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Abstract 

A spatial information extraction system retrieves spatial entities and their relationships for ge-

ological searches and reasoning. Spatial information systems have been developed mainly for 

English text, e.g., through the SpaceEval competition. Some of the techniques are useful but not 

directly applicable to Korean text, because of linguistic differences and the lack of language 

resources. In this paper, we propose a Korean spatial entity extraction model and a spatial rela-

tion extraction model; the spatial entity extraction model uses word vectors to alleviate the over 

generation and the spatial relation extraction model uses dependency parse labels to find the 

proper arguments in relations. Experiments with Korean text show that the two models are ef-

fective for spatial information extraction. 

1 Introduction 

A spatial information extraction system retrieves spatially related lexical items and their relationships 

and then provides the information in a normalized form. This information is used for geological searches 

and reasoning, and ultimately, for understanding natural language text. For example, from the spatial 

relations that A is on B and B is on C, a human can simply infer the fact that A is on C. A spatial 

information extraction system retrieves the relations ‘on (A, B)’ and ‘on (B, C)’ from the text; then, a 

reasoning program can infer the relation ‘on (A, C)’ from the relations. This enables the system to build 

a knowledge base with a compact size from text for many intelligent systems such as robot navigation 

and question-answering systems. 

A spatial information extraction task is usually carried out by two sub tasks: spatial entity extraction 

and spatial relation extraction. Because spatial entity extraction retrieves the entities to be used for spa-

tial relationships, it is different from a place extraction task in named entity recognition systems (Lee et 

al. 2011), which only retrieves place-related entities. This implies that spatial entity extraction deals 

with all of the entities involved in spatial relations, such as trajectors, landmarks, and spatial signals. 

Moreover, spatial signals are usually articles or particles that do not have explicit arguments for spatial 

relations. Whether some entities or relations are extracted or not depends on the semantic roles in a 

sentence, which makes the task more complicated and challenging. 

Many spatial information extraction systems have been developed for English text, especially those 

developed through the competition at the SpaceEval conference (Pustejovsky et al. 2015). The applica-

tion of the techniques directly to Korean text is not simple because of its different linguistic features. 

The Korean language is a morphologically rich and agglutinative language, which is very different from 

English (Kim et al. 2016). Moreover, because Korean has a relatively free word order and words are 

frequently omitted, the order of neighboring words does not always have a significant meaning as in 

English, where it plays an important role in spatial word classification. 

In this paper, we propose two models to extract spatial entities and spatial relations in Korean text. 

For entity extraction, an ensemble model is used to boost recall, and word vectors are used to tune the 

results for precision. For relation extraction, a sequence of the dependency labels from the trigger to the 

argument is used to calculate the argument probability. All of these extraction tasks are based on the 

ISO-Space mark-up scheme (Pustejovsky et al. 2015). In section 2, related works are briefly reviewed. 

This work is licensed under a Creative Commons Attribution 4.0 International License. Li-
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The entity extraction method using GloVe word vectors (Pennington et al. 2014) and the relation ex-

traction method using a Bayesian probability follow in sections 3 and 4, respectively. A discussion of 

the experiments and the conclusions follow in sections 5 and 6, respectively. 

2 Related Works 

There are generally two approaches to spatial entity extraction, similar to other natural language pro-

cessing tasks: rule-based and data-driven approaches. The performance of a rule-based approach heavily 

depends on how much the dictionary covers the open words and how much the rule reflects the linguistic 

features. This approach usually needs a considerable amount of human labor to encode the rules and fill 

the dictionary entries manually. Moreover, it is language and domain dependent. 

A data-driven approach uses machine learning tools such as CRFs and SVM. A spatial entity extrac-

tion task is considered to be a task of sequence labeling, which is solved by using CRFs (Kordjamshidi 

et al. 2010, Pustejovsky et al. 2015, Roberts and Harabagium 2012, Nichols and Botros 2015) and SVM 

(Bastianelli et al 2013). Data-driven approaches performed better than rule-based approaches in general 

and are easily portable to other domains. 

The common features for spatial entity extraction based on machine learning are morphemes, named 

entities, word dependencies, semantic roles, and semantic information such as a WordNet category. 

Semantic information contributes to the performance. As resources such as WordNet are not easily 

available to many languages yet, word vectors were used by Bastianelli et al. (2013) and Nichols and 

Botros (2015), which are generated from a large raw corpus. The word vectors were used to provide 

semantic information as fine-grained lexical representations and clustered numbers. A spatial entity ex-

traction system for Korean text has been developed by Kim et al. (2015) using a CRFs model, where 

morphemes, named entities, and parsing results are used as the features. It is based on the SpRL scheme 

corpus, and preliminary results were provided: with the test using 1,753 annotated sentences from Wik-

ipedia, it was reported that the average F1 score of the entities is 0.610, whereas that of spatial relations 

is 0.318. As the entities and relations of the annotation scheme in ISO space are different, they are not 

compared directly to this paper’s result. 

Dependency parsing results are used for relation extraction. Cross et al. (2011) and Bastianelli et al. 

(2013) used a parse tree to construct a GRCT (Grammatical Relation Centered Tree) graph for an SVM 

tree kernel. Jeong et al. (2011) and Kwak et al. (2013) used dependency structures for the relation ex-

traction of Korean sentences; the former used a composite kernel to extract general relations, and the 

latter built rules to extract spatial relations. 

3 Entity Extraction 

3.1 Base model 

We define a base model called the E1 model, which incorporates the useful features used in prior systems 

that are applicable to the Korean language. Moreover, we have added more features to improve the 

performance, such as language-specific features, word phrase spacing, and morpheme-POS (part of 

speech) tag vectors. For describing the features for the base model, we define the acronyms for the 

feature description in Table 1. All of the CRFs features for the base model are defined in Table 2 using 

the acronyms, where a letter means an acronym defined in Table 1, and the attached number is the size 

of window. For example, MT3 means ‘morpheme and POS tag pairs within a 3-morpheme window.’ 

(We use a morpheme window here instead of word window in English text.) 

 

Table 1. Acronyms for the feature elements. 

M: morpheme D: dependency label 

T: part of speech tag H: head's dependency label 

B: BI tag of a word phrase spacing W: main morpheme-POS tag of head 

S: sense number of a morpheme V: cluster number of a morpheme-POS tag vector 

N: named entity tag C: cluster number of the head's morpheme-POS tag vector 
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Table 2. Features of the E1 model for the CRFs. 

All entities M3, T3, MT3, B3, MS3, MM3, TT3, N3, D1, H1, W1, V3, C1 

 

M T B S N D H W V C 

… … … … … … … … … … 

충북 NNP B 00 B-OGG_EDU B-NP NP 대학교/NNG 211 181 

대학교 NNG B 00 I-OGG_EDU B-NP NP_AJT 안/NNG 181 298 

안 NNG B 01 NONE B-NP_AJT VP 위치하/VV 298 103 

에 JKB I 00 NONE I-NP_AJT VP 위치하/VV 185 103 

위치하 VV B 00 NONE B-VP VP 있/VX 103 185 

… … … … … … … … … … 

M3: 대학교 안  에   TT3: NNG-NNG  NNG-JKB 

T3: NNG  NNG  JKB   W1: 있/VX 

MT3:  대학교-NNG  안-NNG  에-JKB V3: 181 298 185 

Fig 1. Examples of element features shown in vertical forms and composite features. 

 

3.2 Ensemble model  

As the Korean spatial tagged corpus is not large and not well-balanced, machine learning programs such 

as CRFs are not learned properly. Therefore, we use multiple sub models to overcome the skewness in 

the data distribution. We assigned the respective features to each entity type, as summarized in Table 3. 

After testing a candidate with multiple sub models of each entity type, the results are simply accumulated. 

This is called the E2 model, and this is an interim model for the following final model. 

 

Table 3. Features of each sub model for the CRFs in the E2 model. 

Entity type Feature list 

PLACE, PATH M3, T3, MT3, MM3, TT3, MS3, B3, N3, V3 

SPATIAL_ENTITY M3, T3, MT3, MM3, TT3, MS3, B3 

MOTION M3, T3, MM3, TT3, MS3, B3, V3, D1 

MOTION_SIGNAL M3, T3, MM3, TT3, H1, W1, C1 

SPATIAL_SIGNAL M3, T3, MM3, TT3, N3, H1, W1, C1 

MEASURE M5, T5, MM3, TT3, N3, V3 

 

3.3 Ensemble model using word vectors 

As the multiple sub models still produce many false entities, a word vector is used to filter them. The 

idea is that the common characteristics of entities can be represented in entity tag vectors by summing 

all of the word vectors learned from the training corpus. The entity tag vectors are used later during 

testing to check the validity of the candidate entity vectors. Eq. 1 expresses a formula used for the entity 

tag vector calculation, where the function f converts wi into a vector representation, and eq. 2 expresses 

an equation used for the validation method during testing, where 𝜃 is the minimum cosine similarity 

between the entity tag vector (centroid) and a tagged word vector (instance), which is determined during 

training. 

The vectors for the spatial entities are the word vectors of the entities themselves in the training data, 

as expressed in eq. 3. The function w2v converts an argument word into a vector representation using 

deep learning programs such as GloVe (Pennington et al. 2014). However, the vectors of the signal 

entities are the context word vectors of the signal words, as expressed in eq. 4, because the Korean 
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signals are usually particles, which are too general to be characterized for tag vectors. We propose this 

model for spatial entity extraction and call it the E3 model.  

 

𝑆𝑇𝑎𝑔𝑗
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  

1

𝑁
∑ 𝑓(𝑤𝑖)

𝑁
𝑖=1                              (1) 

𝑆𝑇𝑎𝑔(𝑤𝑖) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗(𝑐𝑜𝑠(𝑆𝑇𝑎𝑔𝑗,⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝑓(𝑤𝑖))  >  𝜃𝑗)      (2) 

 

𝑓(𝑤𝑖) = 𝑤2𝑣(𝑤𝑖)          (3) 

for STag(wi ) ∈  {PLACE, PATH, SPATIAL_ENTITY,  MOTION} or candidates 

𝑓(𝑤𝑖) =
1

2𝐿
∑ (𝑤2𝑣(𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑙(𝑤𝑖)) + 𝑤2𝑣(𝑐𝑜𝑛𝑡𝑒𝑥𝑡−𝑙(𝑤𝑖)))

𝐿
𝑙=1    (4) 

for STag(wi ) ∈  {MOTION_SIGNAL, SPATIAL_SIGNAL} or candidates 

4 Relation Extraction 

In ISO-Space, a spatial relation consists of two static relations and one dynamic relation. The static 

relations are the topological relation (QSLink) and orientational link (OLink), which are triggered by 

SPATIAL_SIGNAL. The extracted relations are represented in a triple format: <trajector, trigger, land-

mark>. The dynamic relation is the move relation (MoveLink) triggered by a MOTION event. The ex-

tracted relation is represented in octuple format: <mover, trigger, source, goal, landmark, mid-point, 

path, motion signal>. However, it is not easy to extract all the octuplet arguments in most sentences. For 

a relaxed implementation, the octuple is converted into many triples; then, one or all of the triples are 

extracted (Nichols and Botros 2015, D’Souza and Ng 2015). We chose to extract one of those triples, 

<mover, trigger, goal>, because its arguments are filled in most cases, and the triple is also chosen for 

extraction target in (Nichols and Botros 2015). 

4.1 Rule-based model  

A rule-based method is straight-forward to implement, if linguistic regularities for spatial relation ex-

traction are easily found. For a performance comparison, we also define a rule-based relation extraction 

model as a base model and call it the R1 model. Because of the free word order and frequent omission 

of words in the Korean language, regularities are not easily found. Therefore, the rules do not pose many 

restrictions, as summarized in Table 4.  

 

Table 4. Relation extraction rules. 

Rule 1 Static relations are triggered by SPATIAL_SIGNAL and dynamic relations by MOTION. 

Rule 2 
SPATIAL_SIGNAL with the type ‘TOPOLOGICAL’ generates QSLink, and that with the 

type ‘DIRECTIONAL’ generates both OLink and DIR_TOP. 

Rule 3 The arguments for the relations are ‘PLACE,’ ‘PATH,’ and ‘SPATIAL_ENTITY.’ 

Rule 4 All spatial entities for a relation are within the same dependency head (VP, VNP). 

Rule 5 

When there is more than one argument under a dependency head, the argument closest to the 

trigger in the dependency relation is classified as a landmark, and the other arguments are 

classified as trajectors, resulting in multiple relations.  

Rule 6 
If one and more triggers exist, the arguments cannot cross the other triggers at a sentence po-

sition. 

 

4.2 Bayesian model 

Dependency parsing is quite effective for free word order languages such as the Korean language and 

provides useful information for long-distance relations (Lim et al. 2014). We utilize the parsing result 

to find valid arguments for given triggers such as the SPATIAL_SIGNAL or MOTION tag. In this 

model, all of the possible argument candidates are searched and verified with a Bayesian probability, 

which is learned with the training corpus. The argument with the highest probability is chosen, as shown 

in eq. 5. The probability is calculated as the product of the prior probability of an argument and the 

conditional probability of the sequence of dependency labels (DPL). The DPL includes the labels from 

a trigger to the argument, and its conditional probability is approximated in eq. 6.  
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DPL = (𝑑𝑝𝑙1, 𝑑𝑝𝑙2, … , 𝑑𝑝𝑙𝑛)  
A = {trajector, landmark}  

     𝑎𝑟𝑔𝑚𝑎𝑥𝐴𝑖
𝑃(𝐴𝑖 , 𝐷𝑃𝐿) =  𝑎𝑟𝑔𝑚𝑎𝑥𝐴𝑖

𝑃(𝐷𝑃𝐿|𝐴𝑖) ⋅ 𝑃(𝐴𝑖)                 (5) 

     P(𝐷𝑃𝐿|𝐴i) = 𝑃(𝑑𝑝𝑙𝑛, 𝑑𝑝𝑙𝑛−1, … , 𝑑𝑝𝑙1|𝐴𝑖) 
= P(𝑑𝑝𝑙n|𝑑𝑝𝑙𝑛−1, … , 𝑑𝑝𝑙1, 𝐴𝑖) ∙ 𝑃(𝑑𝑝𝑙𝑛−1|𝑑𝑝𝑙𝑛−2, … , 𝑑𝑝𝑙1, 𝐴𝑖) ∙∙∙ 𝑃(𝑑𝑝𝑙1|𝐴𝑖)  

                           ≅ P(𝑑𝑝𝑙1|𝐴𝑖) ∙ ∏ 𝑃(𝑑𝑝𝑙𝑗|𝑑𝑝𝑙𝑗−1)
𝑛
𝑗=2                 (6) 

5 Experiment 

5.1 Experimental setup 

As pre-processing steps, a morphological analysis and POS tagging, named entity recognition, and de-

pendency parsing are carried out, and their sources and performance are summarized in Table 5. We 

used CRFsuite (Okazaki 2007) and the GloVe word vector (Pennington et al. 2014). The word vectors 

are trained with the morpheme-tagged data in the Sejong corpus (NIKL 2011) to build 300 vector clus-

ters for a feature set.  

For the test data, we used the Korean spatial annotation corpus (Kim et al. 2016), which is constructed 

from 175 documents (1593 sentences) from the Wikitravel web-site1 following the SpaceEval annota-

tion scheme (Pustejovsky et al. 2015). The testing corpus statistics are listed in Table 6. 

The experiment was performed with 5-fold cross validation test. The experiment for entity extraction 

was directly carried out with the raw corpus data, and relation extraction was performed with the corpus 

annotated with spatial entities beforehand. (Each experiment corresponds to tasks 1.b and 3.a of 

SpaceEval)  

 

Table 5. Performance of the pre-processing modules. 

Modules performance source 

Morph. analysis and POS tagging. 99.03% (pre) (Lee et al. 2016) 

Named entity recognition 86.86% (f1) (Lee et al. 2011) 

Dependency parsing 87.63% (LAS) (Lim et al. 2014) 

 

Table 6. Number of tags in the testing corpus. 

 

 

 

 

 

 

 

 

5.2 Results 

Table 7 summarized the results of spatial entity extraction. The performance of MEASURE is the sec-

ond-best because its typical surface form, e.g., the “number + unit” form, is very easily recognized by a 

program. PLACE is the best performer, which can also be easily found by a named entity recognizer. 

Moreover, as the ratio of PLACE tag is the largest, 67.6%, in the distribution as presented in Table 6, 

the prior probability contributes to find more PLACE tags. On the other hand, SPATIAL_ENTITY ex-

hibits the worst performance. We conjecture that the first reason is that the size of the training corpus is 

too small; the number of Korean spatial entity tags is 270 (3.2%), as presented in Table 6, whereas that 

of English spatial entity tags is 1670 (23.6%) in the corpus used for SpaceEval 2015 (Pustejovsky et al. 

2015). The second reason is that its part of speech tag is a general noun, which is not easy to distin-

guished from other spatial tags. Moreover, the same word can be either a SPATIAL_ENTITY tag or 

                                                 
1 http://www.wikitravel.com/ko/ 

Entity relation  

name num ratio name num ratio name num ratio 

PLACE 5,636 67.6% M._SIGNAL 266 3.2% QSLink 3,548 65.9% 

PATH 320 3.8% S._SIGNAL 1,299 15.6% OLink 970 18.0% 

S._ENTITY 270 3.2% MEASURE 248 3.0% MoveLink 868 16.1% 

MOTION 294 3.5%     

  entity total 8,333 100.0% relation total 5,386 100.0% 
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none tag depending on the context. In the following example, ‘car’ in the first sentence is tagged SPA-

TIAL_ENTITY, but that in the second sentence is not. This is same for English, but it is more difficult 

for a free-word-order language to be disambiguated. 

 

철수가 자동차/spatial_entity 에 탔다. (Cheolsu got in a car/spatial_entity.) 

철수가 자동차/none 를 샀다. (Cheolsu bought a car/none.) 

 

The E2 model increased the recall but decreased the precision, as indicated in Table 7. However, the 

E3 model using spatial tag vectors greatly increased the precision by 13.3% point compared to that of 

the E2 model. Consequently, the F1 measure performance of the E3 model increased by 2.1% point 

compared to that of the E1 model, which means that use of the tag vector is effective for selecting valid 

spatial entities. 

Table 7 summarizes a comparison of the E3 model with SpRL-CWW (Nichols and Botros 2015), 

which was the best model at SpaceEval 2015 (Pustejovsky et al. 2015). The overall performance of the 

E3 model is better than that of SpRL-CWW for all precision, recall, and F1 measure criteria. The per-

formance of SPATIAL_ENTITY and PATH for the E3 model, however, is relatively much lower than 

that of SpRL-CWW. This means that the ambiguity of general nouns in a semantic role is still problem-

atic and the size of the training corpus is relatively smaller as fore-mentioned. 

The performance of relation extraction is summarized in Table 8. All of the values of the precision, 

recall, and F1 measure for the R2 model are better than those for the R1 model. This implied that the 

use of the Bayesian probability for selecting arguments is effective. For a general comparison, we have 

listed the results of the two best approaches in the table, where CWW (Nichols and Botros 2015) is the 

best machine learning approach, and Pust (Pustejovsky et al. 2015) is the best rule-based approach. 

Unfortunately, the R2 model exhibits a very low performance compared with both of them.  

The spatial relations in Korean text are relatively hard to be retrieved, because the related entities are 

relatively separated and their appearing order is not consistent. While all related entities are usually 

located closely to the spatial signal in English text, the entities are sometimes far from the spatial signal 

in a Korean sentence. Sentence 1 in Fig. 2 shows an example in which the trajector is far from the trigger. 

In addition, the appearing order is not consistent as shown in Korean sentence 2 in Fig. 2. Both landmark 

and trajectory appear before the trigger in the first OLINK, whereas landmark appears before and tra-

jectory appears after the trigger in the second OLINK. We used the dependency relations of words to 

alleviate this problem and thus improved the performance. However, we still need to find more effective 

methods to overcome Korean linguistic barriers such as the free word order and the lack of language 

resources; and this problem will be studied in future research. 

 

Table 7. Performance of spatial entity extraction. 

Label 
Precision Recall F1 

E1 E2 E3 CWW E1 E2 E3 CWW E1 E2 E3 CWW 

PLACE 0.919 0.917 0.961 0.802 0.928 0.930 0.958 0.777 0.923 0.924 0.960 0.789 

PATH 0.848 0.441 0.552 0.815 0.397 0.543 0.539 0.614 0.541 0.487 0.545 0.701 

S. ENTITY 0.463 0.210 0.326 0.793 0.213 0.444 0.444 0.653 0.292 0.285 0.376 0.716 

MOTION 0.801 0.354 0.544 0.823 0.479 0.713 0.709 0.7 0.600 0.473 0.616 0.756 

M. SIGNAL 0.800 0.236 0.556 0.766 0.392 0.698 0.694 0.6 0.536 0.353 0.617 0.673 

S. SIGNAL 0.851 0.770 0.892 0.75 0.729 0.794 0.836 0.603 0.786 0.782 0.863 0.668 

MEASURE 0.990 0.951 0.951 0.889 0.881 0.906 0.906 0.707 0.936 0.928 0.928 0.788 

Overall 0.894 0.728 0.861 0.795 0.849 0.855 0.880 0.674 0.849 0.786 0.870 0.73 

E1: base model, E2: ensemble model, E3: proposed ensemble model using word vector,  

CWW: 5-fold cross validation (Nichols and Botros 2015) 
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Table 8. Performance of spatial relation extraction. 

Relation 
Precision Recall F1 

R1 R2 CWW Pust R1 R2 CWW Pust R1 R2 CWW Pust 

QSLink 0.40 0.49 0.66 - 0.51 0.55 0.54 - 0.45 0.52 0.59 - 

OLink 0.12 0.24 0.69 - 0.19 0.48 0.52 - 0.15 0.32 0.59 - 

MoveLink 0.18 0.24 0.57 - 0.35 0.65 0.45 - 0.24 0.35 0.5 - 

Overall 0.30 0.37 0.64 0.86 0.42 0.54 0.50 0.84 0.35 0.44 0.56 0.85 

R1: base model, R2: proposed model using dependency label, CWW: (Nichols and Botros 2015),  

Pust: Baseline 3.a (Pustejovsky et al. 2015) 

 

 
 

Fig 2. Various types of spatial relation caused by free word order. 

 

6 Conclusion 

We have proposed two models for Korean spatial entity extraction and spatial relation extraction. For 

entity extraction, we utilized the features of prior systems with an adaptation to Korean linguistic fea-

tures. Moreover, we proposed a new approach to filter false entities using spatial tag vectors, which can 

be learned automatically from a raw corpus. The experiment showed that the spatial tag vectors are 

effective for spatial entity extraction and showed better performance than English state-of-the-art per-

formance.  

For relation extraction, we proposed a model that uses the dependency label probability to select 

proper arguments, which is effective and better than a simple rule-based model but much lower than the 

state-of-the-art performance of an English one. We conjecture that this mainly originates from linguistic 

differences, especially syntactic structures such as the free word order and word omission, which still 

require further investigation. 
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