Incremental Global Event Extraction

Alex Judea and Michael Strube
Heidelberg Institute for Theoretical Studies gGmbH
Schloss-Wolfsbrunnenweg 35
69118 Heidelberg, Germany

(alex.judea|michael.strube)@h-its.org

Abstract

Event extraction is a difficult information extraction task. Li et al. (2014) explore the benefits of
modeling event extraction and two related tasks, entity mention and relation extraction, jointly.
This joint system achieves state-of-the-art performance in all tasks. However, as a system oper-
ating only at the sentence level, it misses valuable information from other parts of the document.
In this paper, we present an incremental approach to make the global context of the entire docu-
ment available to the intra-sentential, state-of-the-art event extractor. We show that our method
robustly increases performance on two datasets, namely ACE 2005 and TAC 2015.

1 Introduction

But the strikes prove controversial.

In many cases, it is not sufficient to look at one sentence when extracting events. In our example,
strikes has no potential event arguments, and the context is not sufficient to disambiguate it correctly: Is
it the trigger of an ATTACK event because it actually means bomb strikes? Or is it not a trigger at all
because it refers to the industrial action?

Soon after dawn on this fourth day, confirmation of the ship’s first strike arrived . .. This is the
first of an unknown number of strikes we’ll conduct during our watch in “operation enduring
freedom” . .. But the strikes prove controversial.

Given the other sentences it is easier to infer that strikes is indeed the trigger of an ATTACK event. In
this paper, we present a system that makes the global context of a document available to a state-of-the-art
event extractor. Looking at a broader context also benefits argument detection. For example, within one
document entities play coherent roles in different events. Consider the following text:

Sam Waksal was sentenced to seven years and three months in federal prison ... He’s being
released on his own cog in a sans before he’s to report to jail.

Looking only at individual sentences, it is hard to predict that report triggers an ARREST-JAIL event,
which in turn makes it hard to predict that &e is the Pe rson of this event. If the system looks at the entire
document and knows that he and Sam Waksal are coreferent, it can better infer that the Defendant of
a SENTENCE event can be the Person of an ARREST-JAIL event, which in turn makes it easier to
infer that /e is this person.

In this paper, we present a method to incorporate the global, document-wide context into the decision
process of a system that predicts entity mentions, events, and relations jointly. We use features that are
based on the ‘one sense per discourse’ assumption (Gale et al., 1992), a concept widely used in Word
Sense Disambiguation (e.g., Navigli and Lapata (2007)), and on the coherence of roles an entity plays in
different events. We show that our method robustly increases performance on two datasets, namely ACE
2005 and TAC 2015.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

2279

Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers,
pages 2279-2289, Osaka, Japan, December 11-17 2016.

Org-aff

Org

Agent \ /
the [National Patient Safety Foundation]

PER START-ORG ORG

That ’s why

Figure 1: The configuration of a sentence. Depicted are two entities, a trigger, and the semantic relations
and event argument relations between them.

The paper is structured as follows. Section 2 describes the task in more detail. Section 3 puts our
work in context of other approaches to event extraction. Section 4 describes an intra-sentential, state-of-
the-art system introduced by Li et al. (2014). In Section 5 we present Incremental Global Inference, a
multi-pass procedure that makes the global context of a document accessible to the joint decoding of our
intra-sentential event extractor. Section 6 reports evaluation results and Section 7 gives conclusions.

2 Task Description

Event extraction is an information extraction task where mentions of predefined event types are extracted
from texts. We follow the task definition of the Automatic Content Extraction (ACE) program of 2005
which defines 33 event types, organized in eight categories. We also evaluate on another dataset, namely
on the Event Nugget data of TAC 2015 (Mitamura et al., 2015).

In ACE, events are annotated only intra-sentential. Each event type has roles, e.g., START-ORG, an
event indicating the founding of an organization, has the roles Agent and Org, whereas DIE, an event
indicating the death of a person, has the roles Agent, Victim, and Instrument. The roles Place
and Time are shared by all event types.

Roles are filled by zero or more arguments, that is, spans of text. The same span of text may be shared
by multiple events as arguments, and may fill different roles in each of them. Finally, every event is
indicated by a trigger.

Besides event annotations, ACE provides annotations of entity mentions and semantic relations. De-
tecting entity mentions is a task strongly related to event extraction because most arguments are mentions
of persons, locations, organizations, etc.! Semantic relations and event arguments are also related be-
cause they coincide often with the start or end points of arguments.

Consider Figure 1. Depicted is the sentence That’s why we founded the National Patient Safety Foun-
dation. We can find two entity mentions, namely we as a PER and National Patient Safety Foundation as
an ORG mention. Furthermore, there is one trigger of a START—-ORG event, namely founded. This event
has two arguments, namely we filling the role Agent, and National Patient Safety Foundation filling the
role Org. Finally, there is an Org—aff relation between we and National Patient Safety Foundation.

While ACE provides annotations for all tasks involved (entity mentions, event triggers, event argu-
ments), the TAC 2015 Event Nugget data provides only annotations for event triggers. The trigger
annotation schemes are similar, the two data sets share many event types, and events occur only intra-
sentential. However, some event types in TAC are more fine-grained, e.g., TRANSPORT in ACE was
split into TRANSPORT—-PERSON and TRANSPORT-ARTIFACT in TAC.

3 Related Work

The base system we use is the one described in Li et al. (2014)2. To our knowledge it is the only system to
predict entity mentions, relations, event triggers, and event arguments jointly. It achieves state-of-the-art
performance in all four tasks.

Many approaches to event extraction, including our base system, do not cross sentence boundaries
(Grishman et al., 2005; Ahn, 2006; Lu and Roth, 2012; Li et al., 2013; Li et al., 2014). Only a few

'Some arguments are mentions of points in time, amounts of money, etc.
This system is a combination of the systems described in Li et al. (2013) and Li and Ji (2014).

2280

approaches go beyond sentences (Liao and Grishman, 2010; Hong et al., 2011) or beyond documents (Ji
and Grishman, 2008) in order to exploit richer contexts for the extraction of events.

Recently, three deep learning systems were proposed. Nguyen and Grishman (2015) use a Convolu-
tional Neural Network (CNN) to detect event triggers. They achieve good trigger detection performance,
but they do not tackle the full event task. Chen et al. (2015) propose a more complicated version of a
CNN which is able to detect multiple arguments in addition to triggers. Their system is a pipeline system
(it predicts triggers and arguments separately) and suffers from error propagation. Nguyen et al. (2016)
combine the advantages of joint models, explicit feature engineering and neural networks. They propose
a joint, bi-directional recurrent network which additionally uses the features in Li et al. (2013). However,
both Chen et al. (2015) and Nguyen et al. (2016) rely on gold entity mentions for trigger prediction.

The cross-sentential systems proposed in Liao and Grishman (2010) and Yang and Mitchell (2016) are
closest to ours. We will describe them in the following.

Liao and Grishman (2010) propose a pipeline system that performs easy-first global inference. Lo-
cal classifiers find triggers and arguments based solely on local information. Confident decisions are
collected and used to inform global trigger and argument classifiers. In the local, intra-sentential phase
the system performs pattern matching to align the entity mention context of a trigger to some known
patterns. Similar to our approach, confident decisions are collected during the intra-sentential pass and
used to infer harder cases.

Yang and Mitchell (2016) propose a pipeline system with global inference. In contrast to most other
approaches, it also predicts entity mentions. Yang and Mitchell (2016) first train two Conditional Ran-
dom Fields to generate mention and trigger candidates for a document. They only keep the 50 best
mention candidates, and the 10 best trigger candidates. Then, they train three classifiers to capture entity
mentions, within-event structures, and event-event relations. Finally, they formalize an Integer Linear
Program that, given the local classifiers and the (global) event-event classifier, produces a globally opti-
mal solution, instead of refining locally-optimal solutions with global information.

In terms of label inference (assigning types to candidates), our approach lies between Liao and Grish-
man (2010) and Yang and Mitchell (2016). The former apply global inference after local inference, the
latter model both jointly. We let local and global inference inform each other and iteratively refine both.

A major difference between Liao and Grishman (2010) one the one hand, and Yang and Mitchell
(2016) and our approach on the other is that the first approach uses gold entity mentions, while the other
two use predicted entity mentions. Comparing full inference, we note that Yang and Mitchell (2016) use
a pipeline approach: They first tag sentences for potential entity mention and event trigger candidates,
and apply label inference afterwards. In contrast, we model both jointly.

4 Intra-Sentential Event Detection

In this section we describe our reimplementation of the system presented in Li et al. (2014), a state-of-
the-art event detector. It employs joint decoding of entity mentions, events, and relations in order to make
use of a rich feature set, including features which capture interdependencies of different subtasks. It uses
a structured perceptron with beam search to explore different segmentations of a sentence and possible
connections between segments.

4.1 Terminology

Following Li et al. (2014) we will call a specific segment of a sentence a node and a relation connecting
two nodes an arc. The entire set of nodes and arcs for a sentence will be called configuration.

Formally, a node n is a tuple (b, e, n;) where b and e are begin and end offsets, and n, is an entity,
event, or ‘null’ type. We encode offsets as token indices. An arc is a tuple (e1, ez, a;) with e; < eg,
where e; and eg are the end offsets of the non-overlapping nodes of the connection, and a; is a semantic
relation or event argument type. Because semantic relations are directed and nodes are ordered by offset,
we have to mark relation direction by defining an ‘inverse’ version of each semantic relation type.

2281

4.2 Decoding and Training

Our decoding (producing configurations for a given sentence) is built around the idea of Semi-Markov
Chains (Sarawagi and Cohen, 2004). Here, in contrast to more traditional token sequence labelers like
CREFs, decoding produces segments of arbitrary length, possibly spanning multiple tokens and is there-
fore able to use features characterizing entire segments, and not only individual tokens. In the following
we describe the decoding and training procedures in detail. Algorithm 1 formalizes the procedure.
We start our description with the method

GENERATE NODES in Algorithm 1. Given a sen- Algorithm 1:

tence s with tokens ¢; . . . t,,, the procedure gen-
erates nodes of different types and lengths end-

BEAM SEARCH(s = t7 .. .tm, Y, 2, training)

. N 1 beam b « ()
ing at each ¢;. It starts with ¢; and generates , fori = 1...m do
nodes of length one with different types, e.g., 3 bglg — GENI(ER(A)T)E NODES(b, %)
_ _ 4 b(i) < top, (b(z
(1,1,PER) or (1,1, START-ORG). The proce . if training Ay & b(i) then
dure moves on to the next token, Z3. Now, it gen- UPDATE(b(i, 1), ys)
erates segments of length one and length two, 7 | exit
e.g., (2,2,PER)or (1,2, PER), and adds themto 8 forj=i—1...0do
: . 9 b(i) < GENERATE ARCS(b, 7,1)
the previously constructed configurations such - b(i) — top. (b:)
that nodes do not overlap and there are no gaps. 11 if training A y; ¢ b(i) then
Some configurations may now contain two 12 L UP.'tDATE(b(ia 1), i)
13 exi

nodes which means that the procedure can pre- L

dict arcs (GENERATE ARCS in Algorithm 1). Tt 14 if sraining A y # b(m, 1) then
generates a compatible arc for each node pair, 15 UPDATE(b(m, 1), y)

but does not overwrite configurations without ¢ L €It

arcs. This ensures that not predicting an arc be-
tween any two nodes is always a valid hypoth-
esis. We collect type restrictions for arcs from the training data. For example, it is not possible that
Organization-Affiliation relations hold between person mentions. Such restrictions keep the search space
smaller and make learning easier.

Input to Algorithm 1 is a sentence s, a gold configuration y, and the beam size z. The beam b is a
ranked list of hypotheses (that is, configurations) ending at any token position in the sentence. If the
procedure is not in training mode, or if it did not make any prediction errors, it returns the top hypothesis
ending at the last token position, b(m, 1) for a sentence with m tokens.

Ideally, one would enumerate all possible configurations for a sentence and pick the best one. How-
ever, such an exhaustive enumeration is infeasible because the number of configurations grows exponen-
tially with the number of tokens. Following Li et al. (2014) we approximate the enumeration by using
beam search. We first expand configurations with new nodes and keep only the best z configurations.
These are then expanded with arcs. During this process we again keep only the best z configurations.
After arc generation, we move to the next position.

In training mode the procedure updates feature weights as soon as y;, a prefix of the gold configuration,
is not predictable anymore because it is no longer part of the beam. This is called early update. Huang
et al. (2012) proved that, in structured perceptrons, standard updates may lead to bad performance with
inexact search strategies such as beam search because there may be updates which actually lower the
score of the gold solution, thus leading the model in a wrong direction. Early updates prevent this
problem at the expense of higher training time. Note that we exit the procedure when early updates
happen. There are two positions where early updates occur, namely after node generation and during arc
generation (Lines 6 and 12).

17 return b(m, 0)

4.3 Features

The feature set of our base system is complex because each subtask requires its own rich feature set. We
can divide features into two broad categories: Static features, which do not depend on previous decisions,
and dynamic features, which depend on previous decisions. Table 1 contains a feature summary struc-

2282

lexical information* (segment tokens, context, dependencies)

Common brown clusters, gazetteer entries*

Mentions character suffixes of length 3 and 4*

Triggers possible FrameNet frames in case of verbs*
Static Arguments trigger type, mention and mention context

trigger-mention dependency/constituency paths

entity types, contexts, extent overlaps

Relations mention-mention dependency/constituency paths
syntactico-semantic structures (Chan and Roth, 2011)
(event or entity) type bigrams

consistencies (same text=same type, coordinations, pronouns)
Triggers dependency path between trigger pairs

characterize mentions filling the same role in the same event
characterize triggers sharing a mention

characterize triangles like A-C, B-C

characterize constructions where the parts tend to have same
relation types, e.g., coordinations

Joint Argument-Relation | relation types and overlapping argument types

Common

Dynamic | Arguments

Relations

Table 1: A description of the base system’s feature set. Static features marked with * apply to the entire
segment and not to each token in the segment.

tured in this way. All features are concatenated with the node or arc type under consideration. Argument
features additionally come without types in order to characterize properties of arguments in general.

In order to simulate the feature set of a more traditional sequence labeler, the base system adds a
BILU-tag (“B” for first token of a segment, “I”” for an intermediate token, “L” for the last token, and “U”
in case of length-1 segments) to each token feature of the node under consideration. If this node is an
entity and the last node in the configuration is also an entity, it additionally adds the entity type of the
last segment to token features, otherwise it adds a ‘null’ label.

5 Incremental Global Inference

Our base system is limited in two ways. It operates intra-sententially and is thus limited to the information
in a single sentence. In some cases this may be sufficient to predict all entity mentions, events, and
relations, in many others it is not. An approach operating on the document level has access to a broader
context and may be able to resolve more difficult cases.

Even within a sentence the base system is lim-
1t'ed to.the left con'text of the t(?ken under. con- Algorithm 2:
sideration. The entire sentence is only available
when decoding reaches the last token. At that —

. L . 1 decision map r = ()
point many decisions are not reversible anymore ;5 fori = 1...% do
because of the approximate search procedure. 3 for Sentence s € document do

In the following we present Incremental * L " USEARCH(s, y, 2, training,)

) // no updates

Global Inference, a method to cope with both L
limitations. It makes the global, document-wide 5 for Sentence s € document do

INCREMENTAL GLOBAL INFERENCE (d)

. . 6 rs = SEARCH(Ss, y, 2, training, v
context available to the local decoding of our . if error(rs)the(n7 ’)
base system. // updates

8 UPDATE(Z%, y*)
5.1 Procedure 9 | rurs

Incremental Global Inference is a multi-pass ap- 10 returnr

proach. We iterate several times through the

document. The decisions in each iteration are

input to the next iteration. We first perform standard decoding as described in Section 4 for all sentences
in a document, and feed back the decisions in this step for a second pass. In the second pass we extract
global features, that is, features measuring the similarity of a new node or arc to decisions made in the
last iteration. We again keep the decisions for the entire document and continue with a third decoding
pass, etc. Algorithm 2 formalizes the procedure.

2283

Feature type Applies to

Condition

Description

n is trigger, m is entity

dependency graph matching known

graph connecting event type and
lemmas of n, and entity type of m

Local indicator
graph connecting role of n,
n is argument, m is trigger | dependency graph matching known event type, and lemmas of m
indicator
always The event types of n and m
Global n and m are triggers lemmas equal The event types of n and m

coreferent arguments

The event types of n and m

n and m are arguments

coreferent arguments

the roles and event types
of n.and m

Table 2: New local and global features for a node n. Global features are for node pairs (n, m), where m
may come from the entire document.

Input to Algorithm 2 is a document d, output is a structure holding the configuration for each sentence
in the document. The algorithm can be divided in two parts, namely collection and final decoding. We
will now describe the two parts.

In the collection phase (Lines 2 - 4), the procedure iterates k times through the document. In each
iteration, and for each sentence, it performs SEARCH, a slightly different version of Algorithm 1, the
only difference being that feature updates are omitted. We perform updates in final decoding. The
decoding decisions are recorded per sentence in the decision map . The decision map r is updated such
that the decisions for a sentence in one iteration are overwritten with the decisions for the same sentence
in the next iteration. r is input for the next iteration.> With each iteration, and with each update of r,
SEARCH has a more reliable view on mentions, triggers, and arguments in the entire document, helping
it to find new nodes and arcs which would be hard to get otherwise.

After collection comes final decoding (Lines 5 - 8). Here, we again perform SEARCH. Now, we also
perform weight updates as soon as they are necessary. The final output of the algorithm is the final sate
of r.

5.2 New Features

In this subsection we describe the new features we use. First, we will describe new local features. Then,
we will describe the global features needed for our Incremental Global Inference. Table 2 summarizes
the features we describe in the following. The first column reports feature types (local or global), the
second column reports class requirements (triggers or arguments), the third column reports conditions
under which features fire, and the last column gives short descriptions.

Local Features

The first local feature we introduce to event extraction is based on so-called hidden units (Das et al.,
2014). The hidden units of an event type are the exclusive triggers it has in the training data. Hidden
units define a semantic space for their event types. Measuring semantic relations of the node under
consideration with this space helps to find triggers never seen during training. For example, let the
candidate trigger be meeting and the candidate event type be MEET. We have several hidden units of
MEET sharing semantic relations with the predominant sense of meeting: convention and summit as
WordNet hypernyms (Fellbaum, 1998), and meet as a morphological variant. We can draw features from
the hidden units themselves and from the semantic relations involved.

The second local feature we introduce to event extraction is based on dependency graphs between
triggers and arguments. We collect all these graphs in the training data and index them by the involved
argument and entity types. For example, we collect all graphs between MEET events and their Place

nsubjpass nmod:in

arguments. One such graph is the following: MEET —— set «+—— LOC/Place , coming from sentences
like The meeting was set in Beijing, or The conference was set in New York. The graph encodes that a

3Initially, the decision map is empty.

2284

MEET event trigger is the passive subject of set, and a LOC entity/a Place argument is connected via
the nominal modifier in to the same word.

Note that the base system also uses dependencies to characterize syntactic connections of triggers and
arguments. We extend this feature type in two important ways. First, we normalize dependency graphs
by entity types, event types, or roles. Second, we can utilize dependency graphs during trigger prediction.
The base system is always limited to the left context. When it predicts a trigger, it misses arguments to
the right of it. Our Incremental Global Inference makes the entire sequence of entity mentions/event
arguments available, regardless of the actual decoding position. This increases the chance to find the
MEET trigger in our example, which may in turn influence other decisions in the next decoding pass.

eventmeet trigger. However, Incremental Global Inference makes the entire mention sequence avail-
able, regardless of the actual decoding position, increasing the chance to find the MEET trigger in our
example, which may in turn influence other argument or entity mention decisions in the next decoding
pass.

Global Features

We now describe the global features we use for our Incremental Global Inference. The global feature
function takes two arguments (n, m), where n is the argument or trigger under consideration, and m is a
trigger or argument coming from the entire document.

We have three types of global features. The first applies to triggers and catches all event types present
in the document. As Liao and Grishman (2010) show, certain event types often co-occur, e.g. ATTACK
and DIE often co-occur in news documents.

Another feature type fires if two triggers have equal event types and equal lemmas®. This is based on
the observation that one word tends to trigger the same event type within one document (Ji and Grishman,
2008). This is strongly related to the ‘one sense per discourse’ assumption (Gale et al., 1992).

The third feature type applies to triggers and arguments. It catches event types of events with coreferent
arguments, and the roles entities play in events. In ACE, an entity usually plays the same role for events
with the same type (which is again realated to the ‘one sense per discourse’ assumption) and plays
coherent roles for events with different types (Liao and Grishman, 2010). For example, if an entity is
the Target of an ATTACK event, it rarely becomes the Attacker, at least not within one document.
However, the same entity may be the Victimof a DIE event, but never the Agent. In order to increase
recall of our coreference resolution system, we regard all non-pronoun string matches as coreferent, as
well as partial string matches if the involved entities are persons.

6 Evaluation

In the following, we describe the data sets and the evaluation metrics we used. We report evaluation
numbers and discuss them.

6.1 Data and Evaluation Metrics

We devise evaluation on two data sets, namely on ACE 2005 and on the Event Nugget data of TAC 2015.
For the TAC evaluation, we use the official training and test sets. We manually split the training set
into 132 documents for training and 26 for development. The test set consists of 202 documents. We
removed the lemmas ‘it’ and ‘say’ from decoding because they proved to be highly ambiguous (Reimers
and Gurevych, 2015).

For the ACE evaluation, we adopt the evaluation setting of Li et al. (2014). We train on English
documents and remove the two smallest and most informal parts of the data, ‘conversational telephone
speech’ and ‘Usenet newsgroups’. From the remaining 511 documents, 351 are used for training, 80 for
development, and 80 for testing. For direct comparison we use the same data split as Li et al. (2014).
We set the beam size to 8. For Incremental Global Inference we perform 3 iterations. After each training
epoch, we measure performance on the development set (in terms of trigger and argument F;) and use
the model with the best overall performance for evaluation on the test set.

“In case of multi-word triggers, we take the lemma of each token.

2285

Triggers Arguments
Identification Classification Identification Classification
System P R F; P R Fq P R Fq P R Fq
Baseline | 67.2 | 62.2 | 64.6 | 64.7 | 59.9 | 62.2 | 70.7 | 36.6 | 48.2 | 57.3 | 29.7 | 39.1
IGI 67.0 | 659 | 66.5 | 64.2 | 63.1 | 63.7 | 76.1 | 40.8 | 53.1 | 59.9 | 32.1 | 41.8

(a) Trigger and argument performance. ‘Identification’ reports performance without trigger type/argument role assignment.
ATTACK(206) TRANSPORT(98) DIE(49) MEET(42)
System P R F; P R F; P R F P R F;
Baseline | 72.1 | 71.4 | 71.7 | 44.0 | 49.0 | 464 | 64.6 | 85.7 | 73.7 | 66.7 | 76.2 | 71.1
1GI 70.1 | 71.8 | 71.0 | 48.1 | 53.1 | 50.5 | 63.8 | 89.8 | 74.6 | 70.2 | 78.6 | 74.2

(b) Trigger classification performance for the four most frequent event types.
Triggers Arguments
System P R Fy P R Fy
Lietal. (2014) 679 | 62.8 | 65.3 | 64.7 | 353 | 45.6
Lietal. (2014) rerun | 66.4 | 60.2 | 63.1 | 61.3 | 30.2 | 404
Baseline 64.7 | 59.9 | 62.2 | 57.3 | 29.7 | 39.1

(c) Trigger and argument classification performance. This is a comparison of results published by Li et al. (2014), a version
retrained by us (‘rerun’), and our reimplementation of the system.

Table 3: Micro-averaged precision, recall, and F; for the baseline and IGI on the ACE 2005 test set, and
for our baseline compared to published results in Li et al. (2014) and our run using their code. Numbers
in bold are the better numbers for the respective measure. Numbers in parentheses are frequencies in the
test set.

Triggers
Identification Classification
System P R Fy P R F,
Baseline | 87.3 | 47.0 | 61.1 | 73.3 | 39.5 | 51.3
IGI 77.1 | 54.7 | 64.0 | 64.1 | 45.5 | 53.3

(a) Trigger performance. ‘Identification’ reports performance without event type assignment.
ATTACK(591) CONTACT(587) TRANSF .MNY(554) | BROADCAST(510)
System P R F1 P R F1 P R F1 P R F1
Baseline | 69.0 | 38.4 | 493 | 43.5 | 114 | 181 | 71.9 | 29.1 | 414 | 44.0 | 20.8 | 28.2

IGI 673 | 43.5 | 52.8 | 335 | 11.1 | 16.6 | 554 | 343 | 424 | 425 | 304 | 354

(b) Trigger classification performance for the four most frequent event types.

Table 4: Micro-averaged precision, recall and F; for the baseline and IGI on the TAC 2015 test set. In
TAC 2015 only event trigger annotations are available. Numbers in bold are the better numbers for the
respective measure. Numbers in parentheses are frequencies in the test set.

We follow standard evaluation criteria for triggers and events (Ji and Grishman, 2008). A trigger is
correct, if its span and event type match a reference trigger. An argument is correct, if its span, event
type, and role match a reference argument.

Our evaluations report identification and classification of event triggers and arguments. An event trig-
ger or argument is correctly identified if its offsets match a reference trigger or argument, and correctly
classified, if there is an additional match in event type or role. In all evaluations, we report micro-
averaged precision (P), recall (R), and F;. We devise two evaluation lines: We evaluate trigger and
argument identification and classification on the one hand, and trigger classification performance for the
four most frequent event types in ACE 2005 and TAC 2015 on the other hand.

2286

6.2 Experiments and Results

Table 3 reports evaluation results for triggers and arguments on ACE 2005. Comparing the baseline
with IGI in Table 3a we can see that IGI gives a considerably higher recall and F; for triggers, and a
higher precision, recall, and F; for arguments, both, in terms of identification and classification. For
identification, IGI increases trigger performance by 1.9 F; points and argument performance by 4.9 F;
points. For classification, IGI improves 1.5 F; points for triggers, and 2.7 F; points for arguments.

The same trends can be observed for TAC 2015 (Table 4a). TAC 2015 offers trigger annotations only.
For IGI, trigger identification improves by 2.9 F; points, and classification improves by 2 F; points
compared to the baseline.

We now look at the classification performance of the four most frequent event types for both, ACE
2005 (Table 3b) and TAC 2015 (Table 4b). On both data sets, IGI improves F; for three of the four most
frequent event types. For ACE 2005, Transport and Meet have higher precision and recall compared
to baseline performance. At tack loses precision with IGI, resulting in a similar F; as the baseline. For
TAC 2015, Contact loses precision and recall with IGI, resulting in a lower F;. In all other cases, IGI
considerably increases recall, at the expense of precision. For ACE 2005, the event type with most Fy
improvement using IGI is Transport (+4.1 points), a very difficult event type. For TAC 2015, the
event type with most F; improvement using IGI is Broadcast, again a very difficult event type.

Table 3c is as a comparison of our reimplementation of Li et al. (2014) and the numbers they report.
The first column (‘Li et al. (2014)’) reports published results from the respective paper. Column ’Li et
al. (2014) rerun’ reports performance of the source code we received from the authors. ‘Baseline’ is our
baseline, a reimplementation of their system. We first compare published results with our rerun of the
reference system (Lines 1 and 2). We can see that the published evaluation numbers and the numbers for
our rerun of the reference system (using source code we received from the authors) do not match. We can
only speculate about the reasons. The biggest difference we can spot is that the source code we received
does not use the output of a frame-semantic parser for FrameNet features. It uses all possible frames
for a given word instead, if the number of possible frames does not exceed 2. Li et al. (2014) report a
gain of 0.8 F; points for triggers, and a gain of 2.2 F; points for arguments when using a frame-semantic
parser. Since the source code we received already uses frames, we expect to gain only a fraction of this
improvements using a full-fledged frame-semantic parser. We believe the feature set has changed slightly
until we received the source code. It is not easy to reproduce published results (Fokkens et al., 2013).
Comparing our reimplementation with our rerun of the reference system (Lines 2 and 3) we can see that
the respective performances are close.

7 Conclusions

We presented a method to make the global, document-wide context available to a state-of-the-art, intra-
sentential event extractor. The method is an incremental approach: With every iteration it collects new
triggers and arguments from the entire document and makes them available to the intra-sentential base
system for another decoding pass. Our method leads to considerable increases in recall and F; for
triggers across different data sets and different event types, and to considerable increases in all measures
for arguments.

Lemma matches and coreferent arguments as nuclei for global decoding are only a start. Future
research has to investigate other similarity measures based on, e.g., WordNet and word vectors, and
to explore the benefits of discourse structure for event extraction.

Acknowledgments

This work has been funded by the Klaus Tschira Foundation, Heidelberg, Germany. The first author
has been supported by a HITS PhD scholarship. We thank the anonymous reviewers for their helpful
comments.

2287

References

David Ahn. 2006. The stages of event extraction. In Proceedings of the Workshop on Annotating and Reasoning
about Time and Events, Sydney, Australia, 23 July 2006, pages 1-8.

Yee Seng Chan and Dan Roth. 2011. Exploiting syntactico-semantic structures for relation extraction. In Pro-
ceedings of the 49th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
Portland, Oreg., 19-24 June 2011, pages 551-560.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and Jun Zhao. 2015. Event extraction via dynamic multi-pooling
convolutional neural networks. In Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Beijing, China, 26-31 July 2015, pages 167-176.

Dipanjan Das, Desai Chen, André F. T. Martins, Nathan Schneider, and Noah A. Smith. 2014. Frame-semantic
parsing. Computational Linguistics, 40(1):9-56.

Christiane Fellbaum, editor. 1998. WordNet: An Electronic Lexical Database. MIT Press, Cambridge, Mass.

Antske Fokkens, Marieke van Erp, Marten Postma, Ted Pedersen, Piek Vossen, and Nuno Freire. 2013. Offspring
from reproduction problems: What replication failure teaches us. In Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), Sofia, Bulgaria, 4-9 August 2013,
pages 1691-1701.

William A. Gale, Kenneth W. Church, and David Yarowsky. 1992. One sense per discourse. In Proceedings of the
DARPA Speech and Natural Language Workshop, New York, N.Y., 23-26 February 1992, pages 233-237.

Ralph Grishman, David Westbrook, and Adam Meyers. 2005. NYU’s English ACE 2005 system description.
Technical report, Department of Computer Science, New York University, New York, N.Y.

Yu Hong, Jianfeng Zhang, Bin Ma, Jianmin Yao, Guodong Zhou, and Qiaoming Zhu. 2011. Using cross-entity
inference to improve event extraction. In Proceedings of the 49th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), Portland, Oreg., 19-24 June 2011, pages 1127-1136.

Liang Huang, Suphan Fayong, and Yang Guo. 2012. Structured perceptron with inexact search. In Proceedings of
the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Montréal, Québec, Canada, 3-8 June 2012, pages 142—151.

Heng Ji and Ralph Grishman. 2008. Refining event extraction through cross-document inference. In Proceedings
of the 46th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies,
Columbus, Ohio, 15-20 June 2008, pages 254-262.

Qi Li and Heng Ji. 2014. Incremental joint extraction of entity mentions and relations. In Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Baltimore, Md.,
22-27 June 2014, pages 402—412.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event extraction via structured prediction with global features.
In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), Sofia, Bulgaria, 4-9 August 2013, pages 73-82.

Qi Li, Heng Ji, Yu Heng, and Sujian Li. 2014. Constructing information networks using one single model.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Qatar,
25-29 October 2014, pages 1846-1851.

Shasha Liao and Ralph Grishman. 2010. Using document level cross-event inference to improve event extraction.
In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, Uppsala, Sweden,
11-16 July 2010, pages 789-797.

Wei Lu and Dan Roth. 2012. Automatic event extraction with structured preference modeling. In Proceedings
of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Jeju
Island, Korea, 8—14 July 2012, pages 835-844.

Teruko Mitamura, Liu Zhengzhong, and Eduard Hovy. 2015. Overview of TAC KBP 2015 Event Nugget Track. In
Proceedings of the Eighth Text Analysis Conference, National Institute of Standards and Technology, Gaithers-
burg, Maryland, USA, 16-17 November 2015.

Roberto Navigli and Mirella Lapata. 2007. Graph connectivity measures for unsupervised word sense disam-
biguation. In Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad,
India, 612 January 2007, pages 1683—1688.

2288

Thien Huu Nguyen and Ralph Grishman. 2015. Event detection and domain adaptation with convolutional neural
networks. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), Beijing, China, 26-31 July 2015, pages 365-371.

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Grishman. 2016. Joint event extraction via recurrent neural
networks. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, San Diego, Cal., 12—17 June 2016, pages 300-309.

Nils Reimers and Iryna Gurevych. 2015. Event Nugget Detection, Classification and Coreference Resolution
using Deep Neural Networks and Gradient Boosted Decision Trees. In Proceedings of the Eighth Text Analysis
Conference, National Institute of Standards and Technology, Gaithersburg, Maryland, USA, 16—-17 November
2015.

Sunita Sarawagi and William W. Cohen. 2004. Semi-Markov conditional random fields for information extraction.
In Proceedings of Advances in Neural Information Processing Systems 17. Vancouver, B.C., Canada, 13-18
December 2004, pages 1185-1192.

Bishan Yang and Tom Mitchell. 2016. Joint extraction of events and entities within a document context. In

Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 289-299. Association for Computational Linguistics.

2289

