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Abstract

The phrase table is considered to be the main bilingual resource for the phrase-based statisti-
cal machine translation (PBSMT) model. During translation, a source sentence is decomposed
into several phrases. The best match of each source phrase is selected among several target-side
counterparts within the phrase table, and processed by the decoder to generate a sentence-level
translation. The best match is chosen according to several factors, including a set of bilingual
features. PBSMT engines by default provide four probability scores in phrase tables which are
considered as the main set of bilingual features. Our goal is to enrich that set of features, as a
better feature set should yield better translations. We propose new scores generated by a Con-
volutional Neural Network (CNN) which indicate the semantic relatedness of phrase pairs. We
evaluate our model in different experimental settings with different language pairs. We observe
significant improvements when the proposed features are incorporated into the PBSMT pipeline.

1 Introduction

PBSMT models sentence-level translation with a phrase-based setting in which sentences are decom-
posed into different phrases (Koehn et al., 2007; Koehn, 2009). At each step, for a given source phrase
the best candidate among the target phrases is selected as its translation. Phrasal translations are com-
bined together to produce the sentence-level translation. This is a high-level view of PBSMT and there
are many other processes involved in the main pipeline. Different bilingual and monolingual features are
taken into account to make the final translation as adequate and fluent as possible. In this paper we only
focus on the phrase-pairing process and try to enrich that part. The standard baseline bilingual features in
the PBSMT pipeline by default are: the phrase translation probability ¢(e| f), inverse phrase translation
probability ¢(f|e), lexical weighting lex(e|f) and inverse lexical weighting lex( f|e). These scores are
computed based on the co-occurrence of phrase pairs in training corpora and do not indicate any other
information about phrases, their relation or context. Our goal in this research is to extend this set of
features by incorporating semantic information of phrase pairs.

Word embeddings are numerical representations of words which preserve semantic and syntactic in-
formation about words themselves and their context (Huang et al., 2012; Luong et al., 2013; Mikolov
et al., 2013a; Mikolov et al., 2013b). They also preserve information about word order. These types
of contextual, syntactic and semantic information can be quite useful for machine translation (MT), but
being by its very nature a bilingual application, it requires bilingual (cross-lingual) information. Accord-
ingly, we need methods to train bilingual embeddings via which we can access syntactic and semantic
information about the source side as well as the target.

Several papers have explored the training of bilingual embeddings (Mikolov et al., 2013b; Zou et al.,
2013; Cho et al., 2014; Gouws et al., 2015; Passban et al., 2015a; Zhao et al., 2015; Passban et al., 2016)
with different architectures for different tasks such as MT and document classification. In our work we
also try to follow the same research line. We propose a multi-plane data structure and a CNN to train
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mixed embeddings. Using the proposed data structure, source and target words are linked together, so
we call our embeddings mixed. Our model is a bilingual extension to well-known embedding models
(Mikolov et al., 2013a; Pennington et al., 2014) with a quite different architecture which is fine-tuned for
MT tasks.

The reminder of the paper is structured as follows. In Section 2 we briefly review some similar models
which train bilingual embeddings. Section 3 discusses our neural model and how we incorporate results
from our model into the PBSMT pipeline. Section 4 explains the results from several experiments to
show the impact of the proposed model. Finally, Section 5 concludes the paper with some avenues for
future work.

2 Background

One of the most successful neural models proposed for training word embeddings is Word2Vec (Mikolov
et al., 2013a). In such models words are encoded into an n-dimensional feature space and represented
by numerical vectors called embeddings. Embeddings are able to preserve different types of information
about words. Word2Vec trains word-level embeddings. Le and Mikolov (2014) proposed a new archi-
tecture which is an extension to Word2Vec which scales up the model to train document-level (phrase,
sentence and any chunk of text) embeddings. Although these models are very useful for natural language
processing (NLP) tasks, they only provide monolingual information which is not adequate for cross-
lingual NLP, MT, multilingual text classification etc. Therefore, some models have been proposed in this
regard.

A sample of training bilingual embeddings was proposed in Mikolov et al. (2013b) and Zhao et al.
(2015). They separately project words of source and target languages into embeddings, then try to find
a transformation function to map the source embedding space into the target space. The transformation
function was approximated using a small set of word pairs. This approach allows the construction of
a word-level translation engine with a very large amount of monolingual data and only a small num-
ber of bilingual word pairs. The cross-lingual transformation mechanism enables the engine to search
for translations for OOV (out-of-vocabulary) words by consulting a monolingual index which contains
words that were not observed in the parallel training data. This is a word-level translation/transformation
but clearly MT is more than a word-level process. To go beyond and train document-level bilingual em-
beddings several models have been proposed and applied to MT and document classification tasks (Zou
et al., 2013; Cho et al., 2014; Gouws et al., 2015; Passban et al., 2016). These models have different
architectures which we try to address in the next sections.

3 Proposed Model

The proposed pipeline can be briefly explained in five steps: a) A PBSMT engine is trained and tuned
on a bilingual parallel corpus. b) By use of the same training corpus, mixed embeddings are trained by
our CNN. c) The proposed CNN takes a pair of translationally equivalent source and target sentences
(s,t) and tries to link related words from both sides. d) Input words are mixed through a multi-plane
data structure and a specific convolution function. e) At the end of training, we wish to have embeddings
which preserve different types of monolingual and bilingual information. f) Finally, we use mixed
embeddings to enrich the bilingual feature set of the phrase table. Sections 3.1 and 3.2 explain the
training method and the way we use word embeddings in the PBSMT pipeline, respectively.

3.1 Training Mixed Embeddings

Generally, to train word embeddings a neural network processes an input sequence of words at each pass.
One word is randomly selected (w;,) from the input sequence which is considered as the sequence label
and expected to be predicted at the output layer. This architecture is known as the CBOW (Continuous-
Bag-Of-Words) model (Mikolov et al., 2013a) and all other embedding models can be viewed as varia-
tions of this model. The goal of such a process is to use context words (preceding and following words
around wy,) to predict wy,. With this technique, word embeddings are informed about contextual informa-
tion and word order. Moreover, since they are trained in a shared space, they are connected to each other.
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In the forward pass, embeddings for context words are combined to make the prediction. Each neural
network has a loss function which penalizes wrong predictions. Error values are computed based on the
loss function and back-propagated to the network. Network parameters are updated with respect to error
values as word embeddings comprise part of those parameters, they are updated at each pass. For more
information about embedding learning, see Goldberg and Levy (2014).

In existing embedding models the input data structure is a matrix and the setting is monolingual. Each
column in the matrix includes an embedding (which is a vector) for one of context words. In our model
we expand the input matrix to a 2-plane tensor (each plane is a matrix) in order to change the monolingual
setting into a bilingual version. Training instances in our setting are a pair of translationally equivalent
source and target sentences. The first and second planes include embeddings for source and target words,
respectively. In embedding models wy, is not included in the input matrix. Similarly we do not have w),
in our input tensor. We randomly select a word either from the source or target side of (s,t) as w,, and
remove all information about it and its translation(s)" from the input tensor. What remains after removing
wp and its translation(s) are ‘context words’. Embeddings for source context words are placed in the first
plane by the order of their appearance in s. Then the counterpart/translation of each column in the first
plane is retrieved (among target-side embeddings) according to the alignment function, and placed in the
same column in the second plane.

The example below clarifies the structure of the input tensor. For s=“I will ask him to come immedi-
ately .” with a Farsi? translation 1= “mn az ai xvahm xvast ke fitrn byayd .”, the word alignment provided
by a PBSMT engine is a(s,t) = [0-0, 1-3, 2-4, 3-1, 3-2, 4-7, 5-6, 6-7, 7-6, 8-8] which is illustrated in
Figure 1.
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Figure 1: Word alignments provided by a PBSMT engine for a given (s, t) example. ‘him’ is selected as
wp s0 ‘him’ and its translations are excluded from the input tensor.

a(.) is an alignment function which generates a list of -5 tuples. ¢ indicates the position of a source
word w; within s and j is the position of the translation of w; within ¢ (namely wg-). If ‘him’ is randomly
selected as wy,, ‘him’ and its translations (‘az’ and ‘au’) are all removed from the input tensor, and
embeddings for the rest of the words are loaded into the input tensor according to ¢-7 tuples. Embeddings
for source words except ‘him’ are sequentially placed in the first plane. For the second plane, each column
c includes the embedding for the translation of a source word located in the c-th column of the first plane.
If the embedding of each word is referred to by £, the order of source and target embeddings in the first

and second planes is as follows:

p1 = [E(wp), E(wi), E(w3), E(w]), E(w), € (wg), £(w?), E(wg)]

Our CNN takes the 2-plane tensor as its input and combines its planes through a specific convolution
function. The new multi-plane convolution function is a simple extension of the standard convolution
function which is formulated as in (1). It takes a multi-plane data structure (in our case, 2-plane) and

'Sometimes the alignment function assigns more than one target word to a given source word.
>We used the DIN transliteration standard to show the Farsi alphabets: https://en.wikipedia.org/wiki/
Persian_alphabet.
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generates another data structure with one or more planes:

IPl wr hz

Mpij = Z Z ZJ’: Lk X Ly (i—1) 4w, (j—1)+h ()

=1 w=1h=1

where Z, M and F are the input, output and filter,? respectively. M, is the results of the fusion process
(mixing embeddings) should have one to many planes which are referred to by the p subscript. Each
plane in M is a matrix and its values are accessible by the (i, j) coordinates, i.e. M, ; ; shows the value
of the i-th row and the j-th column in the p-th plane. [ is the plane index and | P| shows the number of
input planes. In our setting both Z and F are 2-plane tensors so |P| = 2. wz and hx are the width and
height of each plane in the filter. Finally the (w, h) tuple shows the coordinates of each plane in the filter
F. The first subscript of filter (p) indicates to which plane in M the filter belongs.

3.1.1 Network Architecture

The first layer of our architecture is a lookup table which includes word embeddings. The lookup table
can be viewed as a matrix of weights whose values are updated during training. For each training sample
(s,t), wy is selected. Embeddings for context words are retrieved from the lookup table and placed
within the input tensor, based on the alignment function. Through the multi-plane convolution, planes
are convolved together. In our setting, the output of convolution is a matrix (M). Based on Equation (1)
for multi-plane convolution, it is possible to map the 2-plane input to a new structure with one to many
planes, however we generate a structure with only one plane (a matrix). According to experimental
results structures with more than one plane provide slightly better results but considerably delay the
training phase. The new generated matrix contains information about source and target words, their
order and relation. After multi-plane convolution we apply max-pooling to select the strongest features
in 2 x 2 windows. We reshape the matrix to a vector and apply non-linearity by a Rectifier function. To
prevent over-fitting, we place a Dropout layer (Srivastava et al., 2014) with p = 0.4 after Rectifier. The
output of the Dropout layer is a vector which is passed to a Softmax layer.

Using the Softmax layer we try to predict the right class of the input which should be w,,. Softmax is a
scalar function which maps its input to a value in the range [0,1], which is interpreted as the probability of
predicting w), given the input. In our network, similar to most embedding-training models, the objective
is to maximize the log probability of w), given the context, as in (2):

1 n
> _logp(wy|Cap) @

J=1

where Uy, is the context information represented by the 2-plane data structure. The network was trained
using stochastic gradient descent and back-propagation (Rumelhart et al., 1988). All parameters of the
model are randomly initialized over a uniform distribution in the range [-0.1,0.1]. Filter, weights, bias
values and embeddings are all network parameters which are tuned during training. Our embedding size
is 100 in all experiments. The network architecture is illustrated in Figure 2.
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Figure 2: Network Architecture.

3<Filter’ is referred to as ‘Kernel’ in the literature.
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3.2 Using Mixed Embeddings in the SMT Pipeline

After training we have mixed/bilingual word embeddings. Since we link/align equivalent words, those
which are each other’s translation are expected to have close embeddings. In the phrase table, parallel
phrase pairs are stored, with their relevance being indicated by four default probabilities. We add two
new scores to those probabilities.

As the first proposed score, for a given pair of source and target phrases, we retrieve embeddings
for all source words and compute the average of those embeddings which gives us v;. Embeddings are
numerical vectors, so we can easily compute the average of several vectors which produces another vector
with the same dimensionality. We do the same for the target phrase, namely we retrieve embeddings for
all target words and compute the average which provides v;. Using the Cosine similarity, we compute
the distance between v and v; and map the value to the range [0,1]. This new number is the first score
we define to enrich the bilingual feature set.

As the second score, for each phrase pair we compute scorea (s, t,) by the computation explained in
3):

Ispl 1
scorea(sp, tp) = H —_— Z C(w.”, a(w")) 3)
i teadl 2oy
where «(.) is a word-level alignment function for the phrase pair (sp, t,), {a;} is the set of target posi-
tions aligned to wf ? and C is the value of the Cosine distance mapped to the range [0,1]. For each phrase
pair in the phrase table, we add these two new scores as the additional bilingual features and tune the
PBSMT engine using both previous and new features.

4 Experimental Results

To show the impact of the proposed scores we perform several experiments. In the first experiment we
evaluate the model on the English—French (En—Fr) pair. Results are reported in Table 1.

System En—Fr Fr—En
200K 500k 1M | 200k 500k 1M
Baseline 344 352 357|338 345 354

Extended 355 360 360|351 352 355
Improvement +1.1 +0.8 +0.3 | +1.3 +0.7 +0.1

Table 1: Experimental results on the En—Fr pair. The numbers indicate the BLEU scores. The bold-faced
scores indicate improvements are statistically significant according to paired bootstrap re-sampling with
p = 0.05.

BLEU (Papineni et al., 2002) is used as the evaluation metric. We trained 3 baseline systems over
datasets of 200K, 500K and 1 million (1M) parallel sentences. As the test set we use a corpus of 1.5K
parallel sentences and the validation set includes 2K parallel sentences. All sentences are randomly
selected from the En—Fr part of the Europarl (Koehn, 2005) collection. In our models we use 5-gram
language models trained using the IRSTLM toolkit (Stolcke, 2002) and we tune models via MERT (Och,
2003). The extended systems those which include new scores within their phrase tables. In the extended
systems we keep everything unchanged. only adding two new scores to the phrase table and the re-tune
the PBSMT engine. The bold-faced scores indicate improvements are statistically significant according
to paired bootstrap re-sampling with p = 0.05 (Koehn, 2004).

As Table 1 shows, adding new features considerably boosts the PBSMT model, especially for small-
size datasets. For example, the BLEU score reported for the En—Fr system trained on the 500K dataset
is 35.2, while a better performance (35.5) is achievable on the smaller 200K dataset in the presence of
the new features. Usually as the size of the phrase table grows, the impact of such models attenuate, as
large(r) phrase tables are rich enough to cover different cases and do not need to be enriched. Accord-
ingly, such models are more suitable for small/medium-size datasets or low-resource languages. Other
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similar models (Gao et al., 2013; Zou et al., 2013) were also evaluated on datasets with almost 500K
parallel sentences and reported similar improvements.

4.1 Discussion

In this section we try to address different issues about the proposed model to analyse it from different per-
spectives. First we wish to discuss the advantages of the proposed architecture. We use a convolutional
model to mix source and target words. We believe that the convolutional module enables the network to
generate high-quality embeddings. To show the impact of this module we train a simple baseline using
Word2Vec.

For the baseline model, we prepare a mixed training corpus, so that for each training sentence in
the corpus, some words (up to 40% of whole words) are randomly selected and substituted with their
translations. For example, to train mixed embeddings for their use in the En—Fr PSMT engine, some
English words are randomly replaced with their French translations, and then the Word2Vec model is
used to train mixed embeddings. For the Fr—En model we do the same and manipulate the French
training corpus. In this model, instead of combining words via the NN we explicitly mix them in the
training corpus so the context window for each w), includes words from both sides. To train this model
we used the CBOW setting (Mikolov et al., 2013a) with a context window of 10 words. For the En—Fr
and Fr—En directions the new Word2Vec-based model performs with BLEU scores of 34.2 and 34.1,
respectively. The new model degrades the En—Fr baseline engine (see the 200K-baseline model in
Table 1) by -0.2 BLEU points and the improvement provided for the Fr—En engine is only +0.3. In
the new model words are explicitly mixed together but the final result is not satisfactory. Therefore, the
simple combination of words is not enough to boost the PBSMT engine and words should be processed
efficiently.

The Word2Vec-based model is a simple baseline to show the impact of the proposed CNN but we wish
to compare our model to other state-of-the-art and more powerful models. Unfortunately, datasets and
source-code for the models by Gao et al. (2013) and Zou et al. (2013) (which are the most related works
to ours) are not available so we cannot directly compare ours to those models. Gao et al. (2013) also
uses an in-house translation decoder which makes the comparison even harder. Recently, Passban et al.
(2016) proposed a feed-forward architecture to train bilingual phrase embeddings. The idea behind their
model is similar to that of Devlin et al. (2014). They performed their evaluation on Farsi (Fa) which is
a low-resource and morphologically rich language. Clearly, this model is an appropriate alternative to
be compared to our CNN which can (partly) show the advantages/disadvantages of the proposed CNN
compared to the feed-forward architecture. In Passban et al. (2016), the network concatenates phrase-
level embeddings of source and target phrases to predict w), and error values are back-propagated to word
and phrase embeddings. After training, the model provides bilingual phrase- and word-level embeddings.
They use the similarity between parallel phrases as a new feature function (which is refered to as sp2tp
in their paper). Using the same dataset and experimental setting, we compare the CNN to that model.
The En-Fa model is trained using the TEP++ corpus (Passban et al., 2015b) which is a collection of
~600K parallel sentences. The test, validation and training sets include 1K, 2K and 500K sentences,
respectively. Results for this experiment are illustrated in Table 2. We tried to compare our CNN to a
feed-forward architecture on the same task and same dataset. As the table shows, the proposed CNN
performs better than a similar feed-forward architecture.

System En—Fa Fa—En
Baseline 21.03 29.21
Passban et al. (2016) 21.46 (+0.43) 29.71 (+0.50)
Our model 21.58 (+0.55) 29.93 (+0.72)

Table 2: Experimental results on the En—Fa pair.

In addition to quantitative evaluations, we look at the output of our engines to confirm that the proposed
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pipeline affects the translation process in a particular way. Some examples are provided in Table 3. Based
on our analysis, the new features positively affect word selection. Extended translations include better
words than baseline translations. Furthermore, translations provided by the extended models have better
grammatical structures. They are also semantically close(r) to the reference translations. The second
and fourth examples are a clear indication to these issues. For the fourth example, in spite of a very low
BLEU score the translation provided by the extended engine is a perfect translation.

System Translation sBLEU
Example 1 (En)
Reference i would like to return to the matter of the embargo to conclude . 100
Baseline i would like to revisit (to) the issue of the embargo in conclusion . 27.58
Extended i would like to return to the issue of the embargo to conclude . 78.25
Example 2 (En)
Reference  subject to these remarks , we will support the main thrust of the 100
fourcans report . however , we have to criticise the commission ’
s economic report for lacking vision .
Baseline it is on these observations that we shall broadly the (main thrust) 7.39
fourcans report (. however) we must also consider the economic
report from the commission (* s) a certain lack(ing) of breath .
Extended it is under these comments that we will approve in its broad outlines ~ 22.37
the fourcans report by UNK however , (we) the commission * s eco-
nomic report a certain lack(ing) of breath .
Example 3 (Fr)
Translation furthermore , the european union will always be open to all euro- -
peans who accept its values .
Reference  par ailleurs , 1 * union européenne sera toujours ouverte a tous les 100
européens qui acceptent ses valeurs .
Baseline en outre , 1 * union européenne devra toujours étre ouverte a tous ces  33.46
européens qui acceptent de ses valeurs .
Extended en outre , | * union européenne sera toujours ouverte a tous les eu-  74.83
ropéens qui acceptent de ses valeurs .
Example 4 (Fa)
Translation anyway your collection will have its emerald star back in . -
Reference . ::ﬁﬁjjﬂfﬁj\jﬂgw‘x{po)bd\dbﬁg 100
Baseline ) p\:,a 23 W ol b assaz2 (O) J o 4 13.74
Extended . ayba (59) ¢ 32,1571 O 5SS 4 St 45502 O] o 2 26.48

Table 3: Translation results from different models. Differences between reference and candidate trans-
lations are underlined and missing translations are shown within parentheses. sBLEU indicates the
sentence-level BLEU score.

Finally, we asked native French and Farsi speakers to evaluate our results from the perspectives of
fluency and adequacy. We prepared a list of 100 sentences, randomly selected from translations of the
200k-baseline and extended models (see Table 1). Evaluators marked each translation’s fluency and
adequacy with scores in the range of 1 to 5. Fluency and adequacy scales are defined in Table 4a and
results obtained from this experiment are reported in Table 4b.

As Table 4 shows, the proposed model positively affects both the fluency and adequacy of translations.
To discuss this experiment with more details we report exact numbers for the Farsi evaluation which are
shown in Figure 3. Each translation is marked with two scores. Clearly, there are 100 fluency and 100
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Fluency Adequacy Fluency Adequacy

1 incomprehensible | none Base Ext | Base Ext

2 disfluent little meaning En—Fr 296 3.03]305 3.22

3 non-native much meaning En—Fa 243 263|310 343

4 good most meaning

5 flawless all meaning (b) Average fluency and adequacy scores for 100

translations. Base and Ext show the baseline and
extended systems.

(a) Fluency and adequacy scales.

Table 4: Human evaluation results on 100 French (Fr) and Farsi (Fa) translations.

adequacy scores for each evaluation set (Table 4b reports the average of these 100 scores). Results can be
interpreted from different perspectives, some of which we briefly mention below. For the baseline model,
the fluency rate of 38% of translations is 3, but this percentage is raised to 45% in the extended model.
27% of the baseline translations are disfluent but in the extended model this is reduced to 19%. For the
adequacy feature the condition is even better. Translations which could not properly convey the meaning
are changed to translations which are more acceptable for our evaluators. Figure 3 illustrates these
changes and shows how our model improves both fluency and adequacy of translations. The number
of bad translations is reduced in the extended model and correspondingly, the number of high-quality
translations is increased.

50 F 3 50 B
0o Baseline | 0 Baseline | [

40 | |0 Extended 1 40 [0 Extended g

30 130} — :

Percentage (%)

QOH 120f .

10 - 10 »

. .l
1 2 3 4 5 1 2 3 4 5

Fluency scales Adequacy scales

Figure 3: Human evaluation results on En—Fa translation.

5 Conclusion

We proposed a new CNN to train bilingual embeddings and incorporated our embeddings in the PBSMT
pipeline. We showed that our embeddings provide useful information. Our model and other similar
models are more suitable for medium-size datasets and low-resource languages. We evaluated our model
on English, French and Farsi and were able to obtain significant improvements for all of them. Boosting
the Farsi engine is a valuable achievement for us, as Farsi is a low-resource and morphologically rich
language which makes the translation process hard for any PBSMT engine. We also performed human
evaluations, whose results confirmed the impact of our model.

The proposed CNN has a good potential for handling complex structures. For our future work we wish
to extend the input tensor with several layers to process richer source-side information. Each word in the
proposed architecture could be accompanied with extra information such as morphological and syntactic
information.
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