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Abstract

Word embeddings have been demonstrated to benefit NLP tasks impressively. Yet, there is room
for improvement in the vector representations, because current word embeddings typically con-
tain unnecessary information, i.e., noise. We propose two novel models to improve word em-
beddings by unsupervised learning, in order to yield word denoising embeddings. The word
denoising embeddings are obtained by strengthening salient information and weakening noise in
the original word embeddings, based on a deep feed-forward neural network filter. Results from
benchmark tasks show that the filtered word denoising embeddings outperform the original word
embeddings.

1 Introduction

Word embeddings aim to represent words as low-dimensional dense vectors. In comparison to distribu-
tional count vectors, word embeddings address the problematic sparsity of word vectors and achieved
impressive results in many NLP tasks such as sentiment analysis (e.g., Kim (2014)), word similarity
(e.g., Pennington et al. (2014)), and parsing (e.g., Lazaridou et al. (2013)). Moreover, word embeddings
are attractive because they can be learned in an unsupervised fashion from unlabeled raw corpora. There
are two main approaches to create word embeddings. The first approach makes use of neural-based
techniques to learn word embeddings, such as the Skip-gram model (Mikolov et al., 2013). The sec-
ond approach is based on matrix factorization (Pennington et al., 2014), building word embeddings by
factorizing word-context co-occurrence matrices.

In recent years, a number of approaches have focused on improving word embeddings, often by inte-
grating lexical resources. For example, Adel and Schiitze (2014) applied coreference chains to Skip-gram
models in order to create word embeddings for antonym identification. Pham et al. (2015) proposed an
extension of a Skip-gram model by integrating synonyms and antonyms from WordNet. Their extended
Skip-gram model outperformed a standard Skip-gram model on both general semantic tasks and distin-
guishing antonyms from synonyms. In a similar spirit, Nguyen et al. (2016) integrated distributional
lexical contrast into every single context of a target word in a Skip-gram model for training word em-
beddings. The resulting word embeddings were used in similarity tasks, and to distinguish between
antonyms and synonyms. Faruqui et al. (2015) improved word embeddings without relying on lexical
resources, by applying ideas from sparse coding to transform dense word embeddings into sparse word
embeddings. The dense vectors in their models can be transformed into sparse overcomplete vectors or
sparse binary overcomplete vectors. They showed that the resulting vector representations were more
similar to interpretable features in NLP and outperformed the original vector representations on several
benchmark tasks.

In this paper, we aim to improve word embeddings by reducing their noise. The hypothesis behind our
approaches is that word embeddings contain unnecessary information, i.e. noise. We start out with the
idea of learning word embeddings as suggested by Mikolov et al. (2013), relying on the distributional
hypothesis (Harris, 1954) that words with similar distributions have related meanings. We address those
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distributions in embedded vectors of words that decrease the value of such vector representations. For
instance, consider the sentence the quick brown fox gazing at the cloud jumped over the lazy dog. The
context jumped can be used to predict the words fox, cloud and dog in a window size of 5 words; however,
a cloud cannot jump. The context jumped is therefore considered as noise in the embedded vector of
cloud. We propose two novel models to smooth word embeddings by filtering noise: We strengthen
salient contexts and weaken unnecessary contexts.

The first proposed model is referred to as complete word denoising embeddings model (CompEmb).
Given a set of original word embeddings, we use a filter to learn a denoising matrix, and then project the
set of original word embeddings into this denoising matrix to produce a set of complete word denoising
embeddings. The second proposed model is referred to as overcomplete word denoising embeddings
model (OverCompEmb). We make use of a sparse coding method to transform an input set of original
word embeddings into a set of overcomplete word embeddings, which is considered as the “overcom-
plete process”. We then apply a filter to train a denoising matrix, and thereafter project the set of original
word embeddings into the denoising matrix to generate a set of overcomplete word denoising embed-
dings. The key idea in our models is to use a filter for learning the denoising matrix. The architecture
of the filter is a feed-forward, non-linear and parameterized neural network with a fixed depth that can
be used to learn the denoising matrices and reduce noise in word embeddings. Using state-of-the-art
word embeddings as input vectors, we show that the resulting word denoising embeddings outperform
the original word embeddings on several benchmark tasks such as word similarity and word related-
ness tasks, synonymy detection and noun phrase classification. Furthermore, the implementation of our
models is made publicly available'.

The remainder of this paper is organized as follows: Section 2 presents the two proposed models, the
loss function, and the sparse coding technique for overcomplete vectors. In Section 3, we demonstrate
the experiments on evaluating the effects of our word denoising embeddings, tuning hyperparameters,
and we analyze the effects of filter depth. Finally, Section 4 concludes the paper.

2 Learning Word Denoising Embeddings

In this section, we present the two contributions of this paper. Figure 1 illustrates our two models to learn
denoising for word embeddings. The first model on the top, the complete word denoising embeddings
model “CompEmb” (Section 2.1), filters noise from word embeddings X to produce complete word
denoising embeddings X*, in which the vector length of X* in comparison to X is unchanged after
denoising (called complete). The second model at the bottom of the figure, the overcomplete word
denoising embeddings model “OverCompEmb” (Section 2.2), filters noise from word embeddings X to
yield overcomplete word denoising embeddings Z*, in which the vector length of Z* tends to be greater
than the vector length of X (called overcomplete).

For the notations, let X € RY >’ is an input set of word embeddings in which V is the vocabulary size,
and L is the vector length of X. Furthermore, Z € RV *¥ is the overcomplete word embeddings in which
K is the vector length of Z () > L); finally, D € RY*L is the pre-trained dictionary (Section 2.4).

2.1 Complete Word Denoising Embeddings

In this subsection, we aim to reduce noise in the given input word embeddings X by learning a denoising
matrix Q.. The complete word denoising embeddings X* are then generated by projecting X into Q.

More specifically, given an input X € RV %, we seek to optimize the following objective function:
v
argmin y _ [|x; — f(xi, Qe, )| + a|S|; (D
X.QeS

where f is a filter; S is a lateral inhibition matrix; and « is a regularization hyperparameter. Inspired by
studies on sparse modeling, the matrix S is chosen to be symmetric and has zero on the diagonal.

"https://github.com/nguyenkh/NeuralDenoising
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Figure 1: Illustration of word denoising embeddings methods, with complete word denoising embed-
dings at the top, and overcomplete word denoising embeddings at the bottom.

The goal of this matrix is to implement excitatory interaction between neurons, and to increase the
convergence speed of the neural network (Szlam et al., 2011). More concretely, the matrices Q. and S
are initialized with I and E, which are identity matrices, and the Lipschitz constant:

Qc=+D;S=1I-1DTD
E > the largest eigenvalue of DTD
D € RY*E be pre-trained dictionary

The underlying idea for reducing noise is to make use of a filter f to learn a denoising matrix Q.; hence,
we design the filter f as a non-linear, parameterized, feed-forward architecture with a fixed depth that can
be trained to approximate f(X, Qc,S) to X as in Figure 2a. As a result, noise from word embeddings
will be filtered by layers of the filter f. The filter f is encoded as a recursive function by iterating over
the number of fixed depth 7', as the following recursive Equation 2 shows:

Y = f(X7 QC7 S)
Y(k+1) = §(XQec + Y (k)S)
0<k<T

G is a non-linear activation function. The matrices Q. and S are learned to produce the lowest possible
error in a given number of iterations. Matrix S, in the architecture of filter f, acts as a controllable matrix
to filter unnecessary information on embedded vectors, and to impose restrictions on further reducing the
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(a) CompEmb (b) OverCompEmb

Figure 2: Architecture of the filters with the fixed depth T" = 3.

computational burden (e.g., solving low-rank approximation problem or keeping the number of terms at
zero (Gregor and LeCun, 2010)). Moreover, the initialization of the matrices Q., S and E enhances a
highly efficient minimization of the objective function in Equation 1, due to the pre-trained dictionary D
that carries the information of reconstructing X.

The architecture of the filter f is a recursive feed-forward neural network with the fixed depth 7', so
the number of 7" plays a significant role in controlling the approximation of X*. The effects of 7" will
be discussed later in Section 3.4. When Q. is trained, the complete word denoising embeddings X* are
yielded by projecting X into Qc, as shown by the following Equation 3:

X" = g(XQc) 3)

2.2 Overcomplete Word Denoising Embeddings

Now we introduce our method to reduce noise and overcomplete vectors in the given input word embed-
dings. To obtain overcomplete word embeddings, we first use a sparse coding method to transform the
given input word embeddings X into overcomplete word embeddings Z. Secondly, we use overcomplete
word embeddings Z as the intermediate word embeddings to optimize the objective function: A set of
input word embeddings X € RY*¥ is transformed to overcomplete word embeddings Z € RV *¥ by ap-
plying sparse coding method in Section 2.4. We then make use of the pre-trained dictionary D € RE*K
and Z € RV*X to learn the denoising matrix Q, by minimizing the following Equation 4:

I (e}

\%4
argmin » _ ||zi — f(xi, Qo, S)|| + S|, @
X.Qo.S 51

The initialization of the parameters Qo, S, F and « follows the same procedure as described in Sec-
tion 2.1, and with the same interpretation of the filter architecture in Figure 2b. The overcomplete word
denoising embeddings Z* are then generated by projecting X into the denoising matrix Qo and using
the non-linear activation function G in the following Equation 5:

Z = g(XQo) 5)

2.3 Loss Function

For each pair of term vectors x; € X andy; € Y = f(X, Qc, S), we make use of the cosine similarity
to measure the similarity between x; and y; as follows:
. Xi'Yi
stm(xXy,yi) = ————— 6

B33 = iyl ©
Let A be the difference between sim(xj,x;) and sim(x;,yj), equivalently A = 1 — sim(x;,yi). We
then optimize the objective function in Equation 1 by minimizing A; and the same loss function is also
applied to optimize the objective function in Equation 4. Training is done through Stochastic Gradient
Descent with the Adadelta update rule (Zeiler, 2012).

2702



2.4 Sparse Coding

Sparse coding is a method to represent vector representations as a sparse linear combination of elemen-
tary atoms of a given dictionary. The underlying assumption of sparse coding is that the input vectors can
be reconstructed accurately as a linear combination of some basis vectors and a few number of non-zero
coefficients (Olshausen and Field, 1996).

The goal is to approximate a dense vector in R” by a sparse linear combination of a few columns
of a matrix D € RL*X in which K is a new vector length and the matrix D be called a dictionary.
Concretely, given V' input vectors of L dimensions X = [z1,x9,...,xy], the dictionary and sparse
vectors can be formulated as the following minimization problem:

|4

min x; — Dz;||? + ||z 7
pec i 22 I = Dl + Al 9

Z = [z, ..., zy] carries the decomposition coefficients of X = [x1, z9, ..., zy]; and A represents a scalar
to control the sparsity level of Z. The dictionary D is typically learned by minimizing Equation 7 over
input vectors X. In the case of overcomplete representations Z, the vector length K is typically implied
as K =~L (y > 0).

In the method of overcomplete word denoising embeddings (Section 2.2), our approach makes use
of overcomplete word embeddings Z as the intermediate word embeddings reconstructed by applying a
sparse coding method to word embeddings X. The overcomplete word embeddings Z are then utilized
to optimize Equation 4. To obtain overcomplete word embeddings Z and dictionaries, we use the SPAMS
package? to implement sparse coding for word embeddings X and to train the dictionaries D.

3 Experiments

3.1 Experimental Settings

As input word embeddings, we rely on two state-of-the-art word embeddings methods:
word2vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014). We use the word2vec tool?
and the web corpus ENCOW14A (Schifer and Bildhauer, 2012; Schéfer, 2015) which contains approx-
imately 14.5 billion tokens, in order to train Skip-gram models with 100 and 300 dimensions. For the
GloVe method, we use pre-trained vectors of 100 and 300 dimensions* that were trained on 6 billion
words from Wikipedia and English Gigaword. The tanh function is used as the non-linear activation
function in both approaches. The fixed depth of filter 7" is set to 3; further hyperparameters are chosen
as discussed in Section 3.2. To train the networks, we use the Theano framework (Theano Develop-
ment Team, 2016) to implement our models with a mini-batch size of 100. Regularization is applied by
dropouts of 0.5 and 0.2 for input and output layers (without tuning), respectively.

3.2 Hyperparameter Tuning

In both methods of denoising word embeddings, the ¢; regularization penalty « is set to 0.5 without tun-
ing in Equation 1 and 4. The method of learning overcomplete word denoising embeddings relies on the
mediate word embeddings Z to minimize the objective function in Equation 4. The sparsity of Z depends
on the ¢; regularization X in Equation 7; and the length vector K of Z is implied as K = L. Therefore,
we aim to tune A and ~y such that Z represents the nearest approximation of the original vector represen-
tation X. We perform a grid search on A € {1.0,0.5,0.1,1072,107%} and v € {2,3,5,7,10,13, 15},
developing on the word similarity task WordSim353 (to be discussed on Section 3.3). The hyperpa-
rameter tunings are illustrated in Figures 3a and 3b for sparsity and overcomplete vector length tuning,
respectively. In both approaches, we set A to 107 and ~y to 10 for the sparsity and length of overcomplete
word embeddings.

“http://spams-devel.gforge.inria.fr

3https://code.google.com/p/word2vec/
*http://www-nlp.stanford.edu/projects/glove/
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Figure 3: Illustration of hyperparameter tuning.

3.3 Effects of Word Denoising Embeddings

In this section, we quantify the effects of word denoising embeddings on three kinds of tasks: similarity
and relatedness tasks, detecting synonymy, and bracketed noun phrase classification task. In comparison
to the performance of word denoising embeddings, we take into account state-of-the-art word embed-
dings (Skip-gram and GloVe word embeddings) as baselines. Besides, we also use the public source
code’ to re-implement the two methods suggested by Faruqui et al. (2015) which are vectors A (sparse
overcomplete vectors) and B (sparse binary overcomplete vectors).

The effects of the word denoising embeddings on the tasks are shown in Table 1. The results show that
the vectors X* and Z* outperform the original vectors X, A and B, except for the NP task, in which the
vectors B based on the 300-dimensional GloVe vectors are best. The effect of the vectors Z* is slightly
less impressive, when compared to the overcomplete vectors X*. The overcomplete word embeddings Z
strongly differ from the word embeddings X; hence, the denoising is affected. However, the performance
of the vectors Z* still outperforms the original vectors X, A and B after the denoising process.

3.3.1 Relatedness and Similarity Tasks

For the relatedness task, we use two kinds of datasets: MEN (Bruni et al., 2014) consists of 3000 word
pairs comprising 656 nouns, 57 adjectives and 38 verbs. The WordSim-353 relatedness dataset (Finkel-
stein et al., 2001) contains 252 word pairs. Concerning the similarity tasks, we evaluate the denoising
vectors again on two kinds of datasets: SimLex-999 (Hill et al., 2015) contains 999 word pairs including
666 noun, 222 verb and 111 adjective pairs. The WordSim-353 similarity dataset consists of 203 word
pairs. In addition, we evaluate our denoising vectors on the WordSim-353 dataset which contains 353
pairs for both similarity and relatedness relations. We calculate cosine similarity between the vectors of
two words forming a test pair, and report the Spearman rank-order correlation coefficient p (Siegel and
Castellan, 1988) against the respective gold standards of human ratings.

3.3.2 Synonymy

We evaluate on 80 TOEFL (Test of English as a Foreign Language) synonym questions (Landauer and
Dumais, 1997) and 50 ESL (English as a Second Language) questions (Turney, 2001). The first dataset
represents a subset of 80 multiple-choice synonym questions from the TOEFL test: a word is paired
with four options, one of which is a valid synonym. The second dataset contains 50 multiple-choice
synonym questions, and the goal is to choose a valid synonym from four options. For each question, we
compute the cosine similarity between the target word and the four candidates. The suggested answer is
the candidate with the highest cosine score. We use accuracy to evaluate the performance.

>https://github.com/mfaruqui/sparse-coding

2704



Vectors Simlex-999 MEN WS353 WS353-SIM WS353-REL | ESL. TOEFL | NP
Corr. Corr. Corr. Corr. Corr. Acc. Acc. Acc.

X 33.7 72.9 69.7 74.5 65.5 48.9 62.0 72.8

X* 33.2 72.8 70.6 74.8 66.0 53.0 64.5 78.5

SG-100 7 359 74.4 71.2 75.2 68.1 53.0 62.0 79.1
A 32.5 69.8 65.5 69.5 60.2 55.1 51.8 78.8

B 31.9 70.4 65.8 72.6 62.2 53.0 58.2 74.1

X 36.1 74.7 71.0 75.9 66.1 59.1 72.1 77.9

X* 37.1 75.8 71.8 76.4 66.9 59.1 74.6 79.3

SG-300 /s 36.5 75.0 70.6 76.4 64.4 57.1 77.2 78.6
A 32.9 72.4 67.5 71.9 63.4 53.0 65.8 78.3

B 32.7 71.2 63.3 68.7 56.2 51.0 70.8 78.6

X 29.7 69.3 52.9 60.3 49.5 46.9 82.2 76.4

X* 31.7 70.9 58.0 63.8 57.3 53.0 88.6 77.4

GloVe-100 | Z* 30.0 70.9 56.0 62.8 53.8 57.0 81.0 77.3
A 30.7 70.7 54.9 62.2 51.2 55.1 78.4 77.1

B 31.0 69.2 57.3 62.3 53.7 46.9 73.4 76.4

X 37.0 74.8 60.5 66.3 57.2 61.2 89.8 74.3

X* 40.2 76.8 64.9 69.8 62.0 61.2 924 76.3

GloVe-300 | Z* 39.0 75.2 63.0 67.9 59.7 57.1 86.0 75.7
A 36.7 74.1 61.5 67.7 57.8 55.1 87.3 79.9

B 33.1 70.2 57.0 62.2 53.0 51.0 91.4 80.0

Table 1: Effects of word denoising embeddings. Vectors X represent the baselines; vectors A and B
were suggested by Faruqui et al. (2015); the vector length Z* is equal to 10 times of vector length X.

3.3.3 Phrase parsing as Classification

Lazaridou et al. (2013) introduced a dataset of noun phrases (NP) in which each NP consists of three
elements: the first element is either an adjective or a noun, and the other elements are all nouns. For a
given NP (such as blood pressure medicine), the task is to predict whether it is a left-bracketed NP, e.g.,
(blood pressure) medicine, or a right-bracketed NP, e.g., blood (pressure medicine).

The dataset contains 2227 noun phrases split into 10 folds. For each NP, we use the average of word
vectors as features to feed into the classifier by tuning the hyperparameters (w;, we and ws) for each
element (e1, e and e3) within the NP: ey p = %(wl €1 +wa€s+ws€3). We then employ the classification
of the NPs by using a Support Vector Machine (SVM) with Radial Basis Function kernel. The classifier
is tuned on the first fold, and cross-validation accuracy is reported on the nine remaining folds.

3.4 Effects of Filter Depth

As mentioned above, the architecture of the filter f is a feed-forward network with a fixed depth T". For
each stage T, the filter f attempts to reduce the noise within input vectors by approximating these vectors
based on vectors of a previous stage T' — 1. In order to investigate the effects of each stage 7T', we use
pre-trained GloVe vectors with 100 dimensions to evaluate the denoising performance of the vectors on
detecting synonymy in the TOEFL dataset across several stages of 7.

The results are presented in Figure 4. The accuracy of synonymy detection increases sharply from
63.2% to 88.6% according to the number of stages 7" from 0 to 3. However, the denoising performance of
vectors falls with the number of stages 1" > 3. This evaluation shows that the filter f with a consistently
fixed depth 1" can be trained to efficiently filter noise for word embeddings. In other words, the number
of stages 1" exceeds a consistent number 71" (with 7" > 3 in our case), leading to the loss of salient
information in the vectors.
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Figure 4: Effects of the filter with depth 7" on filtering noise.

4 Conclusion

To the best of our knowledge, we are the first to work on filtering noise in word embeddings. In this
paper, we have presented two novel models to improve word embeddings by reducing noise in state-
of-the-art word embeddings models. The underlying idea in our models was to make use of a deep
feed-forward neural network filter to reduce noise. The first model generated complete word denoising
embeddings; the second model yielded overcomplete word denoising embeddings. We demonstrated that
the word denoising embeddings outperform the originally state-of-the-art word embeddings on several
benchmark tasks.
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