
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers,
pages 2408–2417, Osaka, Japan, December 11-17 2016.

Improved Word Embeddings with Implicit Structure Information

Jie Shen Cong Liu∗
School of Data and Computer Science, Sun Yat-sen University

shenjie5@mail2.sysu.edu.cn, liucong3@mail.sysu.edu.cn

Abstract

Distributed word representation is an efficient method for capturing semantic and syntactic word
relations. In this work, we introduce an extension to the continuous bag-of-words model for
learning word representations efficiently by using implicit structure information. Instead of rely-
ing on a syntactic parser which might be noisy and slow to build, we compute weights represent-
ing probabilities of syntactic relations based on the Huffman softmax tree in an efficient heuristic.
The constructed “implicit graphs” from these weights show that these weights contain useful im-
plicit structure information. Extensive experiments performed on several word similarity and
word analogy tasks show gains compared to the basic continuous bag-of-words model.

1 Introduction

Unsupervised word embeddings have been shown to improve many downstream NLP tasks, such as
dependency parsing (Chen and Manning, 2014; Kong et al., 2014), part-of-speech tagging (Collobert et
al., 2011), sentiment analysis (Socher et al., 2013) and machine translation (Devlin et al., 2014). Low-
dimensional embeddings are generally learnt in a language model by maximizing the likelihood of a
large corpus of raw text data. Word vectors that are close to each other are semantically related based
on the distributional hypothesis (Harris, 1954), which states that words in similar contexts have similar
meanings.

Based on the distributional hypothesis, many methods of building word vectors were explored. Exam-
ples of these are SENNA (Collobert and Weston, 2008), the hierarchical log-bilinear model (Mnih and
Hinton, 2009), Word2Vec (Mikolov et al., 2013a; Mikolov et al., 2013b) and GloVe (Pennington et al.,
2014). In this work, we introduce an extension to the continuous bag-of-words (CBOW) model (Mikolov
et al., 2013b). The CBOW model is widely used for learning word embeddings from raw textual data,
popularized via the Word2Vec tool. Not only does it build useful word embeddings, but it is also
efficient for training and scales well to huge corpora.

In (Levy and Goldberg, 2014), based on the fact that nearby words are not necessarily syntactically
related, word context is derived from dependency parse-trees relying on a syntactic parser instead of
simply using the surrounding words. Only the words that have dependency relations with the center
word are used as the context words, as illustrated in Figure 1.

However, syntactic parsing is a more difficult and time-consuming task than finding word embeddings.
The challenge is to absorb the advantage of using syntactic information while avoiding the complexity
of parsing. In this paper, we use a simple method to attach different weights to the context words to
approximate the context obtained from explicit syntactic trees, such as dependency parse-trees. The
method of obtaining contextual weights is based on the Huffman softmax tree in softmax period. Our
method is as efficient as CBOW since we do not explicitly construct syntactic trees but only use the
weights representing implicit syntactic structures.

∗Cong Liu is the corresponding author.
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/

2408

Jim likes eating apples as well as peaches

nsubj xcomp dobj
cc mwe

mwe

conj:and

conjROOT

Figure 1: The enhanced dependency parse-graph for sentence “Jim likes eating apples as well as
peaches”. The blue dashed rectangle means the context window when predicting eating in the CBOW
model.

In order to qualitatively inspect our implicit structure weights, we construct “implicit graphs” using
our computed weights for different sentences. By comparing with their dependency parse-trees, these
“implicit graphs” show that these weights contain useful implicit structure information.

To quantitatively evaluate the quality of the word embeddings generated from our proposed model, we
experiment on several word similarity and word analogy tasks. Experiment results show gains using our
method compared to the CBOW model.

The rest of the paper is organized as follows. Section 2 introduces related work on word representa-
tions. The CBOW model is briefly reviewed in Section 3. In Section 4, we present the proposed method.
Evaluation and results are discussed in Section 5. Finally, Section 6 concludes the paper with future
work.

2 Related Work

Word embedding is a key component in many downstream NLP tasks. Prior works explore effective
and efficient methods to learn word embeddings. Bengio et al. (2006) proposed a Neural Network Lan-
guage Model (NNLM) which predicts the distribution of the center word through several previous words.
Mnih and Hinton (2007) proposed the Log-Bilinear Language (LBL) model which has been later accel-
erated by using hierarchical softmax (Mnih and Hinton, 2009) to exponentially reduce the computational
complexity. Pennington et al. (2014) introduced GloVe which combines global matrix factorization and
local context window together. Mikolov et al. (2013a; 2013b) proposed Word2Vec which contains two
models: CBOW and Skip-Gram.

While Word2Vec is not sensitive to word order, many models have been proposed to deal with this
problem. Ling et al. (2015) present two simple modified models: “Structured Skip-n-gram” and “Con-
tinuous Window”, solving syntax-based problems. From another perspective, Levy and Goldberg (2014)
use another type of context which uses word contexts derived from dependency parse-trees.

3 Continuous Bag-of-Words (CBOW)

Our departure point is the continuous bag-of-words (CBOW) model introduced in (Mikolov et al.,
2013b). The CBOW model predicts the center word wt given the representations of the surrounding
words wt−c, . . . , wt−1, wt+1, . . . , wt+c, where c is a hyper-parameter defining the window size of con-
text. The objective function is to maximize the average log probability:

1
T

T∑
t=1

log p(wt|wt+c
t−c),

where T is the size of a sequence of words. The basic CBOW defines the probability of predicting the
center word wt using the softmax function:

p(wt|wt+c
t−c) =

exp(v
′
t
>
vt+c

t−c)∑V
i=1 exp(v′i

>vt+c
t−c)

,

2409

where v
′
t is the word embeddings of wt and vt+c

t−c is the context representation. V is vocabulary size.
vt+c

t−c is calculated by summing the word representations of context words:

vt+c
t−c =

∑
−c≤j≤c,j 6=0

vt+j ,

where vt+j is the word representation of word wt+j .
In order to improve the computation speed of the full softmax layer, several efficient extensions are

proposed including hierarchical softmax and negative sampling (Mikolov et al., 2013b).

4 CBOW with Implicit Structure Information

We will discuss the proposed CBOW-CW model in three parts. Section 4.1 explains the advantages of
adding implicit structure information to CBOW. In Section 4.2, we introduce a more advanced model
using implicit structure information to offer theoretical soundness of the later CBOW-CW model. Then
we derive a simplified method CBOW-CW what we actually have done in this paper in Section 4.3.

4.1 Motivation

While the window size c is a hyper-parameter of the CBOW model which is fixed before the training
starts, the model samples the actual window size between 1 and c uniformly for each token in actual
implementation. This scheme is equivalent to weighting according to distances from the center word
divided by the window size (Levy et al., 2015).

However, this might not be reasonable, since a word from a large distance away can also be informa-
tive. For instance, in Figure 1, the words apples and peaches are equally important for predicting the
word eating, while their relative distances to eating are different.

To solve this problem, Levy and Goldberg (2014) use word contexts derived from the dependency
parse-trees. Figure 1 shows an enhanced dependency parse-graph which is generated using the Stanford
parser (Chen and Manning, 2014). In the CBOW model, when predicting the word eating, the context
words are Jim, likes, apples and as for a size-2 window. However, in the model of Levy and Gold-
berg (2014), the context words are words that have dependency relations with the center word eating:
likes, apples and peaches. Note that the word peaches, one of the modifiers of eating that is not a context
word in CBOW model, is now taken into the set of context words.

However, this method relies on syntactic parsing which is time-consuming. The challenge is how
to absorb the advantages of a syntax-based context while avoiding the complexity of parsing. In the
following, we first introduce a more advanced model using implicit structure information. Then we
derive a simplified method CBOW-CW to attach different weights to the context words to approximate
the effect of different context words obtained from syntactic trees.

4.2 Advanced Implicit Syntax-based Model

In this section, we present a more advanced implicit-syntax-based model. The implicit-syntax-based
model assigns a weight αt+j to each context word wt+j given a center word wt. If we could rely on
a syntactic parser, we could compute αt+j by summing up the number of syntactic relations between
wt+j and wt on syntactic trees. Alternatively, in the implicit-syntax-based model, we assume a neural
network to predict the weights α using the center word and its context words, without relying on explicit
syntactic trees.

To summarize, the implicit-syntax-based model contains two components as illustrated in Figure 2.
The first component sums up the word vectors of the context words with weights, and then passes the
sum to the softmax layer to predict the probability of the center word. The second component is a neural
network that predicts these weights. To train them, we can use the alternative optimization method which
optimizes one component at a time assuming the other component is optimal. To simplify discussion, we
temporarily assume that a full softmax model is used. The first CBOW-with-weights component predicts
the center word by:

2410

… …

vt-c vt-1 vt+c

at-c at+c

vc

softmax

wt

soft weight
prediction

vt+1

at+1at-1

vt

at+c
…

at-c

component 1

component 2

∑

Figure 2: The two components in the implicit syntax-based model.

p(wt|wt−c, · · · , wt−1, wt+1 · · · , wt+c) = softmax(U
∑

−c≤j≤c,j 6=0

αt+jvt+j) = softmax(UαtV
ᵀ
t),

where U is the parameter in the full softmax layer, and the i-th column in U represents the ex-
pected context vector ui of each word wi in the vocabulary, αt is a vector consists of weights
αt−c, · · · , αt−1, αt+1, · · · , αt+c and V ᵀ

t is the transpose of the matrix concatenating the word embed-
dings of the context words, i.e. vt−c, · · · ,vt−1,vt+1 · · · ,vt+c. During an iteration in the alternative
optimization, the “soft weights” predictor component is optimized in order to predict a weight αt for
each center word wt, such that the weighted sum vc of the context word vectors approximates the ex-
pected context vector ut of the center word. However, we can use a simple method to approximate the
“soft weights” predictor component, since the optimal αt such that αtV

ᵀ
t = ut can be solved analyti-

cally, assuming that the CBOW-with-weights is optimal, by αt = ut(V
ᵀ
t)−1.

However, the actual CBOW model uses a Huffman softmax tree instead of a full softmax tree for
improving performance, where context vectors ut cannot be obtained directly. Therefore, we design a
simple heuristic to calculate αt as described in Section 4.3. To sum up, our simple CBOW-CW model is
an efficient approximation to the more advanced implicit-syntax-based model described above.

4.3 CBOW with Context Weights (CBOW-CW)
Now that the advanced implicit-syntax-based model offers the theoretical soundness of our idea, we can
design our model to be simple, so that it is efficient to run and incremental to implement based on CBOW
and, hopefully, other word embedding algorithms. We introduce the CBOW-CW model which is actually
what we have done in this paper.

This work generalizes the CBOW model by attaching different weights α’s to different context words.
We denote vt+c

t−c as the context representation of a center word wt. It is the weighted sum of the word
vectors vt+j of context words of wt, and is defined below:

vt+c
t−c =

∑
−c≤j≤c,j 6=0

αt+jvt+j .

In Levy and Goldberg (2014), a dependency parse-tree is used to determine the context of each word.
For a center word, its neighbor nodes, including its head word and its modifier words in the dependency
parse-tree are assigned a weight 1, and the other words are assigned a weight 0 in a sense. Instead of
using a single best dependency parse-tree and assigning context words with “hard weights”, i.e. 0’s and
1’s, a natural alternative is to ask a dependency parser to return a number of best dependency parse-trees
and their probabilities, and then assign context words with “soft weights”. In CBOW-CW, we define
“soft weights” in the same sense, but we compute them using a simple and efficient method that does not
explicitly rely on dependency parse-trees. The concrete method we use to compute the “soft weights” is
described in the following part.

2411

……

……

……
……

…… ……
wt-2 wt-1 wt+1 wt+2

p1

p2

p3

p4

p5

p6

ps

Vocabulary Words

Huffman Binary Tree

Context Words

wt

Figure 3: Computing the “soft weight” for each word wt+j in the Huffman softmax tree of CBOW.
Nodes on the top are the words in the vocabulary, which are leaf nodes of the binary softmax tree. The
Pt = {p1, p2, . . . , ps}t, wt is a path from the root node to the center word wt in the Huffman softmax
tree, where p1 is the root node. The red dashed lines indicate the dot product of a context word vector
and an vector associated with the nodes in the softmax tree.

Computation of the “Soft Weights” Before discussing the details of CBOW-CW, we need to talk
about the Huffman softmax tree in CBOW. CBOW uses a Huffman softmax tree to accelerate its softmax
layer. As shown in Figure 3, the leaf nodes of the Huffman softmax tree are the words to predict in
the vocabulary, and each internal node is associated with a vector. To predict a word given its context
vector vc, a path P = {p1, p2, · · · , ps, wt} is found from the root node p1 of the tree to the predicted
leaf node wt. This path is determined hop-by-hop: the next node pk+1 of the partially computed path
{p1, p2, · · · , pk} is determined by the sign of the inner-product vc ·vk, where the vector vk is associated
with pk. If the inner product is positive, pk+1 is the left child of pk, otherwise the right child of pk.

In CBOW-CW, we compute the “soft weight” αt+j of context word wt+j given the center word wt

as follows. Let Pt = {p1, p2, · · · , ps, wt} be the path from the root p1 to the center word wt in the
Huffman softmax tree. We know that for a particular context word, once a ”hop” is wrong, the rest of
the path will be wrong. The weight αt+j is vaguely defined as its “contribution” in finding the path Pt.
This “contribution” is here defined as the number of correct next hops on path Pt that are computed, if
the context vector vc was replaced by vt+j . That is, the number of correct hops on the path that can
be predicted, if we use context word wt+j alone instead of the complete set of context words of wt.
The weight is a measure of similarity between a context word vector and the sum of context vectors.
Concretely, the weight αt+j for the context word wt+j is defined as:

αt+j =

∑
1≤k≤s 1{(vk · vt+j) · (vk · vc) > 0}

Z
,

where s is the length of the path Pt. The indicator function 1{x} returns 1 iff x is true. vk is the vector
associated with node pk on path Pt. vt+j is the word vector of context word wt+j . Z is the normalization
factor: Z =

∑
−c≤j≤c,j 6=0 αt+j .

5 Experiments

To qualitatively analysis our method of attaching implicit syntactic weights, we make comparisons of
CBOW-CW and CBOW, and we also visualize “implicit graph” for several sentences to compare with
dependency parse-trees. To quantitatively evaluate the quality of the word embeddings generated from
the proposed model, we experiment on several word similarity and word analogy tasks.

2412

Tommy and David are playing football in the playground

dobj

ROOT

nsubj

cc

conj:and

aux

case det

nmod:in

nsubj Tommy and David are playing football in the playground

Tommy and David are playing football in the playground

Figure 4: A sentence “Tommy and David are playing football in the playground ” and its extended
dependency parse-tree (top). The context weights in CBOW model (middle). The context weights in
CBOW-CW (bottom). The center word is “playing”. Darker colors indicate larger weights.

5.1 Comparison of CBOW-CW and CBOW

As illustrated in Figure 4, we show the difference between CBOW-CW and the CBOW using the sen-
tence “Tommy and David are playing football in the playground ” with the center word playing and the
context window size 4. The dependency parse-graph is generated using the Stanford parser (Chen and
Manning, 2014). In the CBOW model, the context words are Tommy, and, David, are, football, in, the
and playground. The weights of the context words become smaller as their distances to the center word
increase. However, one can see that Tommy, David, are and football are modifiers of playing so that they
should be more important for predicting playing. In contrast, the proposed CBOW-CW model is able to
attach more reasonable weights to the context words: the weights of Tommy, David, are and football are
higher than most of the other words in the sentence.

5.2 Visualization of Implicit Syntactic Graph

In order to inspect our implicit syntactic weights, we visualize the “implicit graph” constructed using
the “soft weights” for several sentences as illustrated in Figure 5. These sentences have different gram-
matical structures and they are chosen randomly. We draw undirected edges between two words if the
inner-product of their word vectors exceed a threshold. The constructed graphs are not identical to the
dependency parse-graphs. The dependency parse-graphs are built on human defined syntactic relations.
There are other relations between words in reality, and therefore our “soft weights” are less restricted.
Nevertheless, from the comparison of the “implicit graphs” and the enhanced dependency parse-graphs,
we can find that our efficiently computed “implicit graphs” implicitly contain some dependency relations.
This shows that our “soft weights” contain useful implicit structure information.

5.3 Word embeddings

We experiment with a large number of hyper-parameters. The space of hyper-parameters explored in this
work is shown in Table 1. win, neg, dim and ite denote the window size, the number of negative
examples, the dimension of word vectors and training iterations, respectively. The model will discard
words that appear less than min times.

Training Corpora We built word embeddings using the original CBOW implementation1 and our
modified model on an English Wikipedia dump2 containing about 1,989 million words, pre-processed
by removing non-textual elements, sentence splitting and tokenization. The default value of the hyper-
parameter min is 5, which means filtering out words with less than 5 instances and resulting in a vocab-
ulary of 1,953,057 words. We also use the text8 corpus provided in Word2Vec package as a smaller
dataset. The text8 corpus is the first 108 bytes of fil9, which is a 715 MB file filtered from the 1 GB file
enwiki9.

Training Details For both the original CBOW and our CBOW-CW, we set the learning rate to the
default value 0.05 and decrease it as the training process (Mikolov et al., 2013a). The settings of other
hyper-parameters are showed in Table 1.

1https://code.google.com/p/word2vec/
2Collected in November of 2015.

2413

Tommy and David are playing football in the playgroundJim likes eating apples as well as peaches

the long and wide river She held a cluster of flowers in her arms

nsubj xcomp dobj
cc mwe

mwe

conj:and

conjROOT
dobj

ROOT

cc
aux

nmod:innsubjconj:and case det

nsubj

det

ROOT

amod

conj:and
cc amod nsubj

nmod:poss

case
casedet

nmod:ofdobj

nmod:in

ROOT

Figure 5: Constructed “implicit graphs” for several sentences. The enhanced dependency parse-graphs
(shown in dark solid curves) above the sentences and the visualization of “implicit graphs” using our
implicit syntactic weights (shown in red dashed curves) below the sentences.

Hyper-params values enwiki text8
win 3, 5, 10, 20 10 10
neg 0, 8 8 8
dim 50, 100, 200, 300 300 200
min 5, 20, 50, 400 5 5
ite 5, 10 10 10

Table 1: The space of hyper-parameters explored in this work (the second column). The setting of hyper-
parameters at which we report the results when using the enwiki corpus (the third column). The setting
of hyper-parameters at which we report the results when using the text8 corpus (the forth column).

5.4 Test Datasets

We evaluate the word representations on several word similarity and word analogy tasks.

Word Similarity The word similarity computation is a traditional task for evaluating word embed-
dings. We used four datasets to evaluate word similarity including WordSim353 (ws) (Finkelstein et al.,
2001) partitioned into two datasets, WordSim Similarity (wss)and WordSim Relatedness (wsr) (Zesch et
al., 2008; Agirre et al., 2009); Bruni et al.’s (2012) MEN dataset; Radinsky et al.’s (2011) Mechanical
Turk (MTurk) dataset; the TOEFL dataset (Landauer and Dumais, 1997).

The first three datasets contain word pairs together with human-annotated similarity scores. The word
embeddings are evaluated by ranking according to their cosine similarities and calculate the Spearman’s
rank correlation(Spearman’s ρ) with the human-assigned scores. For the TOEFL set, we choose the
nearest neighbor of the question word from the 4 candidates based on the cosine distance and use the
accuracy to measure the performance.

Word Analogy The analogy dataset presents questions in the form of “a is to a∗ as b is to b∗” in which
b∗ needs to be guessed from the entire vocabulary. Mikolov et al. (2013c) found that the learned word rep-
resentations capture meaningful syntactic and semantic regularities referred to as linguistic regularities.
We apply the Google’s analogy dataset (Mikolov et al., 2013a) to evaluate word analogy performance.
It contains 19,544 questions divided into two categories: 8,869 semantic questions and 10,675 syntactic
questions. Such questions are answered through finding the word vector vb∗ which has the maximum
cosine distance to the vector “va? − va + vb” (Levy et al., 2014): arg maxb?∈V (cos (b?, b+ a? − a). The

2414

Results on the enwiki corpus (%)

Method
similarity analogy

ws wss wsr MEN MTurk TOEFL tot sem syn
CBOW 67.64 73.72 61.91 71.55 64.19 80.00 68.41 77.10 61.20

CBOW-CW 69.00 73.77 65.06 72.84 67.17 80.00 67.98 79.03 58.80

Results on the text8 corpus (%)

Method
similarity analogy

ws wss wsr MEN MTurk TOEFL tot sem syn
CBOW 69.02 70.22 66.40 64.06 60.35 70.00 30.86 30.10 31.40

CBOW-CW 72.03 73.36 70.84 65.59 63.55 73.75 37.28 42.04 33.89

Table 2: Performance of CBOW and CBOW-CW (our work) on different word similarity and word
analogy tasks. The best result for each dataset is highlighted in bold.

evaluation metric for word analogy is the percentage of questions for which the arg max result is the
correct answer.

5.5 Results and Analysis

We compare the proposed CBOW-CW model with the original CBOW model and report the results using
the settings in Table 1 for the text8 and enwiki corpus, respectively. Other settings of hyper-parameters
can also obtain similar results.

Word Similarity The left of Table 2 shows the results for several word similarity tasks. The best result
for each dataset is highlighted in bold. We found that in almost all of these datasets, except for the
TOEFL dataset when training on enwiki corpus, the proposed model performs better than the original
CBOW model. The results indicate that the method of appending different weights to different context
words is effective and the heuristic for computing the “implicit weights” is helpful for building word
embeddings. When training on the enwiki corpus, the CBOW-CW model can obtain similar results
compared to the CBOW model on the TOEFL dataset. We suspect this maybe due to the fact that the
TOEFL dataset is composed of low-frequency words and our model favors only high-frequency words
since the Huffman softmax tree is built according to word frequency.

Word Analogy Table 2 also shows the results of the word analogy tasks. The CBOW-CW model does
not perform well as it does on the word similarity tasks compared with the CBOW. When training on
the large enwiki corpus, the proposed model performs better in terms of semantic accuracy but not so
well in terms of syntactic accuracy. When training on the text8 corpus, CBOW-CW achieves pretty
well improvement, especially on semantic accuracy where it increases nearly 12 percent compared with
CBOW. Those results show that CBOW-CW is better in catching semantic information than syntactic
information.

By comparing the results training on enwiki and text8, we interestingly find that our model provides a
large accuracy gain over CBOW with small training data. This provides an advantage for small training
corpora and indicates that our model has higher convergence rate than the original CBOW model. We
are still exploring the reason of this, and we suspect that maybe due to that the method of computing
weights is biased by the depth of the word in the Huffman tree. The shallow of the word in the Huffman
tree, the higher accuracy of computing the weights.

Regarding the computation speed, the CBOW-CW model runs at a rate around a quarter of the rate of
CBOW due to the additional computation for context weights. Even so, our model is capable of training
word embeddings on the largest corpora in one day.

2415

6 Conclusions

We proposed an extension to the CBOW model by adding implicit structure information. Our method
absorbed the advantage of using a dependency tree-based context while avoiding the complexity of it. In
future work, we will conduct more evaluations with other weighting schemes.

Acknowledgements

This work was funded in part by the National Science Foundation of China (grant 61472459).

References
Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana Kravalova, Marius Paşca, and Aitor Soroa. 2009. A study

on similarity and relatedness using distributional and wordnet-based approaches. In Proceedings of Human
Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for
Computational Linguistics, pages 19–27. Association for Computational Linguistics.

Yoshua Bengio, Holger Schwenk, Jean-Sébastien Senécal, Fréderic Morin, and Jean-Luc Gauvain. 2006. Neural
probabilistic language models. In Innovations in Machine Learning, pages 137–186. Springer.

Elia Bruni, Gemma Boleda, Marco Baroni, and Nam-Khanh Tran. 2012. Distributional semantics in technicolor.
In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers-
Volume 1, pages 136–145. Association for Computational Linguistics.

Danqi Chen and Christopher D Manning. 2014. A fast and accurate dependency parser using neural networks. In
EMNLP, pages 740–750.

Ronan Collobert and Jason Weston. 2008. A unified architecture for natural language processing: Deep neural
networks with multitask learning. In Proceedings of the 25th international conference on Machine learning,
pages 160–167. ACM.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch. The Journal of Machine Learning Research, 12:2493–2537.

Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas Lamar, Richard M Schwartz, and John Makhoul. 2014.
Fast and robust neural network joint models for statistical machine translation. In ACL (1), pages 1370–1380.
Citeseer.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi Wolfman, and Eytan Ruppin.
2001. Placing search in context: The concept revisited. In Proceedings of the 10th international conference on
World Wide Web, pages 406–414. ACM.

Zellig S Harris. 1954. Distributional structure. Word, 10(2-3):146–162.

Lingpeng Kong, Nathan Schneider, Swabha Swayamdipta, Archna Bhatia, Chris Dyer, and Noah A Smith. 2014.
A dependency parser for tweets. In In Proc. of EMNLP. Citeseer.

Thomas K Landauer and Susan T Dumais. 1997. A solution to plato’s problem: The latent semantic analysis
theory of acquisition, induction, and representation of knowledge. Psychological review, 104(2):211.

Omer Levy and Yoav Goldberg. 2014. Dependency-based word embeddings. In ACL (2), pages 302–308.

Omer Levy, Yoav Goldberg, and Israel Ramat-Gan. 2014. Linguistic regularities in sparse and explicit word
representations. In CoNLL, pages 171–180.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Improving distributional similarity with lessons learned from
word embeddings. Transactions of the Association for Computational Linguistics, 3:211–225.

Wang Ling, Chris Dyer, Alan Black, and Isabel Trancoso. 2015. Two/too simple adaptations of word2vec for
syntax problems. In Proceedings of the 2015 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 1299–1304.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013a. Efficient estimation of word representations
in vector space. arXiv preprint arXiv:1301.3781.

2416

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013b. Distributed representations
of words and phrases and their compositionality. In Advances in neural information processing systems, pages
3111–3119.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. 2013c. Linguistic regularities in continuous space word
representations. In HLT-NAACL, pages 746–751.

Andriy Mnih and Geoffrey Hinton. 2007. Three new graphical models for statistical language modelling. In
Proceedings of the 24th international conference on Machine learning, pages 641–648. ACM.

Andriy Mnih and Geoffrey E Hinton. 2009. A scalable hierarchical distributed language model. In Advances in
neural information processing systems, pages 1081–1088.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove: Global vectors for word represen-
tation. In EMNLP, volume 14, pages 1532–1543.

Kira Radinsky, Eugene Agichtein, Evgeniy Gabrilovich, and Shaul Markovitch. 2011. A word at a time: comput-
ing word relatedness using temporal semantic analysis. In Proceedings of the 20th international conference on
World wide web, pages 337–346. ACM.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and Christo-
pher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In Pro-
ceedings of the conference on empirical methods in natural language processing (EMNLP), volume 1631, page
1642. Citeseer.

Torsten Zesch, Christof Müller, and Iryna Gurevych. 2008. Using wiktionary for computing semantic relatedness.
In AAAI, volume 8, pages 861–866.

2417

