and Bob) to be examined as
a query predicate and query argument, respectively. Conventional SP models judge the appropriateness
of John(i) and Bob(j) in terms of whether comfort can take each noun as its object. However, it ignores
the information signified by the preceding context, namely John(i) beat Bob and Bob(j), whom John
beat. Therefore, conventional approaches cannot determine the preference between John and Bob, both
of whom can fill the object of comfort, with the same semantic type.

In this paper, we propose a context-sensitive version of SP (CSP), a novel task setting in which SP is
considered in discourse. In text (1), for instance, Bob(j) is considered to be a more plausible filler than
John(i) in terms of contextual relatedness: one who was beaten is more likely to be comforted than one
who beat someone. In this paper, we want to discriminate (2a) from (2b) in addition to the conventional
SP-based discrimination (e.g., Mary comforted John versus Mary comforted a banana):

(2) a. Mary comforted John, who beat Bob.
b. Mary comforted Bob, whom John beat.

*Present affiliation: FUJITSU FIP CORPORATION
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

2829



The goal of this paper is to develop a CSP model that jointly considers the following aspects: (i)
the conventional acceptability based on the semantic type of a query argument, and (ii) the narrative
consistency between events denoted by a query predicate and preceding context of the query argument
(as seen in (3a) with its counter example (3b)).

(3) a. Mary comforted X who beat Bob.

b. Mary comforted X whom John beat.

The joint modeling has an advantage in applications, such as predicate argument structure analysis and
coreference resolution because the preceding context of a given query argument may not always be
available in these tasks. For example, in pronoun resolution, some candidate antecedents may have
preceding contexts relevant to narrative consistency but other candidates may not.

The challenges in modeling a CSP are as follows: (i) data sparseness caused by the incorporation of
context words, and (ii) an effective means of incorporating context-sensitivity into SP. To address these
issues, we propose to extend the state-of-the-art SP model by using a distributed representation (Van de
Cruys, 2014). The distributed framework alleviates the data sparseness problem and naturally injects the
contextual information of a query argument into its word vector based on compositional distributional
semantics (Socher et al., 2012; Socher et al., 2013; Muraoka et al., 2014; Hashimoto et al., 2014, etc.).

We empirically evaluate the impacts of incorporating context-sensitivity into SP for two tasks: (i)
context-sensitive pseudo-disambiguation, a novel benchmark tailored for evaluating CSP models, and
(ii) coreference cluster ranking for pronominal anaphora resolution. The results demonstrate that our
approach achieves considerable improvements. Moreover, the results suggest that CSP is a meaningful
problem setting and that our model captures the context-sensitivity of SP.

2 Related Work

A fundamental approach to modeling SP is to count the co-occurrences of predicates and their arguments
on a large corpus. As simply counting a predicate-argument pair causes data sparseness problem, previ-
ous SP models adopted methods for smoothing co-occurrence counts. Earlier efforts combined a manu-
ally crafted thesaurus with the acquired distribution (Resnik, 1996; Li and Abe, 1998). Another approach
used a latent probabilistic model to obtain a semantically smoothed probability distribution (Rooth et al.,
1999; Séaghdha and Korhonen, 2014). Other directions include example-based approaches (Erk, 2007).
However, these studies differ from ours in that they do not consider the context-sensitivity.

Some previous studies (Ritter et al., 2010; Van de Cruys, 2014; Kawahara et al., 2014) estimate the
plausibility of a subject–verb–object (SVO) tuple. These studies model a type of CSP: a subject or an
object can be regarded as an additional context to restrict a set of possible fillers of a query predicate.
However, the context captured in our study is not a local context of a query predicate but that of a query
argument, working as a validator of the narrative consistency between a query predicate and events in
which a query argument participates (see Section 4).

In addition, the modeling of a narrative consistency between events has been studied exten-
sively (Chambers and Jurafsky, 2009; Modi and Titov, 2014; Granroth-wilding and Clark, 2016, etc.).
Chambers and Jurafsky (2009) acquired sets of narratively related events sharing at least one entity (e.g.,
{X commit a crime, police arrest X , X convict, ...}) by collecting a set of verbal mentions sharing core-
ferring arguments in a large corpus. The relatedness between two events was then estimated statistically
through pointwise mutual information (Church and Hanks, 1990).

To address the data sparseness problem of Chambers and Jurafsky (2009), Granroth-wilding and Clark
(2016) proposed an architecture based on distributed representation to judge the narrative coherence be-
tween two events. They trained a neural network (NN) model based on event chain instances acquired in
the same strategy as that of Chambers and Jurafsky (2009) and reported that the NN model outperformed
their approach. As argued in Section 4, our approach can be regarded as an integrated framework of the
state-of-the-art approaches of conventional SP and narrative consistency.
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Figure 1: Van de Cruys’ SVO model

3 Van de Cruys’ SVO model

We adopted the SVO model by Van de Cruys (2014) as a baseline model and extended it to capture
narrative consistency. Van de Cruys’ SVO model, based on an NN architecture, estimates a preference
score for a tuple of words ⟨s, v, o⟩ (referred to as a query tuple), in which s and o respectively correspond
to the subject and object of a transitive verb v. Figure 1 presents the NN structure. The SP score sc(·) of
⟨s, v, o⟩ is calculated using a two-layer NN:

sc(⟨s, v, o⟩) = W2hs,v,o, (1)

hs,v,o = f(W1gs,v,o + b), (2)

gs,v,o = ϕ(s)⊕ ϕ(v)⊕ ϕ(o) (3)

where ϕ(w) ∈ Rd is the vector representation1 of word w, g ∈ R3d presents an input layer concatenating
word vectors of ⟨s, v, o⟩ by using the operator ⊕, and h ∈ Rh is a hidden layer. W1 ∈ Rh×3d and
W2 ∈ R1×h are respectively the weight matrices of the first and second layers, and b ∈ Rh is a bias on
the first layer. f(·) is an element-wise activation function using tanh.

The model simultaneously learns word embedding and scoring function of SP based on the framework
proposed by Collobert et al. (2011), who employed a ranking-type loss function that discriminates be-
tween positive and negative examples. Positive training examples include ⟨s, v, o⟩ tuples observed in a
corpus. Negative examples are generated from the positive examples by replacing arguments in correct
tuples with randomly selected words. This procedure generates the following three types of negative
examples from a positive example ⟨s, v, o⟩: ⟨s̃, v, o⟩, ⟨s, v, õ⟩, and ⟨s̃, v, õ⟩. The loss function is then
defined as:∑

(s,v,o)

{
max(0, 1− sc(⟨s, v, o⟩) + sc(⟨s̃, v, o)⟩) + max(0, 1− sc(⟨s, v, o⟩) + sc(⟨s, v, õ)⟩)

+max(0, 1− sc(⟨s, v, o⟩) + sc(⟨s̃, v, õ⟩))}. (4)

Following Collobert et al. (2011), Van de Cruys (2014) calculates the gradient of the loss online by
sampling a single corrupted subject s̃ and object õ for each correct tuple.

4 Context-sensitive SP Model

We propose a context-sensitive selectional preference (CSP) model by extending the SVO model. The
advantage of using the model by Van de Cruys (2014) is that we can naturally represent the attachment
of the contextual information into a query argument with compositional distribution semantics (Socher
et al., 2012; Hashimoto et al., 2014, etc.). We incorporate both the conventional SP and narrative con-
sistency described in Section 1 into a single model by learning the vector representation of an argument
with its context in the same vector space as word vectors in the SVO model. To realize this, we inserted
an additional layer for calculating a context-injected word vector under the input layer.

Figure 2 presents the network structure of our model with the following text as an input.
1The original paper differentiates vectors for a word w depending on whether it is used as a subject, object, or verb. However,

we used the same vector for a word because we obtained higher performance than that setting.
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(4) John beat Bob(i). Mary comforted Bob(i).

Here, the query tuple ⟨s, v, o⟩ is ⟨Mary, comfort, Bob⟩ and the context for the query argument Bob(i)

is “John beat Bob.” From this context, we calculate a context-injected word vector representing “Bob,
whom John beat” by combining the vectors of the words in its predicate-argument structure (PAS). We
use the resulting vector as the input to the SVO model, instead of the vanilla word vector.

Formally, we extend the representation of query tuple ⟨s, v, o⟩ so that s and o can accompany their
contexts. We represent such cases as ⟨cs, v, o⟩, ⟨s, v, co⟩, and ⟨cs, v, co⟩, where cw denotes a word w with
its context. Then, we extend Equations (1), (2), and (3) for ⟨s, v, co⟩ as

sc(⟨s, v, co⟩) = W2h
′
s,v,co

, (5)

h′
s,v,co

= f(W1g
′
s,v,co

+ b), (6)

g′s,v,co
= f(ϕ(s)⊕ ϕ(v)⊕ ϕc(co)), (7)

where ϕc(cw) is a context-injected word vector, which is explained in the rest of this section. Similarly,
for ⟨cs, v, o⟩ and ⟨cs, v, co⟩, we extend Equation (3) as follows: g′cs,v,o = f(ϕc(cs) ⊕ ϕ(v) ⊕ ϕ(o)), and
g′cs,v,co

= f(ϕc(cs)⊕ ϕ(v)⊕ ϕc(co)).
As a context of w, we can potentially consider various types of modifiers, such as predicates, adverbs,

appositives, and genitives, that affects the preference score of a query argument. In this study, as a
first step, we restrict the context information to PASs along the lines of the previous studies that utilize
event-to-event relations in an anaphora resolution (Inoue et al., 2012; Peng et al., 2015).

Specifically, we first assume a context of a query argument be a single PAS which takes the query
argument as its argument (referred to as a context-PAS). Then we represent w with its context-PAS as
cw = ⟨sw, pw, ow⟩r, where sw and ow are respectively the subject and object of a predicate pw that
syntactically governs the word w (i.e., either sw or ow is w). r indicates the grammatical role of the
query argument w in the context-PAS, whose value is either subj (when w = sw) or obj (when w = ow).
For example, for text (4), the context for the query object Bob, modified by the PAS of the transitive
verb beat, is represented as co = ⟨John, beat, Bob⟩obj. The grammatical role obj of the query argument
Bob is indicated to discriminate “Bob, whom John beat” from “John, who beat Bob.” Note that some
context-PASs (e.g., intransitive verbs and adjectives) do not take an object argument. r and ow for these
ASs are thus ignored.

To compute a context-injected vector of a query argument, we composed a word vector in a context-
PAS by using methods similar to those for building phrase vectors (Socher et al., 2012; Socher et al.,
2013; Muraoka et al., 2014; Hashimoto et al., 2014). In this study, we adopted a simple compositional
operation, keeping comparisons with other composition methods for future studies. We compute the
context-injected word vector ϕc(cw) as

ϕc(⟨sw, pw, ow⟩r) = U rgsw,pw,ow , (8)

gsw,pw,ow = f(ϕ(sw)⊕ ϕ(pw)⊕ ϕ(ow)), (9)
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(1)

(2)

subj

Figure 3: Generation of training instances.

where U r ∈ Rh×3d is a weight matrix used for building the context-injected vector for the grammatical
role r. We set a word vector ϕ(ow) = 0 ∈ Rd if ow does not exist (when the context-PAS does not have
ow).

5 Training

To model conventional SP and CSP jointly, we simultaneously train matrices U r,W1, and W2, and
vectors ϕ(·). We minimize the same loss function introduced in Section 3, except that (i) we replace the
score function sc(·) with Equation (5); and (ii) we use two types of tuples (TYPE A and TYPE B) as
training instances. TYPE A is a tuple whose subject and object are bare nouns (i.e., ⟨s, v, o⟩). TYPE B is
a tuple with either its subject or object including a context-PAS (i.e., ⟨cs, v, o⟩ and ⟨s, v, co⟩). Hereafter,
we describe the method to obtain these instances from a corpus.

5.1 TYPE B instance generation

Positive instance. We assume that a corpus is parsed using a syntactic dependency parser and a corefer-
ence resolver. We extract a collection of TYPE B positive instances from the dependency and coreference
relations, where we include only a head word for each predicate/argument slot. Figure 3 illustrates the
extraction procedure. From sentence (1), we obtain ⟨WikiLeaks, release, ⟨secret, hurt, someone⟩subj⟩ (B1), where
“hurt someone”, the context of secret, is attached via the coreference link between military secrets and
Secrets. Similarly, from sentence (2), we obtain ⟨⟨WikiLeaks, release, secret⟩obj, hurt, someone⟩ (B2).

As context-PASs, we used a non-negated transitive verb, intransitive verb, adjective, and copula. Thus,
we do not extract tuples including one or more negations (e.g., ⟨John, not eat, apple⟩). A nontrivial
issue of managing negations in compositional semantics has not been explored much in distributional
compositional semantics. Furthermore, we removed tuples where the predicates of coreferent mentions
are connected via an adversative connective (e.g., John beat Bob but Bob was happy), which cannot be
handled by the CSP model.

Negative instance. Next, negative training instances are generated by considering positive instances as
counterparts. We generate ⟨c̃s, v, o⟩, ⟨cs, v, õ⟩, and ⟨c̃s, v, õ⟩ for positive instance ⟨cs, v, o⟩ and ⟨s̃, v, co⟩,
⟨s, v, c̃o⟩, and ⟨s̃, v, c̃o⟩ for positive instance ⟨s, v, co⟩. Here, s̃ and õ are sampled from all the bare
subjects and objects in the positive instances, respectively. In addition, c̃s and c̃o are sampled from all the
subjects and objects respectively, with contexts attached. For example, we generate c̃s=⟨John, eat, apple⟩obj

from cs=⟨WikiLeaks, release, secret⟩obj. We use the probabilistic negative sampling (Mikolov et al., 2013)
based on the frequency of arguments in the positive instances2.

5.2 TYPE A instance generation

We then created a TYPE A positive instance from each TYPE B positive instance by replacing the context-
attached argument with the original bare argument. In Figure 3, we obtain ⟨WikiLeaks, release, secret⟩
and ⟨secret, hurt, someone⟩ from B1 and B2, respectively. To generate TYPE A negative instance, we
follow the same procedure described in Section 3 but use probabilistic negative sampling instead.

2Although Van de Cruys (2014) used random sampling to generate negative instances, we used probabilistic sampling
because our preliminary experiment shows a better performance.
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5.3 Dataset

We identified syntactic dependency relations and coreference relations in 4.5 billion sentences extracted
from the ClueWeb12 corpus3, that is, a large collection of Web documents, by applying Stanford
CoreNLP (Manning et al., 2014). To reduce noises from the obtained coreference relations, we ap-
plied the following heuristics to skim only highly plausible coreference relations off from the pool: (i)
the coreference relation must be intrasentential, (ii) the head words of the coreferent mentions must be
identical and nonpronominal (e.g. John–John but not John–boy)4. Furthermore, we discarded TYPE A
and TYPE B instances containing low-frequency words so that all our training instances include only the
top 50k frequent verbs, 50k frequent nouns, and 50k frequent adjectives. We replaced all the rare words
(occurring less than four times) with the special symbol OOV (implying out of vocabulary) to facilitate
the calculation of the SP of unseen words appearing in the test set.

As a result, we obtained a collection of 4,824,394 TYPE B positive instances (2,912,624 unique tuples;
B hereafter) and 4,824,394 TYPE A positive instances (1,500,990 unique tuples; A hereafter).

6 Evaluation

To check whether the CSP model can properly learn the conventional SP and narrative consistency, we
first evaluated the CSP model against Van de Cruys’ model by using a pseudo-disambiguation test, a
binary classification task of discriminating a positive SVO tuple from its pseudo-negative counterpart.
We then evaluated the effectiveness of the CSP model in a realistic problem setting, in which the disam-
biguation test is created from coreference annotations of the OntoNotes corpus (Hovy et al., 2006).

6.1 Parameters

We set the dimension of word embedding d = 50 and the dimension of hidden layer h = 50. The word
embeddings are initialized with the publicly available word vectors trained through GloVe (Pennington
et al., 2014)5 and updated through back propagation. We updated weights by using Adam (Kingma and
Ba, 2014) with a mini-batch size of 1,000 and 30 epochs6.

To evaluate the effectiveness of the CSP model, we replicated the SVO model of Van de Cruys (2014)
by training the CSP model only with TYPE A instances (henceforth, SP).

6.2 Pseudo-disambiguation test

Inspired by the conventional SP model (Erk, 2007; Van de Cruys, 2014, etc.), we set up three binary
classification tasks. We performed hold-out validation on datasets A and B.

6.2.1 Tasks
Pseudo-disambiguation (PD) discriminates a positive non-context-injected tuple (e.g., ⟨Mary, eat, ba-
nana⟩) from its pseudo-negative counterpart (⟨Mary, eat, watch⟩) without any context information. This
task setting has been employed in the previous SP models, including in Van de Cruys (2014).
Context-sensitive PD (CSPD) discriminates a positive context-attached tuple (e.g., ⟨Mary, eat, ⟨banana,
delicious⟩subj⟩) from its pseudo-negative counterpart (⟨Mary, eat, ⟨watch, new⟩subj⟩). This is a novel task
setting designed to highlight the ability of modeling both conventional SP and narrative consistency.
CSPD-X is the same as CSPD except that the coreferent arguments are masked; namely, the task is to
discriminate a masked context-attached tuple (e.g. ⟨Mary, eat, ⟨X, delicious⟩subj⟩, where X denotes the
special symbol for masked arguments) from its masked pseudo-negative counterpart. In this task, we
set the word vector for the masked argument ϕ(X) = 0. Forcing the ignorance of the meaning of an
argument, this task can assess how precisely the proposed models can predict a query argument through
narrative consistency only (i.e., by relying only on the context information).

3http://lemurproject.org/clueweb12/
4A manual inspection revealed that the filtering improved the accuracy of the coreference relations from 71% to 87%.
5http://nlp.stanford.edu/projects/glove/
6All the parameters were determined through our preliminary experiments; we found that all the models were insensitive

to the dimension parameters (25, 50, and 100 were explored). An initialization with GloVe performed better than random
initialization, and the update of a word vector had a positive impact.
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Model PD CSPD CSPD-X
RANDOM 0.5000† 0.5000† 0.5000†
SP 0.8635 0.8635 0.5000†
CSP 0.8623 0.8947* 0.7856

Table 1: Accuracy for pseudo-disambiguation tasks.
‘*’ denotes a statistical significance against SP (Mc-
Nemar test, p < .05). ‘†’ indicates the accuracy on
random guesses (no clue for discrimination).

Model MQ MQno pr

SP 0.7420 0.7125
CSP 0.8265* 0.7586*

Table 2: Model performance on entity ranking.
‘*’ indicates statistical significance against SP
(Wilcoxon signed-rank test, p < .05).

6.2.2 Dataset
To perform hold-out validation, we first randomly divided the dataset B into a training set (90%, Btrain)
and a test set (10%, Btest)7. For the PD task, we extracted Atrain from Btrain and Atest from Btest by
using the procedure described in Section 5.1. For the CSPD and CSPD-X tasks, we used Btrain and Btest.
Note that Atrain includes all the SVO instances included in Btrain.

6.2.3 Results
Table 1 reports the accuracy of each model in this task. A subtle performance drop (≤ 0.0013 point)

is observed in our CSP compared to SP; this was not statistically significant (the statistical significance
test by McNemar (1947) showed p < .05). This indicates that our joint modeling does not degrade
the ability for modeling a conventional SP. In contrast, the CSP model significantly outperformed SP
(McNemar test, p < .05) in the CSPD task, capturing the context-sensitivity of SP successfully. The
results of CSPD-X imply that our joint modeling can properly learn narrative consistency.

6.3 Ranking coreference clusters
In Section 6.2, we reported the results of a binary classification task in which negative instances were
artificially generated. In contrast, this section describes a more realistic task setting: ranking coreference
clusters in the OntoNotes corpus (Hovy et al., 2006).

6.3.1 Task
Given a target pronoun, our task is to determine the coreference cluster (entity) that is the most likely to
be coreferent with the pronoun. Let us consider text (5) as an example.

(5) In his(i) 40-minute speech(j), Chen(i) declared the determination(k) of the people(l) ... against
Chen(i)..., and he(?) made a statement...

Given a target pronoun he(?), four coreference clusters Ci, Cj , Ck, Cl are used as candidates for an-
tecedents. As he(?) is a subject of the predicate made a statement, sc(⟨cs, v, o⟩) gives the preference of
cs as an antecedent of the pronoun, where v = made and o = statement. In the example, cs can be a pre-
ceding noun with its context attached (if any) or without its context: ⟨Chen, declare, determination⟩subj,
⟨Chen, declare, determination⟩obj, speech, or people. We expect that an SP model prefers the correct
antecedent ⟨Chen, declare, determination⟩subj over the others.

We measure the ability of a model for selecting the correct cluster by using a mean quantile (MQ) (Guu
et al., 2015). Let p be the target pronoun, C+

p the correct cluster for the pronoun, and Np the set of
negative (incorrect) clusters. MQ for the pronoun p is defined as:

MQ(p) =
|{C− ∈ Np|sp(C−, p) < sp(C+

p , p)}|
|Np| . (10)

Intuitively, MQ(p) represents the ratio where a correct cluster C+
p is preferred to incorrect clusters C− ∈

Np by the model. In general, a cluster contains multiple mentions; thus, we simply consider the maximal
of the scores in a cluster C: for example, sp(C, p) = maxm∈C sc(m, v, o).

7To ensure that the two subsets are strictly disjoint, we prohibited a test instance from being an inverse of any instance in
the training set; more concretely, the instance ⟨WikiLeaks, release, ⟨secret, hurt, someone⟩subj⟩ must not exist in the test set
when the training set includes its inverse ⟨⟨WikiLeaks, release, secret⟩obj, hurt, someone⟩.
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Figure 4: Learning curves of SP and CSP.

When a target pronoun appears at an object position, we use sc(⟨s, v, co⟩) instead of sc(⟨cs, v, o⟩). In
this experiment, we targeted only pronouns filling the subject or object slot of a non-negated transitive
verb (see Section 5.3); we extracted he(i) but not his(i) in text (5).

6.3.2 Test set
We used the coreference annotations in OntoNotes Corpus 5.0 (Hovy et al., 2006). The corpus includes
625k newswire and 400k broadcast articles annotated with several layers of syntactic and semantic an-
notations. We obtained 16,414 test pronouns (16.6% of the total pronouns) with the average number of
candidate coreference clusters of 75.9. Further, we used semantic roles to extract PASs.

Although pronouns are not informative to SP and CSP, CSP is expected to benefit from context-
attached tuples. To test this, we enhanced the training dataset described in Section 5.1 by allowing
pronominal coreferent mentions to be extracted because pronouns might appear in coreference clusters.
Thus, we obtained a collection of 8,603,782 TYPE B positive instances (4,952,462 unique tuples; Bpro

hereafter) and 8,603,782 TYPE A positive instances (2,178,540 unique tuples; Apro hereafter). We
trained SP with Apro, and CSP with Apro and Bpro.

6.3.3 Results
The MQ column of Table 2 shows the mean of the MQ scores for all target pronouns. The proposed model
(CSP) outperformed the baseline model (SP) (Van de Cruys, 2014) (Wilcoxon signed-rank test, p < .05).
The results indicate that the CSP model captures the SPs of predicates more precisely by exploiting the
context information of coreference clusters. In addition, our joint models are demonstrated to be capable
of comparing query arguments regardless of the existence of context information.

It may be presumed that this improvement is due to the task setting: pronominal coreferent clusters
are relatively difficult for SP to discriminate because SP cannot exploit contextual information. Thus,
we also report MQno pr in Table 2, which is the MQ of the coreference cluster ranking task including
only nonpronominal nouns as candidate coreference clusters. This evaluation also shows that our CSP
model outperformed the model by Van de Cruys (2014) (Wilcoxon signed-rank test, p < .05). The
margin in MQ was found to be larger than in MQno pr. This indicates that the CSP model successfully
captures the narrative consistency-based SP of a pronoun that is difficult to be captured by SP. We
leave the effectiveness of context-sensitivity on other (non-neural) types of conventional SP models (e.g.,
probabilistic latent models (Séaghdha and Korhonen, 2014, etc.)) as an open question. The primary goal
of this study is to check the effectiveness of context information; this is proven by the aforementioned
results.

6.3.4 Analysis
Although CSP outperformed SP for two tasks, the superiority of CSP may be argued to be due to the
larger number of training instances; SP is trained on Apro but CSP is trained on both Apro and Bpro.
Therefore, we plotted the learning curves (SP and CSP in Figure 4), trained SP and CSP on subsets of
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Apro and Bpro sampled randomly, and measured MQs on the models. As we can generate much a larger
size of TYPE A training instance from dependency parses, we also plot the learning curve of the SP
model trained using extra SVO tuples extracted from the dependency parse of ClueWeb12 (SP-CW12).
We extracted 316,063,648 SVO instances and trained the SP model by using up to 25% of all the extracted
SVO tuples (77,011,125 instances) because of the computational cost of training. For fair comparison,
we used MQno pr as an evaluation measure.

The results show that the MQs of SP (SP, SP-CW12), and CSP (CSP) increase with the size of
training data, and both models grow together, keeping a large margin. Based on the growth rate of SP
and SP-CW12, we conjectured that we needed 103 times more instances of TYPE A for SP to reach
the same performance as that of CSP. However, it is inefficient and unrealistic to increase the number of
training instances of TYPE A in terms of the training time and availability of training data. In contrast,
the CSP model leverages narrative consistency to SP, which is never addressed in previous studies.

To deeply analyze the CSP model, we investigated how the ranks of correct coreference cluster
changed from SP to CSP. We found that MQ changed by 0.5 or more in 768 test instances, includ-
ing 538 improvements and 230 degradations. For 75.7% of the improvements, a context was found to be
attached to the candidate antecedent, which is maximally scored among a correct coreference cluster. For
example, for the test pronoun it in ⟨you, own, it⟩, the CSP model can rank the correct antecedent ⟨you,
buy, something⟩obj at the top by capturing the narrative consistency between buy X–own X. In contrast,
the context is attached to a correct coreference cluster in only 31.5% of the degradations. This indicates
that the CSP model improves the conventional SP via narrative consistency.

7 Conclusion

We addressed the problem of CSP, the novel problem setting of SP. By extending the state-of-the-art SP
model (Van de Cruys, 2014), we proposed the novel model that jointly learns both the conventional SP
and narrative consistency between a query predicate and its context predicate. The experiments on the PD
task demonstrated that the CSP model could leverage narrative consistency for predicting preferences of
predicates. Furthermore, the CSP model is effective in a more realistic task setting, ranking coreference
clusters.

In the immediate future, we will explore broader contextual information (e.g., prepositional attach-
ment), which can be implemented in our framework naturally. We are interested in applying recent
advances in NN, for example, Long Short-Term Memory, Gated Recurrent Unit, and attention mecha-
nism, to compute the vector representation integrating multiple pieces of contextual information. In the
experiments, we reserved a downstream application-oriented evaluation for future study so as to exclude
various factors specific to a downstream application from the modeling of the CSP. We will explore how
to integrate the CSP model with a neural coreference resolver (e.g., Wiseman et al. (2016)) together with
conventional coreference features (e.g., distance between a candidate antecedent and a query predicate).
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