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Abstract

Long-distance semantic dependencies are crucial for lexical choice in statistical machine trans-
lation. In this paper, we study semantic dependencies between verbs and their arguments by
modeling selectional preferences in the context of machine translation. We incorporate prefer-
ences that verbs impose on subjects and objects into translation. In addition, bilingual selectional
preferences between source-side verbs and target-side arguments are also investigated. Our ex-
periments on Chinese-to-English translation tasks with large-scale training data demonstrate that
statistical machine translation using verbal selectional preferences can achieve statistically sig-
nificant improvements over a state-of-the-art baseline.

1 Introduction

Lexical translation error is one of the most urgent issues for statistical machine translation (SMT). Al-
though phrase-based SMT can deal with local context dependencies well, it performs rather poorly with
long-distance dependencies and therefore causes a lot of lexical translation errors. Verbs and their ar-
guments form such long-distance dependencies and play important roles in translation as they build
skeletons of sentences. However, many SMT systems are not sufficient to capture long-distance depen-
dencies between arguments and their dominating verbs. Verbs and arguments are often either incorrectly
translated or not translated at all according to the error study by Wu and Fung (2009a).

In order to address this issue, predicate-argument structures (PAS), which identify semantic frames
within sentences by marking predicates, and labeling arguments with semantic roles, have been explored
for SMT via various approaches in recent years. Wu and Fung (2009b) employ target-side PAS to
pick out the most suitable translations among translation candidates after the decoding procedure is
completed. Gildea (2010) integrates the PAS knowledge into decoding through projecting source-side
PAS to the target-side via word alignments. In this paper, we are particularly interested in long-distance
dependencies between verbs and their arguments in a predicate-argument structure. We propose to utilize
selectional preferences (SPs) to handle these verb-argument dependencies for SMT.

Selectional preferences place semantic restrictions on words, with which words can co-occur in dif-
ferent syntactic patterns. To be more specific, the SPs of a verb can characterize the semantic restrictions
that the verb imposes on its arguments. Violating these restrictions inevitably makes sentence senses
odd or implausible. For example, in the sentence “The ball drinks a potato.”, both subject and object
preferences for the verb “drink” are violated. SPs have proven useful for numerous applications, e.g.,
semantic role labeling (Gildea and Jurafsky, 2002), pronoun resolution (Bergsma et al., 2008), textual
inference (Pantel et al., 2007), word-sense disambiguation (Resnik, 1997) and many more. Therefore,
we have sufficient theoretical foundation to believe that SPs between verbs and arguments can be used
to alleviate translation errors that we pointed out above.

Our work consists of two parts: modeling SPs for verbs and incorporating SPs into an SMT system.
In particular, we focus on the verb-object (v, obj) and verb-subject (v, subj) selectional preference in-
stances which can be extracted from our target-side corpus. SPs are computed in two ways: conditionally
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probabilistic SPs and topic-based SPs. The former calculates conditional probabilities between verbs and
arguments as the strengths of SPs in a traditional way. The latter builds a class-based SP model using
topics as semantic classes of arguments. All these calculated SPs are monolingual SPs. Since we model
SPs for translation, we are also interested in cross-lingual SPs, i.e., selectional preferences of source-side
verbs over corresponding target-side arguments. Taking (v, obj) semantic restriction as an example, we
want to extract source-side verbs vs and target-side objects objt from our word-aligned bilingual corpus.
With these semantic instances, we define a bilingual SP model to calculate cross-lingual SP strength
that a source-side vs impose on its target-side objt. We integrate SPs into a state-of-the-art phrase-based
SMT system. Experiments on large-scale translation display that SPs can achieve an improvement of up
to 0.83 BLEU points over our baseline.

To the best of our knowledge, this is the first attempt to successfully incorporate selectional preferences
into SMT. Our contributions are as follows.

• We propose various models to incorporate target-side monolingual selectional preferences into
SMT.

• We also present a model for cross-lingual selectional preferences.

• In order to address the unknown word issue in SP modeling, we further introduce a word embedding
based similarity model.

• Finally, we conduct experiments and in-depth analysis to demonstrate how these SP models work
for SMT.

The remainder of this paper is organized as follows. Section 2 introduces related studies about SPs
induction and application. Section 3 elaborates our methods to learn verbal SPs from a large-scale corpus
and three SP models for SMT. Section 4 discusses how to deal with unknown words in SPs. Section 5
describes how we integrate the verbal SPs into SMT. Section 6 reports the experimental results. In the
last section, we conclude with future directions.

2 Related Work

Recent two decades have witnessed increasing efforts on automatic acquisition of SPs for verbs as well as
wide applications of SPs in NLP tasks. Resnik (1996) is a pioneer on the induction of SPs from corpus,
proposing a class-based approach named selectional association that uses WordNet synsets to provide
conceptual classes for nouns co-occurring with a specific predicate in a particular relation. Li and Abe
(1998) also rely on WordNet and use the principle of Minimum Description Length to find a suitable
generalization level of a noun. But entirely relying on WordNet to generalize nouns to semantic classes
has a fatal disadvantage because WordNet is lack of coverage of proper nouns. Therefore, Rooth et al.
(1999) propose a probabilistic latent variable model using Expectation-Maximization (EM) clustering
algorithm to induce class-based SPs. Erk (2007) investigates a similarity-based model which takes ad-
vantage of a corpus-based distributional similarity metrics between arguments for SPs. More recently, a
number of researchers come up with methods modeling SPs via unsupervised topic models where topics
express a set of latent classes for preferences with different grammatical relations. Séaghdha (2010) de-
scribes a model using latent Dirichlet allocation (LDA) (Blei et al., 2003) to compute SPs composed of a
predicate and a single argument. In contrast, Ritter et al. (2010) study acquiring selectional preferences
of a predicate and multiple arguments with topic models.

SPs are useful for numerous NLP tasks. Resnik (1997) uses automatically acquired SPs for word
sense disambiguation. Zapirain et al. (2009) employ SPs to process semantic role classification in a large
dataset. Many researchers apply SPs to conduct pseudo-disambiguation tasks (Van de Cruys, 2014; Erk,
2007) in order to evaluate the performance of their methods of acquiring SPs. In contrast to plenty of
applications of SPs in monolingual tasks, rather few efforts are devoted to incorporate SPs into SMT. To
the best of our knowledge, we are the first to model SPs in the context of SMT.
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From the perspective of verb and argument translation, the most related work to ours is Xiong et al.
(2012). They propose two translation models to incorporate source-side PAS into SMT. One is the predi-
cate translation model exploring both lexical and semantic contexts to predict target-side predicates. The
other is the argument reordering model which estimates the direction of target-side arguments movement
relative to their predicates. The significant difference is that they separately model the translation of
verbs and arguments while we model them in a unified fashion via SPs.

3 Selectional Preference Model

Most approaches represent SPs for verbs as a function σ : (v, r, c) → s that maps each verb v and the
semantic class c of its argument with respect to role r to a real-valued selectional preference strength
s (Light and Greiff, 2002). The higher the value of s is, the more arguments semantically fit their
dominating verb. In this paper, we are interested in the degree to which an object or subject semantically
fits a given verb. Additionally, we are wondering which semantic relation is more helpful for a phrase-
based machine translation. We propose two approaches: a conditional probability-based method and a
topic-based method to model verbal SPs. Due to the space limit, we only describe how we compute the
SP strength of (v, obj). The strength of (v, subj) can be calculated in a similar way.

3.1 Conditional Probability-Based SPs

The conditional probability-based method is the most primitive corpus-based way to capture SPs that a
verb imposes on its arguments. The conditional probability can be computed as follows.

P (n|v, r) =
f(v, r, n)
f(v, r)

(1)

where f(v, r, n) represents the number of times that a noun n co-occurs with a verb v in a grammatical
relation r. Considering r as a relation of a direct object of v, n is correspondingly specified as the
headword of r. Thus we simplify formula (1) to calculate the SP strength between a verb and its object
as follows.

Pc(obj|v) =
f(v, obj)
f(v)

(2)

where obj is the headword of the object of v.

3.2 Topic-Based SPs

Topic-based SP is a typical of class-based SP that models how well a particular class of words fits a verb.
We use latent topics that are learned from a collection of documents as our semantic classes. We choose
the most widely used LDA (Blei et al., 2003) topic model to infer topics for our arguments. Each word
in our corpus is assigned a topic. Then we compute the SP for a verb and its object headword as follows.

Pt(obj|v) =
∑
tp∈T

P (tp|v)P (obj|v, tp)

≈
∑
tp∈T

P (tp|v)P (obj|tp) (3)

where T denotes the collection of topics that the current obj belongs to and tp stands for a topic assign-
ment of the object. The first part P (tp|v) can be calculated with relative counts that a verb co-occurs
with objects that are assigned a topic tp. The second part P (obj|tp) can be directly retrieved from the
per-topic word distribution of topic tp over words computed by the LDA topic model.

3.3 Bilingual SPs

The two models introduced above are used to calculate SPs for verbs only on the target side. We also want
to model cross-lingual SPs that source-side verbs impose on their corresponding target-side arguments.
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Selectional Pairs
Translation Category

#0# #1# #2# #3#

target-side (v, obj) 10.67% 27.46% 48.32% 13.54%
target-side (v, subj) 4.95% 34.45% 48.79% 11.80%

Table 1: Proportion of source-side verb-argument translation categories on the development set.

We therefore adapt the above two models to compute bilingual SPs. The conditionally probabilistic
bilingual SP variant is calculated as follows.

Pcbil(objt|vs) =
f(vs, objt)
f(vs)

(4)

where objt is the target translation of objs. If obj is translated into a multi-word phrase, we use the first
word of the phrase as objt.

For the bilingual topic-based SP model, we still use the LDA topic model to infer topics on the target
language. We compute bilingual topic-based SPs via the following formula.

Ptbil(objt|vs) =
∑
tp∈T

P (tp|vs)P (objt|vs, tp)

≈
∑
tp∈T

P (tp|vs)P (objt|tp) (5)

where T denotes the set of topics that the current objt belongs to and tp is the topic assigned to the object
by LDA. P (tp|vs) is calculated with counts that the source-side verb vs co-occurs with an object whose
target-side counterpart is labeled with a topic tp. P (objt|tp) is calculated by the LDA model.

4 SPs of Unseen Words

Conditional probability-based SPs cannot make any predictions for object headwords that have never
occurred in our extracted selectional preference instances (v, obj). As our corpus cannot cover any
phenomena in real world, a zero co-occurrence count between v and obj is not sufficient to show that
the v has no selectional preference for that obj as its object. The method we employ to obtain source-
side verb-argument pairs corresponding target-side verb-argument pairs during decoding has an obvious
defect that word alignments directly affect the generation of translations. In this case, there may be many
unseen word combinations. In order to investigate the proportion of unseen word combinations during
decoding, we define four labels to classify these generated phrases. Label #0# represents phrases whose
verb or object is translated into “#NULL#” due to incorrect word alignments. Phrases whose verbs or
arguments are unseen in our trained SP models are labeled with #1#, #2# respectively. The remaining
phrases appearing in our trained SP models are annotated with label #3#.

Table 1 shows the distribution of these phrases over the four categories on our development set (see
details in Section 6.1). There are 53,268 (v, obj) pairs and 42,385 (v, subj) pairs generated on the target
side during decoding. Among these phrases, Only 13.54% (v, obj) pairs and 11.80% (v, subj) pairs
appear in our trained SP models. Most phrases, accounting for nearly 50%, are those whose argument
headwords are unseen for our trained SP models. Hence, it is quite necessary to take some measure to
model the SPs that verbs impose on their unseen argument headwords.

Instead of assigning a uniform value as the selectional strength for those unseen verb-argument combi-
nations, we exploit a similarity-based model to compute SPs of a verb for an unseen argument headword
during decoding, similar to the model by Erk (2007). Assuming (v, wun) is a generated selectional pref-
erence instance according to word alignment information and wun is an unseen object headword of v.
The formulation to compute the selectional strength that v imposes on wun is as follows.

Pc(wun|v) =
∑

w∈Seen(obj)

sim(wun, w)× wtobj(w) (6)
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Figure 1: A source sentence with its predicate-argument structure. The verbs in the sentence are bold.

where Seen(obj) is the set of seen headwords for an argument obj of a verb v, sim(wun, w) is the
similarity between the seen and potential headword, and wtobj(w) is the weight of a seen headword w.

For the headword weight wtobj(w), we employ the selectional preference that the verb v imposes on
the seen headword w to compute the value. sim(wun, w) is calculated with word2vec1 and the similarity
metric: Cosine. After each word on the target-side corpus is projected into a multidimensional vector
space, sim(wun, w) is computed as follows.

Sim(−−→wun,
−→w ) =

−−→wun • −→w
||−−−→swun|| × ||−→w || =

∑
i

(ai × bi)√∑
i
ai

2×∑
i
bi

2
(7)

where ai and bi are the value of ith dimension of their word embeddings.

5 Decoding

In this section, we mainly elaborate how to integrate the proposed SP models into a phrase-based SMT
system built on bracketing transduction grammars (BTG) (Wu, 1997). Before we introduce the integra-
tion algorithm for SP models, we define two functions F and G on a source sentence and its predicate-
argument structure following Xiong et al. (2012). We use the sentence in Figure 1 as an example to make
the two functions easier to be understood.

• F (i, j): The function is used to find positions of all verbs and their object headwords pairs from
the predicate-argument structure. These pairs are completely located within the source span (i, j).
For example, in Figure 1, F (0, 4)={(2,3)}, F (0, 10)={(2,3), (4,10)} while F (0, 2)={} because the
object headword “{I” is located outside of the span (0, 2) and F (5, 10)={} for the reason that
the verb “Jø” is located outside of the span (5, 10).

• G(i, k, j): The function finds positions of all verbs and their object headwords pairs that cross two
neighboring spans (i, k) and (k+1, j). It can also be formulated as F (i, j)−(F (i, k)∪F (k+1, j)).
In Figure 1, G(0, 4, 10)=F (0, 10)− (F (0, 4) ∪ F (5, 10))={(4,10)}.

In order to calculate SP strengths of target-side verbs and arguments as well as bilingual verb-argument
pairs, we store word alignment information for each phrase pair in the phrase table. Given a source
sentence with its predicate-argument structure, if a BTG lexical rule is applied to translate a source
phrase c spanning (i, j) to a target phrase e, we use F (i, j) to detect all verb-object pairs and build
a translation set A(i, j) = {(vt, objt), (· · · ), · · · } to store corresponding verb-object translations on the
target side through word alignments. Since our decoder is a log-linear model which is easy to incorporate
new features, we define another function Pr to calculate the score of SPs as a new feature over span (i, j)
as follows.

Pr(A(i, j)) =
∏

(vt,objt)∈A(i,j)

P.(objt|vt) (8)

where P.(objt|vt) can be the conditionally probabilistic model Pc or topic-based model Pt. For the
bilingual SP models, we only need to change vt to its source-side counterpart vs.

If a BTG merging rule is applied to combine its two sub-spans (i, k), (k + 1, j) in a straight
((i, k) + (k+ 1, j)→ (i, j)) or inverted order ((k+ 1, j) + (i, k)→ (i, j)), we directly use Pr(A(i, k))
and Pr(A(k + 1, j)) that have been already computed for the two sub-spans (i, k) and (k + 1, j) in

1https://code.google.com/archive/p/word2vec/
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Figure 2: Architecture of SMT system equipped with verbal SPs.

the dynamic programming decoding algorithm. In this way, we only need to set another translation
set B(i, j) = {(vt, objt), (· · · ), · · · } to store the translations of source-side verb-object pairs found by
G(i, k, j) according to word alignments and calculate Pr(B(i, j)) for verb-object pairs that cross the two
sub-spans.

In order to expedite the decoding process, we compute corresponding SPs for each (v, obj) semantic
pairs extracted from the training corpus before decoding and load them when decoding instead of com-
puting them on the fly. As for unseen object headword wun of a verb, we use Eq. (6) to model SPs when
integrating conditional probability-based SP model and Eq. (3) to model SPs when integrating topic-
based SP model. We store the selectional strength of (v, wun) for each unknown word so as to avoid
repetitive computation. Figure 2 shows the architecture of the SMT system equipped with verbal SPs
translation model. Since the system we used is based on a CKY-style decoder, the integration algorithm
introduced here can be easily adapted to other CKY-based decoding systems such as the hierarchical
phrasal system (Chiang, 2007).

6 Experiments

In order to validate the effectiveness of our SMT system enhanced with SPs, we perform a series of
experiments on Chinese-to-English translation, which are trained with massive data. Specially, we aim
at investigating:

• Whether integrating SPs into SMT can improve the system translation accuracy.

• Which can achieve better performance, conditionally probabilistic SP model or topic-based SP
model?

• Whether semantic similarity-based approach is more reasonable than assigning a uniform value as
the selectional strength that a verb imposes on its unseen argument headwords.

• Whether bilingual SPs are more effective than monolingual SPs for SMT.

6.1 Setup
The baseline is a state-of-the-art BTG-based phrasal system (Xiong et al., 2006). Our training data
corpora2 consist of 2.9M sentence pairs with 80.9M Chinese words and 86.4M English words. We ran
GIZA++ on these corpora in both directions and then applied the “grow-diag-final” refinement rule to
obtain final word alignments. Then we used all these word-aligned corpora to generate our phrase table.

2The corpora include LDC2003E14, LDC2004T07, LDC2005T06, LDC2005T10 and LDC2004T08 (Hong Kong
Hansards/Laws/News).
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Model NIST04 NIST05
Base 36.40 33.69
Base+Pc(objt|vt) 36.93∗ 34.22∗∗

Base+Pc(objt|vt)+Pc(objtun |vt) 37.09∗ 34.43∗∗

Base+Pc(subt|vt) 36.89 34.19∗

Base+Pc(subt|vt)+Pc(subtun |vt) 36.99∗ 34.37∗∗

Base+Pcbil(objt|vs) 37.15∗∗ 34.21∗∗

Table 2: Results of conditionally probabilistic SPs with two selectional relations: (v, obj) and (v, sub).
**/*: significantly better than the baseline at p < 0.01 and p < 0.05 respectively.

Our 4-gram language model was trained on the Xinhua section of the English Gigaword corpus using the
SRILM toolkit with modified Kneser-Ney smoothing.

In order to automatically learn SPs for verbs, we first parsed all source sentences using Stanford Parser
and then ran the Chinese semantic role labeler (Li et al., 2010) on all source parse trees to annotate
semantic roles for all verbs. At the same time, we ran SENNA on the target side to not only parse all
target sentences but also conduct semantic role labeling for all verbs. It is easy to extract (vt, objt) pairs
or (vt, subt) pairs after we obtained semantic roles on both sides. As for extracting (vs, objt) selectional
tuples, we first extracted (vs, objs) pairs from source sentences with PAS and then used word alignments
to get the target-side translation objt of objs. We used GibbsLDA++ to infer topics for our topic-based
SP models. We set the number of topics from 50 to 350 with an incremental interval 50. We found the
best number of topics according to results on our development set.

We trained word embeddings with word2vec using continuous bag-of-words model (Mikolov et al.,
2013). The word vector dimensionality was set to 200 and we set the value of threshold for occurrence of
words to 0.00001. Values of other parameters such as the training algorithm and the size of the window
were all set by default.

We adopted the NIST MT03 evaluation test data as our development set, and the NIST MT04, MT05
as the test sets. We used the case-insensitive BLEU-4 (Papineni et al., 2002) to evaluate translation
quality and run MERT (Och, 2003) three times. We finally recorded average BLEU scores over the three
runs for all our experiments and used MultEval toolkit3 to perform the significance test.

6.2 Results

Our first group of experiments is to investigate whether a simple conditional probability method for
modeling SPs is able to improve translation accuracy in terms of BLEU. Moreover, we also would like
to know whether the similarity-based SP model for unseen argument headwords will achieve further
improvements. Experimental results are shown in Table 1. From the experiments which are conducted
only using monolingual SPs, we can find that the verb-object SP model Pc(objt|vt) performs slightly
better than Pc(subt|vt) on both test sets. Using semantic similarity metric rather than a uniform value to
evaluate the selectional preference of a verb for its unseen argument can achieve better performance. It
can also be observed that bilingual SPs marginally outperform than monolingual SPs on average. All SP
models in this table are statistically better than the baseline on the test set MT05.

Our second group of experiments is to validate whether the topic-based SPs are more effective than
conditionally probabilistic SPs in improving the accuracy of lexical choice. Table 2 shows our results.
First, we have observations similar to what we have found in Table 1: verb-object SPs are better than
verb-subject SPs while cross-lingual SPs better than monlingual SPs. Second, comparing Table 2 against
Table 1, we find that topic-based SPs are better than conditional probabilistic SPs with a uniform value
for unseen headwords, but similar to that with a similarity-based SP model for unseen headwords.

Analysis on translations reveals that our SP models are helpful for reducing verb-argument translation
errors. Due to the space limit, we only show two translation examples. Figure 3 displays a translation
example which shows that the system equipped with verbal SP model can solve the problem that the

3https://github.com/jhclark/multeval
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Model NIST04 NIST05
Base 36.40 33.69
Base+Pt(objt|vt) 37.11∗ 34.36∗∗

Base+Pt(subt|vt) 37.07∗ 34.30∗∗

Base+Ptbil(objt|vs) 37.23∗∗ 34.35∗∗

Table 3: Results of topic-based SPs with two relations: (v, obj) and (v, sub). **/*: significantly better
than the baseline at p < 0.01 and p < 0.05 respectively.

Figure 3: A translation example shows that verbal SPs can help SMT system alleviate the translation
error that verb is not translated at all. The verbs in the sentence are bold.

baseline is unable to translate each verb in the source sentence to a target string. From the example, we
can easily find that the baseline cannot correctly translate a (verb, obj) selectional tuple like (ë�§?
Ö) where only obj “?Ö” is translated. Instead, in the system enhanced with verbal SPs, in addition to
the object, verb “ë�” is also correctly translated into a target string. Figure 4 shows another example
to demonstrate that verbal SPs are useful for selecting the proper translation for an object. The source
word “u�” is not translated at all in the baseline while it is translated into “release” by our SP model.

7 Conclusion

We have presented three different models to compute SPs on verb-object and verb-subject pairs and
successfully integrate them into a phrase-based SMT system. From a series of experiments on Chinese-
to-English translation, we have found:

• Verbal SPs can significantly improve SMT in alleviating translation errors of verbs and their argu-
ments.

• Verb-subject SPs perform similarly to verb-object SPs but slightly worse.

Figure 4: A translation example shows that verbal SPs can help SMT system alleviate the translation
error that the argument of a verb is not translated at all. The verbs in the sentence are bold.

2161



• Similarity-based SPs is helpful for conditional probability-based SP model to evaluate the SPs of a
verb’s unseen argument headword.

• Topic-based SPs are better than conditionally probabilistic SPs and bilingual SPs marginally better
than monolingual SPs.

In the future, we would like to acquire bilingual SPs using a neural network approach (Van de Cruys,
2014). We also want to model SPs for verbs that are unseen in the training corpora and to explore a
unified method to obtain SPs that a verb impose on its subject and object at the same time.
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Diarmuid O Séaghdha. 2010. Latent variable models of selectional preference. In Proceedings of the 48th An-
nual Meeting of the Association for Computational Linguistics, pages 435–444. Association for Computational
Linguistics.

Tim Van de Cruys. 2014. A neural network approach to selectional preference acquisition. In Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 26–35.

Dekai Wu and Pascale Fung. 2009a. Can semantic role labeling improve smt? pages 218–225.

Dekai Wu and Pascale Fung. 2009b. Semantic roles for smt: a hybrid two-pass model. In Human Language
Technologies: Conference of the North American Chapter of the Association of Computational Linguistics,
pages 13–16.

Dekai Wu. 1997. Stochastic inversion transduction grammars and bilingual parsing of parallel corpora. Computa-
tional Linguistics, 23(3):377–403.

Deyi Xiong, Qun Liu, and Shouxun Lin. 2006. Maximum entropy based phrase reordering model for statistical
machine translation. In Proceedings of the 21st International Conference on Computational Linguistics and
the 44th annual meeting of the Association for Computational Linguistics, pages 521–528. Association for
Computational Linguistics.

Deyi Xiong, Min Zhang, and Haizhou Li. 2012. Modeling the translation of predicate-argument structure for smt.
In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers-
Volume 1, pages 902–911. Association for Computational Linguistics.
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