
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers,
pages 2164–2173, Osaka, Japan, December 11-17 2016.

Hierarchical Permutation Complexity for Word Order Evaluation

Miloš Stanojević Khalil Sima’an
Institute for Logic, Language and Computation (ILLC)

University of Amsterdam
{initial.last}@uva.nl

Abstract

Existing approaches for evaluating word order in machine translation work with metrics com-
puted directly over a permutation of word positions in system output relative to a reference
translation. However, every permutation factorizes into a permutation tree (PET) built of pri-
mal permutations, i.e., atomic units that do not factorize any further. In this paper we explore
the idea that permutations factorizing into (on average) shorter primal permutations should rep-
resent simpler ordering as well. Consequently, we contribute Permutation Complexity, a class of
metrics over PETs and their extension to forests, and define tight metrics, a sub-class of metrics
implementing this idea. Subsequently we define example tight metrics and empirically test them
in word order evaluation. Experiments on the WMT13 data sets for ten language pairs show that
a tight metric is more often than not better than the baselines.

1 Introduction

MT evaluation involves at least two factors, word order (syntactic) and adequacy (semantic). Conceiv-
ably, MT system developers could use diagnostic tools based on metrics dedicated to each factor sepa-
rately. Word order metrics are frequently used to evaluate pre-ordering components, e.g., (Herrmann et
al., 2011; Bisazza and Federico, 2013), or for analyzing specific reordering phenomena, e.g., (Bisazza
and Federico, 2013; Xiang et al., 2011; Braune et al., 2012). Other uses include, ordering component
tuning, e.g., (Gao et al., 2011; Neubig et al., 2012; DeNero and Uszkoreit, 2011; Katz-Brown et al.,
2011; Hall et al., 2011), measuring divergence between languages (Birch et al., 2008), and matching
gene sequences in bioinformatics (Eres et al., 2004).

For evaluating word order, a permutation is induced between a system output and the corresponding
reference translation. Existing work uses metrics over permutations such as Kendall’s tau (Lapata, 2006;
Birch and Osborne, 2011), Spearman (Isozaki et al., 2010), Hamming, Ulam (Birch et al., 2010) and
Fuzzy Score (Talbot et al., 2011). Approximately, Kendall’s tau, Spearman and Hamming measure
correct individual position or correct relative pairs, whereas Ulam and Fuzzy Score measure monotone
units (contiguous or not).

A word order metric measures how similar a permutation is to the monotone (or identity) permutation.
Here we advocate the idea that a suitable metric must also assign similar values to similar permutations.
Crucially, factorizing a permutation into a Permutation Tree (PET) reveals its atomic building blocks,
called primal permutations (Albert and Atkinson, 2005; Gildea et al., 2006). In this view, permutations
that factorize into similar PETs should be similar. Some previous work (Stanojević and Sima’an, 2014a;
Stanojević and Sima’an, 2014b) has used PETs for evaluation, but without attempting to explain the
effect of factorization. Next we motivate the idea that, all other things being equal, the more factorizable
a permutation the simpler it is in terms of ordering.

Informally, a PET for permutation π is a tree where the nodes are labeled with operators (Figure 1).
The fringe of every subtree in a PET is a sub-permutation of π, i.e., a contiguous sub-sequence isomor-
phic with a permutation.1 Consider πa = 〈6, 1, 4, 2, 3, 5〉 and πb = 〈6, 1, 5, 2, 3, 4〉. Their PETs (two

1Akin to a phrase pair in MT.

2164

left-most in Figure 1) are built from monotone 〈1, 2〉 or inverted 〈2, 1〉 operators only. Two local inver-
sions 〈2, 1〉 could turn each of πa and πb into monotone. Permutation πc = 〈2, 4, 5, 6, 1, 3〉 (right-most
Figure 1) demands 〈2, 4, 1, 3〉 at the root to bring it to monotone. In contrast, πd = 〈6, 2, 4, 1, 5, 3〉
does not yield to factorization because it does not properly contain sub-permutations; Non-factorizable
permutations are called primal permutations,2 and they constitute the atomic building blocks for all per-
mutations (Albert and Atkinson, 2005) – see Section 3. Hence, πd demands itself to convert it into
monotone. In this view, πa and πb signify potentially simpler ordering than πc, which is simpler than πd.

〈2, 1〉
6 〈1, 2〉

〈1, 2〉
1 〈2, 1〉

4 〈1, 2〉
2 3

5

〈2, 1〉
6 〈1, 2〉

1 〈2, 1〉

5 〈1, 2〉
〈1, 2〉
2 3

4

〈2, 4, 1, 3〉

2 〈1, 2〉
4 〈1, 2〉

5 6

1 3

Figure 1: Three permutations and their PETs

Conveniently, PETs show two aspects of per-
mutations: recursive grouping and primal build-
ing blocks. In this paper we introduce Permuta-
tion Complexity, a class of metrics over PETs,
exploiting hitherto untapped discerning proper-
ties of permutations. A. Similarity: different
permutations often share primal permutations.
B. Factorizability: some permutations factorize
into shorter primal permutations but others do
not. C. Hierarchy: factorizing permutations ex-
poses their hierarchical grouping. Practically
speaking, metrics over PETs should be attractive
because they parameterize in terms of primal permutations and bracketing structure.

From our Permutation Complexity viewpoint we see PET factorization as compression using a code
book of primal permutations. Consequently, we introduce tight metrics, a sub-class that assigns a smaller
complexity to a PET than to any less factorized structure of the same permutation, with the intuition that
more factorization should reveal simpler building blocks. In this paper, we contribute: (1) Foundational
formalization of tight complexity metrics over permutations, (2) An extension of PETs (Gildea et al.,
2006) to forests to capture the potential relevance of brackettings for evaluation, (3) Novel metrics for
reordering evaluation, and (4) Experiments on system ranking in MT. Our experiments show that the new
tight (and semi-tight) metrics perform competitively over a range of language pairs, which provides the
first evidence for a complexity-based factor in evaluation.

2 Existing metrics (Baselines)

We define evaluation metrics in the range [0, 1] with the interpretation the higher the score the better.
Whilst this is natural for MT evaluation, for a formal treatment of complexity, as in Section 4, it is natural
that complexity is interpreted as “the higher the more complex”. The two notions are easily converted to
each other after normalization.

KENDALL(π) =
∑n−1
i=1

∑n
j=i+1 δ[π(i)<π(j)]

(n2−n)/2

HAMMING(π) =
∑n
i=1 δ[πi=i]

n

SPEARMAN(π) = 1− 3
∑n
i=1(πi−i)2
n(n2−1)

ULAM(π) = LCS(π,IDn1)−1
n−1

FUZZY(π) = 1− c−1
n−1

where c is # of monotone sub-permutations

Figure 2: Common metrics over permutations

A permutation π over [1..n] (subrange of the pos-
itive integers) is a bijective function from [1..n] to
itself. To represent permutations we will use angle
brackets as in 〈2, 4, 3, 1〉. Given a permutation π over
[1..n], the notation πi (1 ≤ i ≤ n) stands for the inte-
ger in the ith position in π; π(i) stands for the index
of the position in π where integer i appears; and πji
stands for the (contiguous) sub-sequence of integers
πi, . . . πj . The length of π is simply |π| = n.

The baselines are the existing metrics over permu-
tations, including KENDALL’s tau, HAMMING and ULAM

used in (Birch and Osborne, 2010; Birch and Os-
borne, 2011; Birch et al., 2010; Isozaki et al., 2010);
SPEARMAN rho used in (Isozaki et al., 2010); and
FUZZY Reordering Score used in (Talbot et al., 2011), which is a reordering measure extracted from

2Also known as simple or non-decomposable (Brignall, 2010) – note the analogy with prime numbers.

2165

2 4 5 6 1 3

<2,4,5,6,1,3>

(a) Original permutation

〈2, 4, 1, 3〉

2 〈1, 2, 3〉

4 5 6

1 3

(b) Factorization step

〈2, 4, 1, 3〉

2 〈1, 2〉
4 〈1, 2〉

5 6

1 3

(c) PET

〈2, 4, 1, 3〉

2 〈1, 2〉
〈1, 2〉
4 5

6

1 3

(d) Another PET

Figure 3: Permutation factorization leading to PETs

METEOR (Denkowski and Lavie, 2011). Figure 2 lists the definitions of these metrics. In these defi-
nitions, LCS stands for Longest Common Subsequence, Kronecker δ[a] which is 1 if (a = true) else
zero, and IDn1 = 〈1, · · · , n〉 which is the identity permutation over [1..n]. Next we present an alternative
view of permutations.

3 Factorization and order complexity

In factorization we seek to decompose a permutation to reveal a tree of its atomic ordering patterns.
Figure 3 shows the factorization process applied to π = 〈2, 4, 5, 6, 1, 3〉. It starts out by representing π as
a tree with root decorated with π itself (Figure 3a). In every step we seek the minimal number of adjacent
sub-permutations. For 〈2, 4, 5, 6, 1, 3〉 this minimal number is four, namely {2}, {4, 5, 6}, {1} and {3}.
The first step leads to Figure 3b, where the sub-permutations are represented as subtrees with roots
decorated with operators (permutations) over their child nodes. Applying factorization recursively to
〈4, 5, 6〉 leads to choices in binarization because both {4, 5} and {5, 6} are sub-permutations (Figures 3c
and 3d). Next we summarize the formal results underlying factorization.

Primal permutations3 are permutations that do not properly contain sub-permutations. Example com-
mon primal permutations are 〈1, 2〉, 〈2, 1〉 and 〈2, 4, 1, 3〉. Primal permutations signify the atomic re-
orderings. The following result shows they are also the building blocks of all permutations.

Factorization (Albert and Atkinson, 2005) Every permutation π can be written4 as σ[π1, · · · , πm], where
σ is primal and unique, and each πj is a sub-permutation of π. If m ≥ 4 then π1, · · · , πm are unique.

The uniqueness of σ and π1, · · · , πm for m ≥ 4 is crucial for efficiency (Section 5). We call m the
arity of π, written a(π) (or simply a). For example, 〈4, 2, 3, 1〉 has arity 2: σ = 〈2, 1〉, π1 = 〈4, 2, 3〉
and π2 = 〈1〉. Applying Albert & Atkinson’s result recursively factorizes π into PETs, see (Gildea et
al., 2006) and Section 5 for efficient algorithms.

Permutation complexity is the class of metrics over PETs. This class includes ground metrics over
primal permutations (operators), and higher-order metrics over PETs for other factorizable permutations.

〈2, 4, 5, 1, 3〉

2 4 〈1, 2〉
5 6

1 3

Figure 4: Weak factoriza-
tion

In a trivial sense, useful here, the existing baseline metrics can be seen
as operating over weaker kinds of factorization which leave (parts of) π
unfactorized.

Weak factorization A permutation π is a weak factorization (WF) of itself,
represented as a single node with operator equivalent to π. The process
applies recursively factorizing an operator in a given weak factorization
τ into any number of sub-permutations (not necessarily minimal). Weak
factorization may terminate at any point.

Intuitively, we would like permutation complexity metrics to be sensitive to factorization into primal
permutations. This can be achieved by imposing a partial order over the different weak factorizations

3Also known as simple or non-decomposable permutations.
4The notation σ[π1 · · ·πm] stands for a sequence of sub-permutations π1 · · ·πm which is permuted by σ.

2166

of the same permutation, assigning minimal complexity to PET factorizations. Next we formalize the
notion of tight metrics implementing this intuition.

4 Permutation complexity: Tight metrics

A complexity metric C(·) is a function from weak factorizations to non-negative reals.

Tight/Semi-tight metrics A complexity metric C(·) is tight for a non-primal permutation π iff for
every two weak factorizations τx 6= τy of π holds: if τx factorizes into τy then C(τx)>C(τy). A semi-
tight metric fulfills the weaker requirement C(τx) ≥ C(τy) for all cases except when τx is the flattest
weak factorization (single node) and C(τy) is a PET, where it strictly requires C(τx) > C(τy).

A metric C(·) is tight iff it is tight for all π. It is semi-tight if it is semi-tight for at least one π and
tight otherwise.

Let wf be a weak factorization and let Owf be the multi-set of (non-leaf) node operators (permuta-
tions). We now narrow our attention to functions F (·) over the multi-set Owf , i.e., C(wf) = F (Owf).
This means that we are disregarding the bracketing structure of wf . In Section 5 we incorporate bracket-
tings by extending this framework to forests.

What should metric F (Owf) fulfill to be tight? We will parameterize F (·) with a ground metric Co(·)
over node operators, i.e., FCo(·). The idea here is that higher-order metrics over PETs can better dele-
gate local operator complexity to a dedicated ground metric defined directly over operators, particularly
primal permutations.

An operator complexity function Co(op) monotone non-decreasing5 in operator length |op| imple-
ments the idea that longer primal permutations are more complex,6 cf. (Brignall, 2010) Theorem 2.2.:

Every primal permutation of length n ≥ 2 contains another primal permutation of length
(n− 1) or (n− 2) (Schmerl and Trotter, 1993).

For example, 〈2, 4, 1, 5, 3〉 contains 〈2, 4, 1, 3〉, and the latter contains 〈2, 1〉.7
Now we look at functions FCo(·) that are monotone increasing in the arithmetic average of Co(·):

AVGCo(wf)= 1
|Owf |×

∑
op∈Owf Co(op). For semi-tightness MAXCo(wf) is suitable. The following theo-

rem says that a metric is tight if it assigns lower complexity to a permutation factorizing into a PET with
shorter average primal permutation length.

Theorem 1 A metric C(·) is tight (semi-tight) if for some Co(·), monotone non-decreasing in operator
length, metric C(·) is monotone increasing (respectively non-decreasing) in AVGCo(·).
Proof Assume τ0 factorizes to τj in a number of steps j ≥ 1. In every step τi−1 to τi, one operator op
in τi−1 of length |op| > 2 factorizes into σ[op1, · · · , opm], where m ≥ 2. By the nature of factorization,
|σ| = m and

∑m
i=1 |opi| = |op|. Let O− stand for multi-set O excluding op. The average length of

operators in τi is 1
|Oτi | × (

∑
p∈Oτi |p|); it can be rewritten into 1

m+|Oτi−1 | × (m+ |op|+ ∑
p∈O−τi−1

|p|)

and again into 1
m+|Oτi−1 | × (m+

∑
p∈Oτi−1

|p|). The desired inequality
m+

∑
p∈Oτi−1

|p|
m+|Oτi−1 | <

∑
p∈Oτi−1

|p|
|Oτi−1 |

holds under the condition that
∑

p∈τi−1
|p| > |Oτi−1 |, i.e., the average length of operators in a weak

factorization is greater than the number of non-leaf nodes. The latter is a tautology because the branch-
ing factor of any node is always two or more. Tightness (semi-tightness) follows if C(·) is monotone
increasing (respectively monotone non-decreasing) in AVGCo(·) when Co is monotone non-decreasing
in operator length.

In other words, a metric assigning lower complexity to more factorizable permutations (by average
operator length) is tight, i.e., it allows comparing permutations by the smallest complexity assigned to
them within this framework. In Figure 3, a tight metric C(·) assigns C(3a) > C(3b) > C(x) for

5Co(op) could be monotone increasing, but the weaker requirement is sufficient. Practically, we could parameterize Co(op)
in operator-clusters and train it on data.

6A further practical requirement is Co(op) = 0 iff op = 〈1, 2〉. But this is not necessary for tightness.
7By definition a primal permutation cannot be a sub-permutation of another primal permutation.

2167

x ∈ {3c, 3d}. A semi-tight metric assigns complexity scores such that either C(3a) ≥ C(3b) > C(x)
or C(3a) > C(3b) ≥ C(x) for x ∈ {3c, 3d}.

An example tight metric is the number of nodes in a PET; the more nodes the shorter the average
length of primal operators. Beside maximum operator length, another semi-tight metric is the number of
non-binary branching nodes in a PET.

〈2, 1〉

〈2, 1〉
〈2, 4, 1, 3〉

5 7 4 6

3

〈1, 2〉
1 2

(a) PET 〈5, 7, 4, 6, 3, 1, 2〉.

〈2, 1〉
4 〈2, 1〉

3 〈2, 1〉
2 1

〈2, 1〉

4 〈2, 1〉
〈2, 1〉
3 2

1

〈2, 1〉
〈2, 1〉
4 3

〈2, 1〉
2 1

〈2, 1〉
〈2, 1〉

〈2, 1〉
4 3

2

1

〈2, 1〉

〈2, 1〉
4 〈2, 1〉

3 2

1

(b) Five different PETs for π = 〈4, 3, 2, 1〉.

3× 〈2, 1〉
4 3 2 1

(c) Flattened PET

Figure 5: In 5a and 5b PETs for different permutations. In 5c a flattened PET for the five in 5b.

5 From permutation trees to forests

For many computational purposes, a single canonical PET is sufficient, cf. (Gildea et al., 2006). A single
PET can be computed in linear-time, cf. (Uno and Yagiura, 2000; Zhang and Gildea, 2007). Crucial for
efficiency is the uniqueness of the sub-permutations for factorizations of arity a ≥ 4 (see Albert and
Atkinson’s result – Section 3), i.e., there is a single choice for a set of split points between adjacent
sub-permutations. For arity a = 2, there are at most (n − 1) choices for a single split point, if |π| = n.
This is also crucial for our Permutation Forest algorithm defined next.

Some permutations factorize into multiple alternative PETs (see Figure 5b). The alternative PETs of
π can be packed into an O(n2) permutation forest (PEF).

Function PEF(i, j, π,F);
Args: sub-perm. π over [i..j] and forest F
Output: Parse-Forest F(π) for π;

begin
1. if ([[i, j, ?]] ∈ F) then return F ; #memoization
2. a := a(π);
3. if a = 1 return F := F ∪ {[[i, j, ∅]]};
4. For each set of split points {l1, . . . , la−1} do
5. p := RANKLISTOF(πl11 , π

l2
(l1+1), . . . , π

n
(la−1+1));

6. Iji := Iji ∪ [p, l1, . . . , la−1];
7. For each πv ∈ {πl11 , πl2(l1+1), . . . , π

n
(la−1+1)} do

8. F := F ∪ PermForest(πv);
9. F := F ∪ {[[i, j, Iji]]};
10. Return F ;
end;

Figure 6: Pseudo-code of permutation-forest fac-
torization algorithm. Function a(π) returns the ar-
ity of π. Function RANKLISTOF(r1, . . . , rm) employs
Counting Sort (Cormen et al., 2001) to sort the sub-
permutations r1, . . . , rm as integer ranges in O(n),
and returns a permutation p over [1..m] signifying
their order. The top-level call is PEF(π, 0, n, ∅). We
will use PEF(π) thereby overloading PEF(·).

Flattened PET In a PET, chains of binary op-
erators, either all inverted or all monotone, can
be flattened leading to a special kind of packed
representation. For example, the monotone op-
erators in the PETs in Figures 3c and 3d can
be flattened into the representation in Figure 3b.
Therefore, we distinguish this from regular fac-
torization by writing the encapsulated chain ex-
plicitly as in 3 × 〈2, 1〉 in Figure 5c. This no-
tation means that all binarizations of this order
are allowed under that node. Various metrics de-
fined in the next section are computed without
the need to unpack this representation (e.g., the
number of possible binarizations), which leads
to algorithms over PEFs in O(n). In the sequel
we refer to function FLAT(PET) which “flat-
tens” PET in this fashion.

A permutation forest (akin to a parse forest)
F for π (over [1..n]) is a data structure consist-
ing of a subset of {[[i, j, Iji]] | 0 ≤ i ≤ j ≤ n},
where Iji is a (possibly empty) set of inferences
for πji+1. If πji+1 is a sub-permutation and it has
arity a ≤ (j − (i + 1)), then each inference
consists of a a-tuple [p, l1, . . . , la−1], where the
operator p is the permutation of the a sub-
permutations (“children” of πji+1), and for each
1 ≤ x ≤ (a − 1), lx is a “split point” which is
given by the index of the last integer in the xth sub-permutation in π.

2168

Let us exemplify the inferences on π = 〈4, 3, 2, 1〉 (see Figure 5b) which factorizes into pairs of
sub-permutations (a = 2): a split point can be at positions with index l1 ∈ {1, 2, 3}. Each of these
split points (factorizations) of π is represented as an inference for the same root node which covers the
whole of π (placed in entry [0, 4]); an inference here consists of the permutation 〈2, 1〉 (swapping the two
ranges covered by the children sub-permutations) together with a− 1 indexes l1, . . . , la−1 signifying the
split points of π into sub-permutations: since a = 2 for π, then a single index l1 ∈ {1, 2, 3} is stored
with every inference. For the factorization ((4, 3), (2, 1)) the index l1 = 2 signifying that the second
position is a split point into 〈4, 3〉 (stored in entry [0, 2]) and 〈2, 1〉 (stored in entry [2, 4]). For the other
factorizations of π similar inferences are stored in the permutation forest.

Figure 6 shows a simple top-down factorization algorithm which starts out by computing the arity a
using function a(π). If a = 1, a single leaf node is stored with an empty set of inferences. If a > 1 then
the algorithm computes all possible factorizations of π into a sub-permutations (a sequence of a−1 split
points) and stores their inferences together as IJi associated with a node in entry [[i, j, Iji]]. Subsequently,
the algorithm applies recursively to each sub-permutation.

The Albert and Atkinson uniqueness results for a ≥ 4 implies that the number of sets of split points
is exactly one. For a = 2 there are at most n− 1 such sets. This means that line 4 in Figure 6 is at most
linear in n. Similarly for a ≥ 4 line 7 does at most (n − 1) recursive calls, and for a = 2 only two. In
total, this algorithm has time complexity O(n3).

6 Evaluation metrics by factorization

|PET|(π) = COUNTnode(PET (π))−1
n−2

#PETs(π) = COUNTpet(PEF(π))−1
COUNTpet(PEF(IDn))−1

MAX|Op|(π) = 1− MaxOp(PET (π))−2
n−2

Figure 7: Summary of metrics: COUNTnode
is number of nodes in PET (π);
MaxOp(PET) is maximum operator
length in PET ; COUNTpet(PEF) returns
count of PETs in PEF .

So far we presented the Permutation Complexity class of
metrics and defined tightness. In this section we present
example tight and semi-tight metrics.

The (semi-)tight metrics presented next are linear-
time in permutation length. Each of these metrics con-
centrates on one aspect of PETs/PEFs: factorization ex-
tent (|PET|), bracketing freedom (#PETs), and maxi-
mum arity (MAX|Op|). These example metrics are sum-
marized in Figure 7.

|PET|(π) is the ratio of number of nodes in a PET of
π to the number of nodes in PET for IDn. This is a tight
metric cf. Section 4.

#PETs(π) is the ratio of number of different PETs that π factorizes into to this number for a fully
monotone permutation. This metric is semi-tight: consider a flattened PET together with a complexity
function based on average operator length – taking into account that flattened nodes receive operator
length expressed as monotone decreasing in the Catalan number.

MAX|Op|(π) is one minus the normalized maximum operator length in a PET of π (normalized by the
range of lengths, i.e., [2..n]).

Having defined tight and semi-tight metrics, next we will evaluate these metrics against a gold stan-
dard: human judgements in MT.

7 Experimental setting

Data We use human rankings of translations from WMT13 (Bojar et al., 2013) for ten language pairs
with a diverse set of MT systems.

Meta-evaluation We conduct system level meta-evaluation by following the method used in
(Macháček and Bojar, 2013). All MT systems were first ranked by the ratio of the times they were
judged to be better than some other system. All the metrics that we tested compute system level scores
for the same systems and then we rank systems by that score (per each metric). The rankings that are

2169

English-Czech English-Russian English-French English-Spanish English-German
ba

se
lin

es
HAMMING 0.868 ± 0.033 0.511 ± 0.056 0.911 ± 0.016 0.806 ± 0.056 0.851 ± 0.024
KENDALL 0.849 ± 0.03 0.511 ± 0.039 0.907 ± 0.014 0.844 ± 0.076 0.918 ± 0.019
SPEARMAN 0.852 ± 0.029 0.508 ± 0.041 0.907 ± 0.014 0.848 ± 0.074 0.915 ± 0.019
FUZZY 0.854 ± 0.03 0.498 ± 0.044 0.92 ± 0.014 0.818 ± 0.058 0.897 ± 0.018
ULAM 0.851 ± 0.029 0.507 ± 0.041 0.914 ± 0.014 0.844 ± 0.07 0.908 ± 0.022

tig
ht |PET| 0.853 ± 0.029 0.515 ± 0.042 0.907 ± 0.013 0.866 ± 0.074 0.923 ± 0.018

se
m

i

#PETs 0.879 ± 0.053 0.538 ± 0.103 0.904 ± 0.016 0.797 ± 0.052 0.819 ± 0.03
MAX|Op| 0.849 ± 0.029 0.513 ± 0.043 0.907 ± 0.013 0.864 ± 0.074 0.924 ± 0.018

BLEU 0.895 ± 0.028 0.574 ± 0.057 0.897 ± 0.034 0.759 ± 0.078 0.786 ± 0.034

Table 1: Correlation with human judgement out of English.

Czech-English Russian-English French-English Spanish-English German-English

ba
se

lin
es

HAMMING 0.878 ± 0.028 0.761 ± 0.035 0.984 ± 0.012 0.88 ± 0.033 0.851 ± 0.021
KENDALL 0.887 ± 0.026 0.831 ± 0.021 0.969 ± 0.012 0.831 ± 0.064 0.905 ± 0.016
SPEARMAN 0.881 ± 0.025 0.831 ± 0.02 0.967 ± 0.014 0.826 ± 0.066 0.905 ± 0.017
FUZZY 0.931 ± 0.016 0.81 ± 0.023 0.977 ± 0.009 0.889 ± 0.029 0.894 ± 0.015
ULAM 0.909 ± 0.026 0.83 ± 0.021 0.974 ± 0.009 0.86 ± 0.054 0.895 ± 0.015

tig
ht |PET| 0.895 ± 0.026 0.839 ± 0.021 0.965 ± 0.012 0.818 ± 0.064 0.918 ± 0.014

se
m

i

#PETs 0.878 ± 0.034 0.698 ± 0.038 0.959 ± 0.021 0.883 ± 0.042 0.786 ± 0.039
MAX|Op| 0.895 ± 0.025 0.838 ± 0.021 0.966 ± 0.012 0.819 ± 0.064 0.921 ± 0.014

BLEU 0.936 ± 0.036 0.651 ± 0.041 0.993 ± 0.014 0.879 ± 0.051 0.902 ± 0.017

Table 2: Correlation with human judgement into English.

produced by all metrics are compared with human judgment using Spearman rank correlation coefficient.
When there are no ties, Spearman correlation can be expressed by ρ = 1− 6

∑
d2i

n(n2−1)
, where di = yi − xi

represents a distance in ranks given by humans and the metric for system i.

H
A

M
M

IN
G

K
E

N
D

A
L

L

S
P

E
A

R
M

A
N

F
U

Z
Z

Y

U
L

A
M

Tight |PET| 5/4/1 7/2/1 6/2/2 5/4/1 5/4/1
S-tight MAX|Op| 5/4/1 5/2/3 6/2/2 5/5/0 5/4/1
S-tight #PETs 2/6/2 3/7/0 3/7/0 2/8/0 3/7/0

Table 3: Pairs-wise comparison over 10 language pairs.
In the triple N/B/D: N is number of language pairs
where the new metric significantly outperforms the base-
line, B is baseline outperforms new metric and D is the
number of language pairs where the difference is insignif-
icant (draw). Bold show the cases where N > B.

Statistical significance We use bootstrap
re-sampling with 1000 samples for com-
puting statistical significance. We apply
the t-test and we consider a difference sig-
nificant if p < 0.05.

Evaluating reordering All the tested
metrics are defined on the sentence level.
Since words in the reference or system
translations might not be aligned, we
introduce a brevity penalty for the or-
dering component as in (Isozaki et al.,
2010).8 After scaling sentence-level re-
ordering score ordering(π) by a brevity-
penalty BP (|π|, |ref |), we interpolate the
result with a reordering-free (bag-of-words) lexical score F1(ref, sys), i.e.,9 SenScore(ref, sys) =
α× F1(ref, sys) + (1− α)× BP (|π|, |ref |)× ordering(π), where π is the permutation represent-

8This is the same as in BLEU with the small difference that instead of taking the length of system and reference translation
as its parameters, it takes the length of the system permutation and the length of the reference.

9F1 = 2 × precision×recall
precision+recall

, where precision(ref, sys) = |ref∩sys|
|sys| and recall(ref, sys) = |ref∩sys|

|ref | , assuming each
of ref and sys is represented as a bag of words.

2170

ing the word alignment between sys and ref . The interpolation parameter was fixed α = 0.5, weighing
both lexical and reordering metrics equally, to avoid introducing preference for one over the other, but in
principle this could be tuned on human rankings.

We score a system S by aggregating SenScore weighted by reference length over reference-system

pairs in the system’s corpus CS and normalize: Score(S) =
∑

(ref,sys)∈CS |ref |×SenScore(ref,sys)∑
(ref,sys)∈CS |ref |

.

Word alignments We align system and reference translations directly using the METEOR aligner
(Denkowski and Lavie, 2011), which implements beam search over all possible monolingual alignments
that could be built with exact, stem, WordNet and paraphrase match, where each matching mode is
weighted depending on language pair.10

All metrics in our experiments are interpolated in the same manner with lexical component and brevity
penalty, and are fed with the same input permutations.

Results The scores for translation into-English are in Table 2. Table 1 shows the results for the out-
of-English direction. We also include BLEU-Moses straight from WMT13 tables for an impression
regarding a known full metric. The present tight/semi-tight metrics outperform the baselines on six lan-
guage pairs (English into Czech/ Russian/ Spanish/ German, and out of Russian and German). But the
baselines prevail on four (English into French, and out of Czech, French and Spanish). We hypothe-
size that English-French shows local reordering where hierarchical factorization has small effect. The
results for French- and Spanish-English might be explained similarly. For English-Russian and English-
Czech, #PETs (bracketing freedom) is superior, likely because Russian and Czech allow freer order
than English which is difficult for MT systems to capture. English-Russian shows low correlations for
all metrics (including BLEU), suggesting that either all systems participating are judged of lower quality,
or that human judgements are less consistent. For Czech-English, FUZZY, which outperforms all metrics,
concentrates on monotone patterns suggesting that Czech-English MT systems in WMT13 differ mainly
in how well they obtain correct phrases/blocks in their translations rather than long-distance ordering.

Comparison between ten metrics over ten language pairs is difficult. Hence, we present a pair-wise
comparison between the metrics. Table 3 shows for each new metric N and baseline B a ratio N/B/D
where N is the number of language-pairs where statistically significant improvement by N over B is
found, B is the reverse situation and D is the number of draws (insignificant difference).

Table 3 shows clearly that the tight metric |PET| performs more often than not better than each of the
baselines. Semi-tight metric MAX|Op| concerns factorizability and performs as well as FUZZY outper-
forming the other baselines. Semi-tight metric #PETs concerns bracketing freedom and performs worse
than many baselines, suggesting that for most language pairs bracketing freedom, which does not always
favor more factorization, is not sufficient. Furthermore, tight and semi-tight metrics |PET| and MAX|Op|
outperform the not semi-tight metrics suggesting that the improvement comes from (semi-)tightness
rather than arbitrary functions over trees.

Our results exemplify that factorizing word order mismatch might have higher chance of correlating
with human evaluation than the baselines. The tight and semi-tight metrics tested here are simple in-
stantiations that illustrate the general class. More effective variants do more justice to the complexity
of primal permutations. Furthermore, different metrics cover different dimensions of complexity. The
results show that the importance of a dimension depends on the language pair.

8 Conclusions

The factorized representations of permutations as PETs and PEFs bring together two ingredients
(1) grouping words into blocks, and (2) factorization into primal permutations. In this paper we pro-
pose a class of metrics, Permutation Complexity, define and show tightness for a sub-class, extend PETs
to PEFs and explore example (semi-)tight evaluation metrics exploiting both the hierarchical and primal-
ity dimensions. Experiments with WMT13 data show that tight or semi-tight metrics compare favorably

10We also make METEOR minimize the number of unaligned words using “-t maxcov”.

2171

to the baselines in correlation with human evaluation. Our results can be seen as novel evidence suggest-
ing that tightness might constitute a guiding principle for word order evaluation. The metrics presented
in this work only exemplify the range of possible metrics based on the same intuition. In future work
we aim at further ordering of the space of metrics, exploring a variety of new complexity metrics, and
testing their value on various (evaluation) tasks.

Acknowledgments

This work is supported by STW grant nr. 12271 and NWO VICI grant nr. 277-89-002.

References
Michael H. Albert and Mike D. Atkinson. 2005. Simple permutations and pattern restricted permutations. Discrete

Mathematics, 300(1-3):1–15.

Alexandra Birch and Miles Osborne. 2010. LRscore for Evaluating Lexical and Reordering Quality in MT. In
Proceedings of the Joint Fifth Workshop on Statistical Machine Translation and MetricsMATR, pages 327–332,
Uppsala, Sweden, July. Association for Computational Linguistics.

Alexandra Birch and Miles Osborne. 2011. Reordering Metrics for MT. In Proceedings of the Association for
Computational Linguistics, Portland, Oregon, USA. Association for Computational Linguistics.

Alexandra Birch, Miles Osborne, and Philipp Koehn. 2008. Predicting success in machine translation. In Proceed-
ings of the Conference on Empirical Methods in Natural Language Processing, EMNLP ’08, pages 745–754,
Stroudsburg, PA, USA. Association for Computational Linguistics.

Alexandra Birch, Miles Osborne, and Phil Blunsom. 2010. Metrics for MT evaluation: evaluating reordering.
Machine Translation, pages 1–12.

Arianna Bisazza and Marcello Federico. 2013. Dynamically shaping the reordering search space of phrase-based
statistical machine translation. TACL, 1:327–340.

Ondřej Bojar, Christian Buck, Chris Callison-Burch, Christian Federmann, Barry Haddow, Philipp Koehn, Christof
Monz, Matt Post, Radu Soricut, and Lucia Specia. 2013. Findings of the 2013 Workshop on Statistical Machine
Translation. In Proceedings of the Eighth Workshop on Statistical Machine Translation, pages 1–44, Sofia,
Bulgaria, August. Association for Computational Linguistics.

Fabienne Braune, Anita Gojun, and Alexander Fraser. 2012. Long-distance reordering during search for hierarchi-
cal phrase-based SMT. In Proceedings of the European Association for Machine Translation (EAMT12), pages
177–184, Trento, Italy.

Robert Brignall. 2010. A survey of simple permutations. In Steve Linton, Nik Ruškuc, and Vincent Vatter,
editors, Permutation Patterns, volume 376 of London Math. Soc. Lecture Note Ser., pages 41–65. Cambridge
Univ. Press, Cambridge.

David Chiang. 2007. Hierarchical phrase-based translation. Computational Linguistics, 2(33):201–228.

Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. 2001. Introduction to Algorithms.
McGraw-Hill Higher Education, 2nd edition.

John DeNero and Jakob Uszkoreit. 2011. Inducing sentence structure from parallel corpora for reordering. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP ’11, pages
193–203, Stroudsburg, PA, USA. Association for Computational Linguistics.

Michael Denkowski and Alon Lavie. 2011. Meteor 1.3: Automatic Metric for Reliable Optimization and Eval-
uation of Machine Translation Systems. In Proceedings of the EMNLP 2011 Workshop on Statistical Machine
Translation.

Revital Eres, Gad M. Landau, and Laxmi Parida. 2004. Permutation pattern discovery in biosequences. Journal
of Computational Biology, 11(6):1050–1060.

Yang Gao, Philipp Koehn, and Alexandra Birch. 2011. Soft dependency constraints for reordering in hierarchi-
cal phrase-based translation. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, EMNLP ’11, pages 857–868, Stroudsburg, PA, USA. Association for Computational Linguistics.

2172

Daniel Gildea, Giorgio Satta, and Hao Zhang. 2006. Factoring Synchronous Grammars by Sorting. In ACL.

Keith Hall, Ryan McDonald, and Slav Petrov. 2011. Training structured prediction models with extrinsic loss
functions. In Domain Adaptation Workshop at NIPS, October.

Teresa Herrmann, Jochen Weiner, Jan Niehues, and Alex Waibel. 2011. Analyzing the potential of source sentence
reordering in statistical machine translation. In Proceedings of International Workshop on Spoken Language
Translation (IWSLT).

Liang Huang, Hao Zhang, Daniel Gildea, and Kevin Knight. 2009. Binarization of synchronous context-free
grammars. Computational Linguistics, 35(4):559–595.

Hideki Isozaki, Tsutomu Hirao, Kevin Duh, Katsuhito Sudoh, and Hajime Tsukada. 2010. Automatic evaluation
of translation quality for distant language pairs. In Proceedings of the 2010 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP ’10, pages 944–952, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Jason Katz-Brown, Slav Petrov, Ryan McDonald, Franz Och, David Talbot, Hiroshi Ichikawa, Masakazu Seno, and
Hideto Kazawa. 2011. Training a parser for machine translation reordering. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing, EMNLP ’11, pages 183–192, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Mirella Lapata. 2006. Automatic Evaluation of Information Ordering: Kendall’s Tau. Computational Linguistics,
32(4):471–484.

Matouš Macháček and Ondřej Bojar. 2013. Results of the WMT13 Metrics Shared Task. In Proceedings of the
Eighth Workshop on Statistical Machine Translation, pages 45–51, Sofia, Bulgaria, August. Association for
Computational Linguistics.

Graham Neubig, Taro Watanabe, and Shinsuke Mori. 2012. Inducing a discriminative parser to optimize machine
translation reordering. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, EMNLP-CoNLL ’12, pages 843–853, Stroudsburg,
PA, USA. Association for Computational Linguistics.

James H. Schmerl and William T. Trotter. 1993. Critically indecomposable partially ordered sets, graphs, tourna-
ments and other binary relational structures. Discrete Mathematics, 113(1-3):191–205.

Miloš Stanojević and Khalil Sima’an. 2014a. Evaluating Word Order Recursively over Permutation-Forests. In
Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, pages
138–147, Doha, Qatar, October. Association for Computational Linguistics.

Miloš Stanojević and Khalil Sima’an. 2014b. Fitting Sentence Level Translation Evaluation with Many Dense Fea-
tures. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 202–206, Doha, Qatar, October. Association for Computational Linguistics.

David Talbot, Hideto Kazawa, Hiroshi Ichikawa, Jason Katz-Brown, Masakazu Seno, and Franz Och. 2011. A
Lightweight Evaluation Framework for Machine Translation Reordering. In Proceedings of the Sixth Workshop
on Statistical Machine Translation, pages 12–21, Edinburgh, Scotland, July. Association for Computational
Linguistics.

Takeaki Uno and Mutsunori Yagiura. 2000. Fast algorithms to enumerate all common intervals of two permuta-
tions. Algorithmica, 26(2):290–309.

Wei Wang, Kevin Knight, and Daniel Marcu. 2007. Binarizing syntax trees to improve syntax-based machine
translation accuracy. In EMNLP-CoNLL 2007, Proceedings of the 2007 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning, pages 746–754.

Dekai Wu. 1997. Stochastic inversion transduction grammars and bilingual parsing of parallel corpora. Computa-
tional Linguistics, 3(23):377–403.

Bing Xiang, Niyu Ge, and Abraham Ittycheriah. 2011. Improving reordering for statistical machine translation
with smoothed priors and syntactic features. In Proceedings of the Fifth Workshop on Syntax, Semantics and
Structure in Statistical Translation, SSST-5, pages 61–69, Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Hao Zhang and Daniel Gildea. 2007. Factorization of Synchronous Context-Free Grammars in Linear Time. In
NAACL Workshop on Syntax and Structure in Statistical Translation (SSST), pages 25–32.

2173

