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Abstract

Semantic classification of words using distributional features is usually based on the semantic
similarity of words. We show on two different datasets that a trained classifier using the distribu-
tional features directly gives better results. We use Support Vector Machines (SVM) and Multi-
relational Matrix Factorization (MRMF) to train classifiers. Both give similar results. However,
MRMF, that was not used for semantic classification with distributional features before, can eas-
ily be extended with more matrices containing more information from different sources on the
same problem. We demonstrate the effectiveness of the novel approach by including informa-
tion from WordNet. Thus we show, that MRMF provides an interesting approach for building
semantic classifiers that (1) gives better results than unsupervised approaches based on vector
similarity, (2) gives similar results as other supervised methods and (3) can naturally be extended
with other sources of information in order to improve the results.

1 Introduction

In this paper we consider the task of classifying words into a large number of semantic categories.
For this, we use two different data sets: 1. A dataset which is used in literature (Bullinaria and Levy,
2007) - to enable compare our results with results reported in the literature, 2. A larger dataset that is
derived from a large thesaurus. The second dataset comes close to practical applications for semantic
word classification. Organizations maintaining thesauri usually try to keep their thesaurus up to date and
frequently add new terminology to the thesaurus. For each new term, they have to decide at what point it
has to be inserted. Automatic semantic classification supports exactly this task. However, the classifier
should be able to choose from hundreds or even thousands of semantic classes, not just from a dozen.

For semantic word classification, it is a common approach to represent words by context features.
Usually, co-occurrence statistics are used as context features. According to the distributional hypothesis,
words with similar context features have a similar meaning. Thus, we can use any distance measure
between the feature vectors as a measure of semantic similarity. These distances are now commonly
used in a nearest neighbor or a nearest centroid (or nearest prototype) classifier. Recently, distributional
features have also been used directly to train classifiers that classify pairs of words as being synonymous
or not (Hagiwara, 2008; Weeds et al., 2014; Aga et al., 2016). In these approaches, first a vector repre-
sentation for a pair is build, that is used by a machine learning algorithm. In the following we will use
the distributional features directly to categorize the words into a large number of categories. We will also
see that the supervised methods outperform the unsupervised ones.

For the given task, we obtain similar results with SVM and MRMF. However, MRMF enables easy
integration of different sources which improves the results furthermore. The MRMF does not just aggre-
gate results from different sources, but is also able to model the interaction between the different types of
information. As a second source of information we use hypernym information from WordNet. Since, we
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do not have a mapping from wordnet hypernym classes to our target classes, we have a second learning
task. In the first place we show that classification using WordNet is possible, but gives worse results
than classification based on distributional features. In the second place, MRMF using both distributional
features and WordNet Hypernyms outperforms all other methods. For the SC53 data set that introduced
by Bullinaria and Levy (2007) using the Montague and Battig (Battig and Montague, 1969) semantic
classes, we get an accuracy of 0, 93. The best result found in literature for the complete data set is 0,86
(Bullinaria and Levy, 2012).

The rest of the paper is organized as follows. Section 2 briefly reviews the related work. Section 3 ex-
plains the methodology of the work in detail. Section 4 explains the multi-relational matrix factorization
method in detail. Section 5 and Section 6 explain briefly the evaluation of the models and explain the
result, respectively. Finally, Section 7 concludes the paper.

2 Related Work

In distributional semantics, words are represented by context features, usually co-occurrence numbers
between words or the pointwise mutual information between each word and each context word. It turns
out that words with a similar meaning have similar vectors of context features; In other words, semanti-
cally similar words occur in similar contexts (Rubenstein and Goodenough, 1965; Saif and Hirst, 2012;
Bullinaria and Levy, 2007; Turney and Pantel, 2010; Bullinaria and Levy, 2012; Kiela and Clark, 2014).

Classification of words into different semantic categories was studied by Pekar et al. (2004), who
use a k-Nearest Neighbor classifier and investigate different feature weighting schemes and distance
measures; Fan and Friedman (2007) study the classification of medical terms using a nearest centroid
classifier; Both Bullinaria and Levy (2012) and Keith et al. (2015) use a nearest centroid classifier for
the same data set that is also included in our study. However, Keith et al. report only the result for one
arbitrary split into test and training set. Thus, their results cannot be compared directly to our and also
Bullinaria and Levy results.

Matrix factorization has been used in distributional semantics, e.g. by Giesbrecht (2010) and Van de
Cruys et al. (2013) in order to reduce the size of the feature space, but not directly for predicting missing
values or for classification. We are not aware of any work using matrix factorization for classification of
words into semantic categories.

The integration of distributed and lexical information is an obvious way to go and was also used in a
number of studies. Usually a (weighted) average of similarities based on different types of information is
used. E.g. Finkelstein et al. (2001) used distributional features (occurrence frequencies of words in vari-
ous domains) and the cosine of these feature vectors as a distributional similarity measure. This measure
is combined linearly with a WordNet based similarity measure. Yih and Qazvinian (2012) use different
similarity methods, like corpus based and web based distributional similarity for binary classification
tasks (synonymous or not-synonymous). They also used WordNet similarity. For this, they represent a
word as a vector in a Synset-space. The vector, thus indicates, to which synsets a word belongs. They
finally aggregated the various similarities by taking the average cosine similarity. Camacho-Collados
et al. (2015) combined distributional similarity of words based on their occurrence in Wikipedia with a
WordNet based similarity measure. They also combined the similarities from both sources by computing
the average. Pennacchiotti et al. (2008) also investigate the contribution of distributional models and their
combination with Wordnet. They use the a simple back-off model to combine distributional similarity
and Wordnet based similarity.

3 Methodology

The task that we considered is to classify words into their semantic category. In this section, we will
describe the datasets, the feature construction for the representation of the words and the classification
methods that we have used.
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3.1 Data Description

Our first dataset is the same with the one used by Bullinaria and Levy (2007). This data set uses 53 of
the 56 basic semantic categories introduced by Battig and Montague (1969). In total, the dataset contains
530 words which have been taken from 53 semantic categories. For each category there are 10 typical
words. We will refer to this dataset as SC53.

We have compiled a second, similar but much larger dataset from the Eurovoc Thesaurus (Office
for Official Publications of the European Communities, 1995). Eurovoc is a multilingual thesaurus
developed by the European Commissions Publications Office as a controlled vocabulary for the manual
indexation of documents. The Eurovoc thesaurus is divided into 127 micro-thesauri. From each of these
micro-thesauri we took the top-level concepts, 528 in total, as semantic categories. For each category
we collected all narrower concepts and considered their preferred and alternative labels as terms for that
category. We then removed all terms that belong to more than one category or that consist of more
than two words. Finally, we removed all categories for which less than 10 terms were found. Now 190
categories with a total of 2386 terms are left. After further cleaning the dataset by removing the words
that have a very high or low frequencies in UkWaK, which is a corpus that has been used to construct
word representation vectors, 1447 words with 95 semantic categories are left, each containing 10 to 44
terms. We call this dataset Eurovoc. Table 1 shows some examples from both datasets.

Dataset Category Words

SC53 Fruits Orange, Strawberry, Banana
Furniture Chair, Table, Bed

Eurovoc ACP countries Bahamas, Barbados,Cameroon
Health policy Dispensary, Hospitalization

Table 1: Some example classifications from the used datasets

3.2 Feature Construction

We use two different representations for each word. The first one is a distributional representation based
on word co-occurrences.The second one uses WordNet hypernyms. The two types of representation will
be explained in the following subsections.

3.2.1 Distributional Representation
We construct vectors of co-occurring words to represent each word and use them as an input for all our
experiments. For building the context vectors, we used UkWaC English corpus.

There are a number of choices that have to be made when building the context vectors for each word.
In the following we will use the choices that turned out to yield the best results in a number of different
tasks in recent studies by Bullinaria and Levy (2007; 2012) and Kiela and Clark (2014).

After some preliminary experiments we found that including all words in the frequency range from
4 · 103 to 1 · 106 in the UkWaC Corpus as context feature is a good compromise between optimal results
and acceptable storage and computing efforts. Each word is now represented by a vector of 17 400
features. All experiments have been done using these distributional features.

Next we have to determine the size of the window for co-occurrence. If the training corpus is large
enough all studies show that smaller windows yield better results. We first remove all stop words and
then use a window size of two words on the stopped text while respecting sentence boundaries. Syntactic
relations are not used to determine the context of a word.

We use positive pointwise mutual information (PPMI) as a degree of co-occurrence, since it was
shown to give better results than raw co-occurrence probabilities in a number of different studies (see
e.g. (Bullinaria and Levy, 2007; Bullinaria and Levy, 2012)). For a context word c and a (target) word t
the PPMI is defined as

ppmi(c, t) = max
(

log
p(c|t)
p(c)

, 0
)
. (1)

2710



3.2.2 WordNet Categories Representation
In order to classify words into semantic categories, we could directly use the semantic categories of
the words from WordNet. However, we do not know the relation between the WordNet categories and
the target categories. Moreover, our data set contains lots of terms that are not found in WordNet.
Thus, we represent each word by the set of all its WordNet hypernyms, i.e. the transitive closure of
the hypernym relation applied to each possible meaning of the word. E.g. the word Mansion is repre-
sented by the set {artifact.n.01, building.n.01, dwelling.n.01, entity.n.01, house.n.01, housing.n.01, loca-
tion.n.01, mansion.n.02, object.n.01, physical_entity.n.01, region.n.01, sign_of_the_zodiac.n.01, struc-
ture.n.01, whole.n.02b }. Finally, each word is represented as a boolean vector in the space of all possible
hypernyms.

For the SC53 dataset we could construct WordNet vectors for 520 out of 530 words; in the Eurovoc
dataset, 1198 out of 1447 terms were found in WordNet. The average number of hypernyms for each
term found in WordNet was 66. The total number of distinct hypernyms for all words is 2896 for the
SC53 and 4938 for the Eurovoc data.

3.3 Classification Methods

Bullinaria and Levy (2012) use a nearest centroid classifier for classifying words based on distributional
features. In this approach, for every semantic category a feature vector is created by averaging the feature
values of all words in the training set belonging to that category. Now the cosine between the feature
vector of the word and each centroid vector is computed and the word is assigned to the class with the
closest center.

The second classification method is a support vector machine (SVM). We used linear SVM from the
liblinear package (Fan et al., 2008) to learn a model and classify words, that words represented by feature
vector, to their category. Liblinear is efficient for training, large-scale problems (Fan et al., 2008). The
hyper-parameters of the models have been tuned using a grid search from LIBSVM. To find the best C
parameter value, we tested the numbers in between 0 and 20 in step 0.05.

The third and main classification method that is used in this paper is multi-relational matrix factoriza-
tion. We will explain MRMF in detail in the following section.

If we want to use both lexical and distributional information, we can use MRMF as we will show
in the following section. An obvious alternative is an ensemble classifier, that uses the results of the
classifiers using only one type of information. Thus we also trained an SVM on the results of the SVMs
using WordNet and distributional features. Since we have only boolean results from the SVM (a word
is assigned to a category or not) we use also a logistic regression classifier. Logistic regression gives
probabilities for each class and selects the class with the highest probability. The ensemble classifier
now can use the probabilities for each class. Though we expect logistic regression to be inferior to SVM,
it might have an advantage to use its class probabilities in an ensemble classifier.

4 Multi-Relational Matrix Factorization

MRMF was introduced by Lippert et al. (2008) for relation prediction in multi-relational domains using
matrix factorization. Weighted MRMF as we have used here, was defined by Drumond et al. (2014) to
model the different degrees of influence various relations involved in a domain might have.

For MRMF we have three matrices that can be used: the matrix of words and semantic classes, the
matrix of words and context features and the matrix of words and WordNet features. The task for MRMF
now is to predict values for new words in the first matrix using one or both of the other matrices.

4.1 MRMF on two Matrices

For the problem to classify words that are represented by vectors of WordNet categories and context
words, we have followed the same procedure.

Let’s assume the following problem: We have
• m words;
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Figure 1: Visual overview of the matrix decomposition used
for semantic categorization on two matrices

≈ ×X U VT

w
or

ds

context words

w
or

ds

lat. feat.

la
t.

fe
at

. context words

≈ ×Y U CT

w
or

ds

categories

w
or

ds

lat. feat.

la
t.

fe
at

. categories

≈ ×Z U BT

w
or

ds

WN categories

w
or

ds

lat. feat.

la
t.

fe
at

. WN categories

Figure 2: Visual overview of the matrix decomposition used
for semantic categorization on three matrices.

Algorithm 1 Block coordinate descent optimization algorithm for L2-MRMF

1: procedure MRMF-COORDINATE DESCENT

input: X,Y, k,weight constants αX , αY , regularization constants λU , λV , λC

2: U ∼ N (0, σI)
3: V ∼ N (0, σI)
4: C ∼ N (0, σI)
5: repeat
6: U ← (αXXV + αY Y C)

(
αXV

TV + αY C
TC − λUI

)−1

7: V ←
((
αXU

TU − λV I
)−1

αXU
TX

)T

8: C ←
((
αY U

TU − λCI
)−1

αY U
TY

)T

9: until convergence
10: return U, V,C
11: end procedure

• n features for each word (e.g. positive point wise mutual information (PPMI) values based on the
co-occurrence data);
• c semantic categories;

The features are represented by a matrix X ∈ Rm×n where each row of X represents the feature vector
of a word. We use a second matrix, Y ∈ {0, 1}m×c with the relation between words and categories. Yi,j

has value 1 if the word i belongs to the category c and 0 otherwise.

The idea of matrix factorization is that X can be approximated by the product of two smaller matrices
U and V , where U is a matrix of words and latent features and V is a matrix of context features and the
same latent features. The number k of latent features can be chosen freely with k << n. The second
matrix, Y , can be decomposed in the same way. The idea of MRMF is that both decompositions use the
same factor matrix U of words and latent features. Thus the latent features now form the link between
the context features and the categories. The situation is visualized in Figure 1. The matrices U , V and C
are constructed using the training data. If we have a new word w in the test data, we can add it to X and
compute it’s latent features using V , and thus extend U . From the extended matrix U and C we get the
new row for w in Y , that gives us the classification for w.
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More formally, X and Y can be factorized as:

X ≈ UV T (2)

Y ≈ UCT (3)

for some U ∈ Rm×k, V ∈ Rn×k and C ∈ Rc×k. The problem is now to minimize the following
objective with respect to L2 loss function

arg min
U,V,B,C

αX
1
2
||X − UV T ||2F + αY

1
2
||Y − UCT ||2F (4)

+
λU

2
||U ||2F +

λV

2
||V ||2F +

λC

2
||C||2F

L2 loss function is basically minimizing the sum of the square of the differences between the target
value and the estimated values.

4.1.1 Learning Algorithm and Predictions
One of the most often used optimization algorithms is block coordinate descent. Coordinate descent op-
timizes the objective function through a sequence of one-dimensional optimizations. Coordinate descent
is based on the idea that the minimization of a multi-variable function

First U , V andC are initialized with random values. Then the minimization problem is solved for each
one of the matrices individually. This is repeated until convergence. The coordinates descent algorithm
for the objective with respect to L2 loss function in Equation 4 is given in Algorithm 1

Now, for a set of new words X test, Equation 5 can predict their semantic categories.

Y test ≈ U testCT (5)

However, U test is unknown. The standard way to estimate U test is through a fold-in:

U test = arg min
Û

||X test − ÛV T ||2F (6)

U test = X testV (V TV )−1 (7)

4.1.2 MRMF on three Matrices
The MRMF method allows to integrate elegantly many different sources of information. In our exper-
iment we have integrated the lexical and distributional information by extending the MRMF method
described in section 4.1.

Matrices X and Y are the same matrices that we have seen in section 4.1. The newly added matrix
Z has the lexical information which has the hypernym information from WordNet. X , Y and Z can be
factorized as follows:

X ≈ UV T (8)

Y ≈ UCT (9)

Z ≈ UBT (10)

The overall decomposition of the three matrices for MRMF method is visualized in Figure 2. Besides
adding the Z matrix information in the objective function and in the coordinate decent algorithm, we
have modified Equation 7 for U test and add the third matrix information as follows:

U test = X testV (V TV )−1 + Z testB(BTB)−1 (11)

2713



Figure 3: Accuracy of MRMF with different k and αx parameter values on the SC53 dataset

Figure 4: Accuracy of MRMF with different k and αx parameter values on the Eurovoc dataset

4.2 Parameter Selection

For MRMF, a combination of weight constant, latent features and regularization parameters with a wide
range of values was tested to find the best parameter setting. For SC53 dataset, the weight constant αx

and αz range is in between 1
#_SC53_instances and 1·10−7, and in between 1

#_Eurovoc_instances and 1·10−7

for the Eurovoc dataset. The weight constant αy is set to 1; Because Y is the matrix that we are building
the model for, and Y test is the matrix we want to predict. The regularization constants λu, λv and λb

have used the same range of value which is in between 1 · 10−17 and 1 · 10−22. For the latent features k,
we considered a range between 50 and 200.

Figure 3 and Figure 4 show the parameters αx and k performance for the SC53 and Eurovoc datasets,
respectively. As both figures show, the k parameter gives high accuracy on value 200 and goes flat after
that for both datasets on MRMF_2 method, and also on method MRMF_3. In method MRMF_2, the k
parameter has performed better with the αx parameter value around 0.002 for SC53 and between 0.0003
and 0.0001 for the Eurovoc dataset. MRMF_3 gives optimal results when αx is 0.001 and αz is 0.0004
for SC53 dataset and when αx is 1 · 10−6 and αz is 1 · 10−7 for the Eurovoc derived data.

5 Evaluation

For evaluation we used 10 fold cross validation. For all experiments we used the same stratified split.
This is basically the same as the leave-one out setup used by Bullinaria and Levy (2012). However, for
equal size classes, in a leave–one–out experiment an intelligent classifier eventually might learn that the
element to be classified always belongs to the smallest class. By using stratified croiss-validation we
avoid this problem.
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Methods Eurovoc Stand. Err. SC53 Stand. Err.
Nearest Centroid (reported) - - 0,86 -
Nearest Centroid (reproduced) 0,58 0,14 0,86 0,04

WN LR 0,45 0,17 0,74 0,11
SVM 0,50 0,16 0,73 0,10
MRMF_2M 0,48 0,17 0,79 0,07

DF LR 0,56 0,16 0,90 0,04
SVM 0,69 0,10 0,90 0,03
MRMF_2M 0,69 0,10 0,90 0,03

DF + WN MRMF_3M 0,71 0,10 0,93 0,02
2xLR + SVM - - 0,89 -
2xSVM+ SVM - - 0,92 -

Table 2: Accuracy of classification on Eurovoc and SC53 datasets. Results are averages from 10-fold cross validation.

6 Result

Table 2, the result table, summarizes the performance of the methods on each dataset with their standard
error (Stand. Err.). Bullinaria and Levy (2007; Bullinaria and Levy (2012) study different design and
parameter choices for distributional similarity. The best accuracy, that they reached for the SC53 dataset
(using a nearest centroid classifier), was 0, 86. We could reproduce this result using roughly the same
choices and parameter settings that were given by Bullinaria and Levy. Applying the same method to the
Eurovoc dataset gives an accuracy of 0,58. We used the hypernym features (WN) only in the supervised
and hybrid settings.

For both datasets, we see that both SVM and MRMF are superior to the nearest centroid classifier. We
see no big differences between the SVM and MRMF. As expected the results from logistic regression
(LR) stay a bit behind those results.

Finally, we see that the integration of lexical and distributional information using MRMF clearly
improves the result for both data sets. The ensemble methods can also improve the results, but stay
behind the result of MRMF_3M. Since the logistic regression results for the Eurovoc data stay much
behind the SVM and MRMF results, we did not test the ensemble based on those classifiers.

For the SC53 dataset, both the supervised classifiers using only distributional features and the classifier
using a combination of distributional (DF) and lexical (WN) features outperform the best result reported
up to now. Keith et al. (2015) report an accuracy of 0, 96 when reproducing the experiment of Bullinaria
and Levy, but, as mentioned before, this result is not comparable to ours, since they used only a part of
the data for evaluation.

If we look at the word classes predicted by the MRMF for the SC53 data, using both sources of
information, we still have a small number of real errors. E.g. the word mixer is classified as a non-
alcoholic beverage and nun as a relative. Most errors, however, are not real errors, like the word foot
that is classified as a body part by MRMF and is a unit of distance in the dataset. A knife is classified
as a weapon instead of a kitchen utensil; shoes as a type of footwear instead of clothing; and a bass as a
musical instrument instead of a fish.

Given the type of errors that is made, we can conclude that to the SC53 data set we are close to the
highest possible accuracy that can be reached. The Eurovoc dataset clearly is much harder and has still
room for improvement.

7 Conclusion

We have studied semantic classification of words using distributional features directly in a strongly super-
vised learning setting. We have shown on two different data sets, that both SVM and MRMF outperform
a distance based classifier, that is commonly used for this task. On a dataset which was used before for
the same task, we thus could obtain results that are beyond state of the art.
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In order to make a classification task that is closer to real applications, we compiled a new data set with
more semantic categories. This data set is clearly much harder, but experiments on this dataset confirm
all conclusions from the experiment on the smaller dataset.

In order to improve the results we finally investigated the possibility to include information from Word-
Net. While an ensemble classifier was not very successful in combining the two sources of information,
MRMF was able to integrate the two types of information and improve the results substantially.

Since we are close to the optimal result for the SC53 dataset, we will concentrate on future work on
datasets with a larger number of classes. In addition, we will try to find more sources of information that
successfully can be integrated in order to improve the accuracy and to explore the possibilities of MRMF.
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