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Abstract

Parallel sentence representations are important for bilingual and cross-lingual tasks in natural lan-
guage processing. In this paper, we explore a bilingual autoencoder approach to model parallel
sentences. We extract sentence-level global descriptors (e.g. min, max) from word embeddings,
and construct two monolingual autoencoders over these descriptors on the source and target lan-
guage. In order to tightly connect the two autoencoders with bilingual correspondences, we force
them to share the same decoding parameters and minimize a corpus-level semantic distance be-
tween the two languages. Being optimized towards a joint objective function of reconstruction
and semantic errors, our bilingual antoencoder is able to learn continuous-valued latent represen-
tations for parallel sentences. Experiments on both intrinsic and extrinsic evaluations on statisti-
cal machine translation tasks show that our autoencoder achieves substantial improvements over
the baselines.

1 Introduction

Neural sentence modeling that learns continuous-valued vector representations for sentences in a low-
dimensional latent semantic space, has recently attracted considerable interests in the field of nature
language processing (NLP). A variety of models have been proposed (Collobert and Weston, 2008;
Socher et al., 2011; Mikolov et al., 2011; Hermann and Blunsom, 2013; Kalchbrenner and Blunsom,
2013; Kalchbrenner et al., 2014; Kim, 2014; Ma et al., 2015; Tai et al., 2015; Zhang et al., 2015a).
Most of these models, however, focus on monolingual cases where sentences from a single language are
modeled. They do not explore semantic correspondences among parallel sentences. On account of this,
monolingual neural sentence models are not naturally fit for bilingual or cross-lingual NLP tasks, such
as machine translation, cross-lingual classification and information retrieval.

In order to induce sentence representations in a bilingual rather than monolingual semantic space, re-
searchers have proposed a few approaches, following efforts of bilingual word embeddings (Klementiev
et al., 2012; Zou et al., 2013). These studies either explore recursive/recurrent neural networks (Zhang et
al., 2014; Su et al., 2015) or bag-of-words based neural networks (Yih et al., 2011; Chandar et al., 2014;
Lauly et al., 2014; Hermann and Blunsom, 2014; Zhou et al., 2015) to learn bilingual sentence repre-
sentations. The former recursively compose sentences from the bottom up, taking into account bilingual
constraints from word alignments. Due to the complexity, they are not easy to be scalable. Additionally,
they also suffer from errors and noises of word alignments. In contrast, the latter are relatively simple and
scalable. However, they often heavily rely on only one descriptor of the bag-of-words embeddings (e.g.
the avg representation) and hence are weak in capturing fine-grained complex linguistic phenomena.
Therefore we believe that modeling parallel sentences still remains a serious challenge.

Inspired by works on multimodal autoencoders (Ngiam et al., 2011; Wang et al., 2014; Feng et al.,
2014; Feng et al., 2015), we explore a novel bilingual autoencoder to model parallel sentences, which is
able to incorporate global semantic information into sentence representations. The overall architecture
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Figure 1: The architecture of our bilingual autoencoder visualized with a parallel sentence pair. Word
embeddings are represented in blue color, while the avg, std, min and max descriptors are indicated in
red, yellow, green and purple colors, respectively. Specifically, we use gray color to denote the hidden
layer. The subscripts x and y indicate the source and target language respectively, and the superscripts
enc and dec indicate the encoding and decoding process. Each dash line with its corresponding color
depicts the information related with that specific descriptor, and the black ellipse around the hidden layer
means that the bilingual semantic constraint is built at the corpus rather than sentence level.

is illustrated in Figure 1.1 It is fast and scalable as we do not use complex recursiveness or recurrence.
Comparing with conventional bag-of-words based autoencoders, our model explores several comple-
mentary sentence-level statistical descriptors, i.e., min (minimum), max (maximum), and avg (average),
std (standard deviation) computed over all word vectors, to capture high-level global features. These de-
scriptors alleviate the weakness of conventional bag-of-words representations in feature extraction and
their insensitiveness to semantic constraints between sentences. The proposed autoencoder further en-
codes global descriptors (e.g., min, max) into hidden representations, and then decodes them into the
other descriptors (e.g., avg, std). In order to capture bilingual correspondences, we force our autoen-
coder to share the decoding parameters across two languages (i.e., the same W dec in Figure 1), and
further optimize the parameters with respect to a corpus-level semantic constraints between the source
and target language. This architecture tightly connects two monolingual autoencoders and bridges the
gaps between the source and target semantic spaces.

To evaluate the effectiveness of our proposed bilingual autoencoder, we conduct both intrinsic and
extrinsic evaluations on statistical machine translation (SMT) tasks. The intrinsic evaluation measures
the capability of our model in semantic similarity calculation, while the extrinsic evaluation examines
whether our model can be used to improve machine translation quality. Results on the NIST 2006 and
2008 datasets show that our autoencoder can significantly outperform the baseline methods. The main
contributions of our work lie in the following three aspects:

• The proposed autoencoder learns bilingual representations for parallel sentences using global de-
scriptors. To the best of our knowledge, this architecture has never been investigated before.
• We incorporate the corpus- rather than sentence-level semantic constraint into sentence embeddings,

and share the decoding parameters to further bridge the semantic spaces of two different languages.
• Our model does not rely on word alignments. It is scalable, simple yet effective.

2 Related Work

Previous studies that are related to our work can be roughly divided into three groups: neural sentence
modeling, multimodal autoencoders and bilingual autoencoders. We will briefly describe them in this

1For illustration, we set the dimensionality of word embedding to 3. Besides, we also omit the dash lines from word
embeddings to avg and std descriptors. Without loss of generality, throughout this paper we assume the input and target to be
min, max and avg, std respectively.
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section and highlight the differences of our work from them.
neural sentence modeling (NSM): NSM is able to provide distributed sentence representations for

many NLP tasks. One natural approach to NSM is to produce sentence representations from word em-
beddings with recursive or recurrent neural networks via composition (Socher et al., 2011; Mikolov et
al., 2011; Hermann and Blunsom, 2013). To preserve sequence information over time, Tai et al. (2015)
further incorporate LSTMs into tree-structured recursive networks. Unlike these composition-based
methods, convolutional neural models utilize convolution layers to explicitly capture task-specific n-
grams (Collobert and Weston, 2008; Kalchbrenner et al., 2014; Kim, 2014; Ma et al., 2015; Zhang et
al., 2015a). Kalchbrenner and Blunsom (2013) combine convolutional and recurrent neural networks to
model discourse representations. Different from these monolingual studies, our model aims at generating
bilingual sentence representations. Furthermore we use autoencoders instead of recursive or recurrent
neural networks. The descriptors in our model can be considered as a shallow convolution layer over an
entire sentence (Zhang et al., 2015a).

multimodal autoencoders: Sentence modeling is performed only on text modality. However, infor-
mation from different modalities might be complementary to each other. Motivated by this, Ngiam et
al. (2011) develop deep multimodal autoencoders based on restricted Boltzmann machines (RBM) to
jointly learn features over audio and video modalities. Instead of RBM, Wang et al. (2014) exploit
stacked autoencoders for multimodal retrieval, and Feng et al. (2014) propose correspondence autoen-
coders for cross-modal retrieval. Feng et al. (2015) further investigate the utilization of deep correspon-
dence RBM for cross-modal retrieval.

bilingual autoencoders: As a special case of multimodal autoencoders where each language is viewed
as a modality, bilingual autoencoders have drawn attention in recent years. Based on recursive au-
toencoders, Zhang et al. (2014) incorporate phrase-level bilingual constraints into phrase representation
learning. Along this line, Su et al. (2015) further exploit bilingual subphrase correspondences via word
alignments for learning bilingual phrase structures and representations. Dissimilarly, Zhou et al. (2015)
employ denoising autoencoders to learn bilingual embeddings. Lauly et al. (2014) directly perform en-
coding and decoding between source and target sentences based on bag-of-words representations. Chan-
dar et al. (2014) exploit joint reconstruction and cross-lingual correlations on bilingual autoencoders.
Unlike these models, our model builds autoencoders on global descriptors extracted from word embed-
dings, and incorporates bilingual semantics via corpus-level bilingual constraints into the hidden layer.

Our work is similar to the work of Zhang et al. (2015b) in that we both aim at modeling parallel
sentences under the semantic constraints. The difference lies on the following two aspects: 1) they
employ a chunk-based convolutional neural network to model sentences, while we use a much simpler
autoencoder network; and 2) they impose the bilingual constraint strictly on the sentence level. Instead,
we explore a much more relax constraints on the corpus level. As Chandar et al. (2014)’s bilingual
autoencoder is most closely related to ours, we use their autoencoder as our baseline and describe it with
more details in the next section.

3 Bilingual Bag-of-Words Autoencoder

The Bilingual Bag-of-Words Autoencoder (BBoWAE) (Chandar et al., 2014) builds two separate feed-
forward autoencoders based on bag-of-words representations. The two autoencoders are jointly recon-
structed with cross-lingual correlations. Figure 2 shows the overall architecture. Given a parallel sentence
pair (x,y), BBoWAE model first generates corresponding bag-of-words based sentence representations,
and then encodes them into the hidden layer:

a(x) = c+WX v(x), φ(x) = h(a(x)); a(y) = c+WYv(y), φ(y) = h(a(y)) (1)

where v(·) converts sentence into a fixed-size but sparse binary vector, WX and WY implicitly repre-
sent language specific word embeddings, c is the bias term shared by both autoencoders and h(·) is an
element-wise non-linear function.

Upon these hidden layers, BBowAE model further performs a reconstruction of the original sentence
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Figure 2: The architecture of BBoWAE model. We use black and white colors to indicate 1 and 0
respectively, which form the bag-of-words representation of a sentence. Notice that the gray nodes are
real-valued.

in both languages:

v̂(x)x = h(WX Tφ(x) + bX ), v̂(y)x = h(WYTφ(x) + bY) (2)

v̂(x)y = h(WX Tφ(y) + bX ), v̂(y)y = h(WYTφ(y) + bY) (3)

where bX and bY are bias terms, h(·) here is the sigmoid non-linearity and v̂(x)y denotes the recon-
structed representation of v(x) from v(y). The other three reconstructed vectors are similarly defined.

To favour more meaningful bilingual representations, BBoWAE incorporates a cross-lingual correla-
tion error and different reconstruction errors into the objective function:

`(x,y) + `(y,x) + `(x,x) + `(y,y) + β`([x,y], [x,y])− λcor(a(x), a(y)) (4)

where β, λ are hyperparameters, and [x,y] represents the concatenation of the two sentences. Each
loss function `(·) is the cross-entropy error between the original bag-of-words representation v(·) and
reconstructed representation v̂(·)· (e.g. v(y) vs. v̂(y)x).

The term `([x,y], [x,y]) is the joint reconstruction term, where the two sentences are simultaneously
presented as input and reconstructed; and the term cor(a(x), a(y)) is the sum of scalar correlations
between a(x) and a(y) across all dimensions. To obtain a stochastic estimate of the correlation, small
mini-batches are used during training.

Notice that the sentence representation a(x)/a(y) is actually the sum of bag-of-words embeddings.
Although BBoWAE is effective in learning bilingual word embeddings, it is weak in modeling parallel
sentences due to the well known insufficiency of the sum representations. We instead resort to multiple
global descriptors over word embeddings and further explore more suitable bilingual constraints.

4 Bilingual Autoencoder with Global Descriptors

We describe our model in two phases: autoencoder with global descriptors and bilingual semantic con-
straints. The former constitutes the basic structure for modeling monolingual sentences, while the latter
explores bilingual constraints to connect the two autoencoders. After the description of the architecture,
we present details for parameter inference.

4.1 Autoencoder with Global Descriptors
Our autoencoder is built upon distributed word embeddings, where each word in vocabulary V cor-
responds to a d-dimensional dense, real-valued vector, and all word vectors are stacked into a word
embedding matrix L ∈ Rd×|V |, where |V | is the vocabulary size.

Given an ordered list of n words in a sentence, we retrieve the i-th word representation from L with its
corresponding vocabulary index Ii: e(xi) = L:,Ii ∈ Rd. All word vectors in the sentence x produce the
following output matrix: M = (e(x1), e(x2), . . . , e(xn)) ∈ Rd×n. From this matrix M , we investigate
four sentence-level statistical descriptors: min, max, avg and std in each row r as follows:

gminr = min (Mr,1:n), gmaxr = max (Mr,1:n), gavgr =
1
n

n∑
i=1

Mr,i, g
std
r =

√√√√ 1
n

n∑
i=1

(Mr,i − gavgr )2 (5)
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Figure 3: Monolingual autoencoder with global descriptors. The colored histogram on each corner in-
dicates the corresponding descriptor for a toy example. Notice that the black dash line in each histogram
represents the value 0.

Figure 3 illustrates the distribution of each descriptor for a toy example2, from which we can find that
these descriptors represent different aspects of the same sentence and are complementary to each other.

After obtaining these global descriptors, we select some of them as our encoding input (e.g. min,
max), and leave the others as our decoding target (e.g. std, avg). Note that the neural network built on
these descriptors is an autoencoder since the input and output layer in the network represent the same
sentence.3 Additionally, this autoencoder can naturally handle variable-length sentences (Notice that
g ∈ Rd). In particular, we concatenate the input descriptors into one vector, and encode it into the hidden
layer shown as gray nodes in Figure 3:

hid = f(W enc[gmax; gmin] + benc) (6)

where W enc ∈ Rm×2d and benc ∈ Rm are the encoding parameters. hid ∈ Rm is the sentence represen-
tation, and f(·) is an element-wise activation function such as tanh(·), which is used for all activation
functions in our model. To prevent the hidden layer from being very small, we normalize all output
vectors of the hidden layer to have a unit length, hid = hid

‖hid‖ .
Upon the hidden layer, we stack a decoding layer to reconstruct the other descriptors:

out = f(W dechid+ bdec) (7)

where W dec ∈ Rm×2d and bdec ∈ R2d are the decoding parameters.
To integrate the information contained in different descriptors into sentence embedding learning, we

train our autoencoder to minimize the following Euclidean distance error with respect to the target de-
scriptors [gavg; gstd]:

Eae(x) =
1
2
‖[gavg; gstd]− out‖2 (8)

4.2 Bilingual Semantic Constraints

In order to incorporate bilingual correspondences between the source and target sentences into the above-
mentioned autoencoder, we employ two kinds of bilingual constraints.

The first bilingual constraint is to share decoding parameters across the two autoencoders, that is, using
the same W dec and bdec for them. This ensures that the relations between sentence representations (in
the hidden layer) and target descriptors (in the output layer) are consistent across the source and target
language. In this way, bilingual information is propagated from one language to the other language
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Bilingual Semantic Constraints
as closer as possible

Figure 4: Corpus-level bilingual semantic constraints. The left and right dashed ellipses indicate bilin-
gual semantic spaces.

through these parameters.
The second bilingual constraint is that the center of bilingual spaces should be as close as possible.

Therefore we minimize a corpus-level semantic distance defined as follows:

Esem(C) =
dN/Be∑
k=1

1
2
‖ 1
B

B∑
i=1

xk,i − 1
B

B∑
i=1

yk,i‖2 (9)

where C represents the entire parallel corpus, which has N parallel sentences with a batch size of B.
Figure 4 shows this constraint, where we try to shorten the distance between the centers of the source

and target language spaces. Different from previous works (Zhang et al., 2014; Chandar et al., 2014; Su
et al., 2015), we define this distance at the corpus rather than sentence level. The reasons for this are
twofold: 1) The potential equivalent translations for a source sentence could be many, and 2) the number
of non-equivalent translations for one sentence must be enormous. Therefore, defining the semantic
distance at the sentence level would be too strict, and may bring in noises to our model. In contrast,
our corpus-level constraint is much more relax and general. Notice that if we set B = 1, this constraint
goes back to sentence level; If we set B → ∞, it becomes a constraint upon the whole training corpus.
Intuitively, B controls the strictness of the semantic constraints.

4.3 Parameter Inference
There are two kinds of errors involved in the overall objective function: the autoencoder error in Eq. (8)
and the semantic error in Eq. (9). Given the training corpus C, the joint training objective is:

J(C) =
α

N

N∑
i=1

(Eae(xi) + Eae(yi)) + (1− α)Esem(C) +R(θ) (10)

α is a balance factor, θ = {Lx, Ly,W
enc
x ,W enc

y , W dec}, and R(θ) is the regularization term: R(θ) =
λL
2 ‖θL‖2 + λW

2 ‖θW ‖2. For regularization, we divide θ into two sets: θL for (Lx, Ly) and θW for
(W enc

x ,W enc
y ,W dec). Accordingly, λL and λW are the corresponding coefficients.

We employ the toolkit Word2Vec (Mikolov et al., 2013) to pretrain word embeddings for each lan-
guage on the corresponding part of C, and randomly initialize the other parameters using normal distri-
bution (µ = 0, σ = 0.01). To optimize these parameters, we apply the L-BFGS algorithm to the gradient
of Eq. (10).

5 Sentence Representation and Semantic Similarity

Given a parallel sentence pair (x,y), our model will generate sentence representations (hidx, hidy)
with the trained parameters θ∗. Different from Eq. (6) that only uses the input descriptors to calculate
the hidden layer, we use both the input and target descriptors to compute the final hidden representation

2We sampled the word embeddings uniformly from −1 to 1. Finally, we obtained Thank:(0.95, 0.64,−0.23),
you:(−0.82, 0.54, 0.72) and .:(−0.12, 0.10,−0.52) respectively for illustration.

3Therefore, the autoencoder in this paper is an extension of the conventional autoencoder.
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of x or y as these descriptors provide different and complementary views of a sentence. The final hidden
representations of the sentence x and y are defined as follows:

hidx = f(W enc,∗
x [gminx ; gmaxx ] +W dec,∗T [gavgx ; gstdx ] + benc) (11)

hidy = f(W enc,∗
y [gminy ; gmaxy ] +W dec,∗T [gavgy ; gstdy ] + benc) (12)

The corresponding semantic similarity is measured by the Euclidean distance between the two hidden
representations:

Sim(x,y) =
1
2
‖hidx − hidy‖2 (13)

The smaller Sim(·, ·) is, the more semantically similar the parallel sentence pair is. All the following
intrinsic and extrinsic evaluations are based on this similarity measurement.

6 Experiments

In this section, we carried out a series of experiments to validate the effectiveness of our proposed
bilingual autoencoders on NIST Chinese-English translation tasks using large-scale bilingual training
data. In particular, we investigated 1) whether our model is able to distinguish parallel sentence pairs
from nonparallel sentences, and 2) whether our model can improve machine translation quality.

6.1 Setup

Our translation decoder is a state-of-the-art hierarchical phrased-based SMT system (Chiang, 2007). The
bilingual training data is the combination of LDC2003E14, LDC2004T07, LDC2005T06, LDC2005T10
and LDC2004T08 (Hong Kong Hansards/Laws/News), which contains 2.9M sentence pairs with 80.9M
Chinese words and 86.4M English words. We used a 4-gram language model which was trained on the
Xinhua section of the English Gigaword corpus (306M words) using the SRILM4 toolkit (Stolcke, 2002)
with modified Kneser-Ney smoothing.

In addition to the baseline decoder, we also compared our bilingual autoencoder against the abovemen-
tioned BBoWAE model (Chandar et al., 2014). To train this model, we used the same bilingual corpus
and their open source code5 with the same hyperparameters as they used. We employed the objective in
Eq. (4) except for the correlation term as an entropy-based semantic similarity measure.6

Since our model is general in terms of input and target descriptors, we investigated two variants of
the proposed bilingual autoencoder: 1) min and max as the input descriptors, while avg and std as the
target descriptors (MM2AS); and 2) the opposite direction (AS2MM). Throughout all experiments, we
set B = 100, α = 0.100, λL = 10−6, λW = 10−3 and m = 2d. With respect to the dimensionality of
word embeddings, we tried four different dimensions from 25 to 100 with an increment of 25 each time.

We used the NIST evaluation set of MT05 as our development set, and sets of MT06/MT08 as the test
sets. Case-insensitive NIST BLEU (Papineni et al., 2002) was used to measure translation performance.
We used minimum error rate training (MERT) (Och, 2003) to optimize the feature weights. In order to
alleviate the instability of MERT, we followed Clark et al. (2011) to run MERT three times and report
average BLEU scores over the three runs for all our MT experiments.

6.2 Intrinsic Evaluation: Semantic Analysis

The first group of experiments aims at analyzing the ability of our model in distinguishing parallel se-
quences from nonparallel sequences, at both the phrase and sentence level. For convenience, we used
MM2AS model and set d = 25 in all the following experiments.

4http://www.speech.sri.com/projects/srilm/download.html
5http://www.sarathchandar.in/crl.html
6We make this choice due to the following two reasons: 1) the correlation term is meaningless for a single sentence pair; 2)

the combined reconstruction errors in Eq. (4) provide a balanced and comprehensive similarity measure as they calculate cross
entropies of x to x, y to y, x to y, y to x and [x,y] to [x,y].
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Source Phrase Target Candidates

充满 激情
imbued with passions

full of passion
full of excitement

宾至如归的感觉
feeling of being at home

feel at home
feel welcomed

促进可持续发展
promotion of sustainable development

promote sustainable development
promote sustained growth

Table 1: Source phrases in our phrase table with their top-3 target translations selected by our model.

System MT06 MT08 Avg
BBoWAE 77.73 74.57 76.15
Our Model 87.18 85.85 86.52

Table 2: Accuracy on recognizing parallel sentence pairs.

6.2.1 Analysis on Phrasal Semantic Similarities
To have a deep look into what our model measures similarities of bilingual phrases, we show some
examples from our scored phrase table in Table 1. For each variable-length source phrase, we extract the
top-3 target candidates according to their semantic similarity scores calculated in Eq. (13).

Take the source phrase “宾至如归的感觉” as an example, our model succeeds in distinguishing the
most semantically equivalent translation “feeling of being at home” from the less equivalent translation
“feel welcomed”. Although the candidate “feel at home” has almost the same meaning, this candidate
is a verb phrase which is not consistent with the noun phrase at the source side from the perspective of
syntax. This indicates that the proposed bilingual model is able to capture some semantic and syntactic
properties of bilingual sequences.

6.2.2 Evaluation on Sentential Semantic Similarities
To testify the ability of our model at the sentence level, we further collected source sentences and their
reference translations from the test sets MT06/MT08 as our parallel sentence pairs. We randomly sam-
pled l target sentences from the target vocabulary based on reference translations and combined sampled
target sentences and their corresponding source sentences as nonparallel sentence pairs.7

For both our model and BBoWAE model, we test whether the model can assign a higher similarity
score to a parallel sentence pair than a sampled nonparallel sentence pair. We employ accuracy as our
evaluation metric, and conducted 5 evaluations, for each of which we sampled 3 different target sentences
for each source sentence. The final average results are shown in Table 2. We find that our model
significantly outperforms BBoWAE model by an absolute improvement of 10%. This demonstrates
that our model can learn better semantic representations for parallel sentences than BBoWAE does.

6.3 Extrinsic Evaluation: Machine Translation

The second group of experiments were carried out to study the effectiveness of our model in calculating
semantic similarities for SMT task: decoding with phrasal semantic similarities. This needs to measure
the semantic similarity between a source sequence and its translation candidate according to Eq. (13).

In addition to the conventional four translation probabilities (phrase translation probabilities and lexi-
cal weights in both directions), we incorporate the phrasal semantic similarities as an additional feature
into our baseline SMT system.

Table 3 summarizes the results, from which we observe that:
1) Our model can significantly improve translation quality on all testsets for any dimensions. Partic-

ularly, AS2MM model obtains the best result 28.08 when d = 100, which outperforms Baseline and
BBoWAE model by up to 1.46 and 1.1 BLEU points respectively.

7The length of a sampled sentence is uniformly sampled from 1 to the length of the corresponding reference sentence.
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System d MT06 MT08 Avg
Baseline - 30.04 23.19 26.62

BBoWAE 40 30.52 23.43 26.98

MM2AS

25 31.11↑ 23.90↑ 27.51
50 31.42⇑ 24.19⇑ 27.81
75 31.18↑ 23.98↑ 27.58

100 31.11↑ 23.91↑ 27.51

AS2MM

25 31.29⇑ 24.34⇑ 27.82
50 31.10↑ 24.06⇑ 27.58
75 31.17↑ 23.92↑ 27.55

100 31.64⇑ 24.51⇑ 28.08

Table 3: Experiment results for different dimensions with phrasal semantic similarities on the test sets.
Avg = average BLEU scores on the test sets. ⇑/↑:significantly better than BBoWAE (p < 0.01/0.05,
respectively).

2) The BBoWAE model, designed for learning bilingual word embeddings, is not good at modeling
high-level and long sequence representations. The translation result of this model is 26.98, only 0.36
points higher than the Baseline. Additionally, as one major difference between BBoWAE and our model
is the corpus-level semantic constraints, this result further demonstrates the superiority of this constraint.

3) It’s interesting that the overall result of AS2MM model is slightly better than that of MM2AS model
(27.76 vs. 27.60 on average). The reason may be that when back-propagating autoencoder errors onto
the hidden and input layer, AS2MM model is easier and more straightforward than MM2AS.

7 Conclusion and Future Work

In this paper, we have presented a simple yet effective and scalable bilingual autoencoder for parallel sen-
tence modeling. We incorporate global descriptors and corpus-level semantic constraints into bilingual
sentence representations. Experiment results show that our approach achieves substantial improvements
against the baseline models.

For the future work, we would like to explore more variants of our bilingual autoencoder, e.g. taking
the avg, max as inputs and the std, min as targets. Besides, we will further enhance our autoencoder with
semantic and deeper descriptors and verify our model on other bilingual or cross-lingual tasks, such as
cross-lingual sentiment classification.
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