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Abstract

In this study, we applied a deep LSTM structure to classify dialogue acts (DAs) in open-domain
conversations. We found that the word embeddings parameters, dropout regularization, decay
rate and number of layers are the parameters that have the largest effect on the final system accu-
racy. Using the findings of these experiments, we trained a deep LSTM network that outperforms
the state-of-the-art on the Switchboard corpus by 3.11%, and MRDA by 2.2%.

1 Introduction

Dialogue Act (DA) classification plays a key role in dialogue interpretation, especially in spontaneous
conversation analysis. Dialogue acts are defined as the meaning of each utterance at the illocutionary
force level (Austin, 1975). Many applications benefit from the use of automatic dialogue act classi-
fication such as dialogue systems, machine translation, Automatic Speech Recognition (ASR), topic
identification, and talking avatars (Král and Cerisara, 2012). Due to the complexity of DA classification,
most researchers prefer to focus on the task-oriented systems such as restaurant, hotel, or flight, etc.
reservation systems.

Almost all standard approaches to classification have been applied in DA classification, from Bayesian
Networks (BN) and Hidden Markov Models (HMM) to feed forward Neural Networks, Decision Trees
(DT), Support Vector Machines (SVM) and rule-based approaches.

Recently, the advancement of research in deep learning has led to performance upheavals in many
Natural Language Processing (NLP) tasks, even leading Manning (2016) to refer to the phenomenon as
a neural network ”tsunami”. One of the main benefits of using deep learning approaches is that they are
not as reliant on handcrafted features; instead, they manufacture features automatically from each word
(Turian et al., 2010), sentence (Lee and Dernoncourt, 2016; Kim, 2014), or even long texts (Collobert et
al., 2011; Mikolov et al., 2013; Pennington et al., 2014). Inspired by the performance of recent studies
utilizing deep learning for improving DA classification in domain-independent conversations (Ji et al.,
2016; Lee and Dernoncourt, 2016; Kalchbrenner and Blunsom, 2013), we propose a model based on
a recurrent neural network, LSTM, that benefits from deep layers of networks and pre-trained word
embeddings derived from Wikipedia articles.

2 Related Work

Prior work has defined general sets of DAs for domain-independent dialogues that are commonly used
in almost all research on DA classification (Jurafsky et al., 1997; Dhillon et al., 2004). The task of DA
classification (sometimes called DA identification) is to attribute one member of a predefined DA to each
given utterance. Therefore, DA classification is sometimes treated as short-text classification. Similar
to many other traditional text classification methods, five sources of information have been used for DA
classification tasks: lexical information, syntax, semantics, prosody, and dialogue history. Among all
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proposed methods, those which used more sophisticated techniques for extracting lexical information,
achieved the best results before deep learning was applied to the problem.

DA classification research started with handcrafting lexical features that yielded high quality results
with an accuracy of 75.22% on the 18 DAs in the VERMOBIL dataset (Jekat et al., 1995). In general,
Bayesian techniques were the most common approaches for DA classification tasks, which used a mix-
ture of n-gram models together with dialogue history for predicting DAs (Grau et al., 2004; Ivanovic,
2005). In some studies, prosody information was integrated with surface-level lexical information to
improve accuracy (Stolcke et al., 2000). Stolcke et al. (2000) reported the best accuracy on the core 42
DAs in the Switchboard corpus as 71%. This result was achieved by applying contextual information
with HMM for recognizing temporal patterns in lexical information. Novielli and Strapparava (2013)
investigated the sentiment load of each DA. They compared the accuracies of the classification before
and after analyzing utterances in the Switchboard corpus by using Linguistic Inquiry and Word Count
(LIWC) (Pennebaker et al., 2007) and postulated that affective analysis improved the accuracy.

Recently, approaches based on deep learning methods improved many state-of-the-art techniques in
NLP including, DA classification accuracy on open-domain conversations (Kalchbrenner and Blunsom,
2013; Ravuri and Stolcke, 2015; Ji et al., 2016; Lee and Dernoncourt, 2016). Kalchbrenner and Blun-
som (2013) used a mixture of Convolutional Neural Networks (CNN) and Recurrent Neural Networks
(RNN). CNNs were used to extract local features from each utterance and RNNs were used to create a
general view of the whole dialogue. This work improved the state-of-the-art 42-tag DA classification
on Switchboard (Stolcke et al., 2000) by 2.9% to reach 73.9% accuracy. Ji et al. (2016) presented a
hybrid architecture that merges an RNN language model with a discourse structure that considers rela-
tions between two contiguous utterances as a latent variable. This approach improved the result of the
state-of-the-art method by about 3% (from 73.9 to 77) when applied on the Switchboard corpus. The
best result was achieved when the algorithm was trained to maximize the conditional likelihood. Ji et al.
(2016) also investigated the performance of using standard RNN and CNN on DA classification and got
the cutting edge results on the MRDA corpus (Ang et al., 2005) using CNN.

3 Our Model

Most deep learning variations were designed and studied in the late 1990s, but their true performance
was not revealed until high-speed computers were commercialized and researchers were able to access
significant amounts of data. Collobert et al. (2011) used a large amount of unlabeled data to map words
to high-dimensional vectors and a Neural Network architecture to generate an internal representation.
By adding a CNN architecture Collobert et al. (2011) built the SENNA application that uses represen-
tation in language modeling tasks. Their approach outperforms almost all sophisticated traditional NLP
applications like part-of-speech-tagging, chunking, named entity recognition, and semantic role labeling
without resorting to the use of any handcrafted features or prior knowledge which are usually optimized
for each task. In this study, we designed a deep neural network model that benefits from pre-trained word
embeddings combined with a variation of the RNN structure for the DA classification task.

For each utterance that contains l number of words, our model convert it into l sequential word vectors.
Word vectors can be generated randomly with arbitrary dimensions or being set by a pre-trained word
vectors using a variety of word-to-vector techniques (Mikolov et al., 2013; Pennington et al., 2014).

3.1 RNN-based Utterance Representation

Figure 1 illustrates a typical structure of an RNN. As can be seen, information from previous layers,
ht−1, is contributed to the succeeding layer’s computations that generate ht. Since almost all tokens, Xi,
in a conversation are related to their previous tokens or words, we choose to use an RNN structure.

Given a list of d -dimensional word vectors, X1, X2, ........, Xt−1, Xt, ....Xt+n in a given time step, t,
we will have:

ht = σ
(
W hhht−1 +W hdXt

)
(1)

yt = softmax
(
W (S)ht

)
(2)
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Figure 1: RNN structure for creating a vector-based representation of an utterance from its word.

where W hhεRh×h and W hxεRh×d are weight matrices. σ represents logistic sigmoid function, and yt,
ytεR

k, is the class representation of each utterance and k denotes the number of classes for classification
task.

In the pooling layer (Figure 1), our model takes all h vectors, h1:t, and generate one vector. We can
choose from three mechanisms: mean-, max- or last-pooling. Mean-pooling measures the average of all
h vectors, max-pooling takes the greatest figure out of each h vector and last-pooling takes the last h
vector (i.e., ht).

Theoretically, RNNs should preserve the memory of previous incidents, but in practice when the gap
between relevant information extends, RNNs fail to maintain relevant information. Hochreiter (1991)
and Bengio et al. (1994) investigated the main reasons for RNNs’ failures in detail. The other problem
with RNN is the vanishing and exploding gradient that causes the learning process to be terminated
prematurely (Mikolov et al., 2010; Pascanu et al., 2013).

Given the aforementioned problems with RNNs, we use Long Short Term Memory (LSTM), which is a
variation of RNNs that is tuned to preserve long-distance dependencies as their default specificity. In DA
classification, having the ability to connect related expressions of information that are distant from each
other is important, particularly when it comes to classifying utterances as either subjective or objective,
which is considered as one of the main sources of error in DA classification (Novielli and Strapparava,
2013). Classifying subjective versus objective texts is one of the major tasks in sentiment analysis in
which LSTM-based approaches are shown to achieve high-quality results (Socher et al., 2013). Another
reason for using LSTM is that it uses a forget gate layer to distill trivial weights, which belong to
unimportant words from the cell state (see Eq. 4) . Figure 2 illustrates a standard structure of an LSTM
cell.

As can be seen in Figure 2, we can define the LSTM cell at each time step t to be a set of vectors in
Rd:

it = σ
(
W (i)Xt + U (i)ht−1 + b(i)

)
(3)

ft = σ
(
W (f)Xt + U (f)ht−1 + b(f)

)
(4)

ot = σ
(
W (o)Xt + U (o)ht−1 + b(o)

)
(5)

ut = tanh
(
W (u)Xt + U (u)ht−1 + b(u)

)
(6)

ct = it
⊙

ut + f(t)

⊙
ct−1 (7)

ht = ot

⊙
tanh(ct) (8)
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Figure 2: LSTM cell structure and its respective parameters (http://colah.github.io).

Where inputs are d dimensional vectors, it is the input gate, ft is the forget gate, ot is the output gate, ct
is the memory cell, ht is the hidden state and

⊙
represents element-wise multiplication.

ct (Eq. 7) is the key part of LSTMs – it connects chains of cells together with linear interactions. In
LSTMs, we have gates in each cell that decide dynamically which signals are allowed to pass through
the whole chain. For example, the forget gate ft (Eq. 4) decides to what extent the previous memory
cell should be forgotten, the input gate (Eq. 3) manages the extent to which each cell should be updated,
and the output gate manages the exposure of the internal memory state. The hidden layer ht represents a
gated, partial view of its cell state. LSTMs are able to view information over multiple time scales due to
the fact that gating variables are assigned different values for each vector element (Tai et al., 2015).

3.2 Stacked LSTM

By arranging some LSTM cells back to back (Figure 2), the hidden layer, ht, of each cell is considered
as input for the subsequent layer in the same time step (Graves et al., 2013; Sutskever et al., 2014). The
main reason for stacking LSTM cells is to gain longer dependencies between terms in the input chain of
words.

In this study, we used stacked LSTMs with pre-trained word embeddings. Word embedding is distribu-
tional representations of words that are used to solve the data sparsity problem (Bengio et al., 2003). We
trained word embeddings with 300-dimensional vectors by choosing the window and min-count equal to
5 (Mikolov et al., 2013).

4 Datasets

Since our study focuses on classifying DAs in open-domain conversations, we chose to evaluate our
model on Switchboard (SwDA) (Jurafsky et al., 1997) and the five-class version of MRDA (Ang et al.,
2005).

• SwDA: The Switchboard corpus (Godfrey et al., 1992) contains 1,155 five-minute, spontaneous,
open-domain dialogues. Jurafsky et al. (1997) revised and collapsed the original DA tags into 42
DAs, which we use to evaluate our model. SwDA has 19 conversations in its test set.

• MRDA: The ICSI Meeting Recorder Dialogue Act corpus was annotated with the DAMSL tagset.
This corpus is comprised of recorded multi-party meeting conversations. The MRDA contains 75
one-hour dialogues. There are several variations of the MRDA corpus but MRDA with 5 tags is
commonly used in the literature.

We used the list of files provided by Lee and Dernoncourt (2016) for creating the training, test, and
development sets from the MRDA datasets.
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5 Experimental Settings

We used the SwDA dataset to tune all hyperparameters including dropout, decay rate, word embeddings
and the number of LSTM layers. All conversations in the training set were preprocessed and a random-
ized selection of one-third of them were utilized as a development set to allow the LSTM parameters to
be trained over a reasonable number of epochs. We tuned one parameter value at a time and measured
the accuracy on the development set, stopping when the accuracy on the development set did not change
for 20 epochs. We used the NN packages provided by Lei et al. (2015) and Barzilay et al. (2016).

5.1 Word Embeddings

We tuned the word embedding parameters method, corpus and dimensionality, while holding other
parameters constant (dropout = 0.5, decayrate = 0.5 and layersize = 2). Specifically, we tested
the methods Word2vec using the Gensim Word2vec package (Řehůřek and Sojka, 2010) and pretrained
Glove word embeddings (Pennington et al., 2014). Word2vec embeddings were learned from Google
News (Mikolov et al., 2013), and separately, from Wikipedia1. The Glove embeddings were pretrained
on the 840 billion token Common Crawl corpus.

Method Resource Dimension Accuracy (%)
Word2vec Wikipedia 75 70.73
Word2vec Wikipedia 150 71.85
Word2vec Wikipedia 300 70.77
Word2vec GoogleNews 75 71.26
Word2vec GoogleNews 150 71.39
Word2vec GoogleNews 300 71.32
Glove CommonCrawl 75 69.28
Glove CommonCrawl 150 69.71
Glove CommonCrawl 300 69.40

Table 1: Accuracy using different word embedding techniques, corpora and vector dimensions.

Table 1 illustrates that the best results were consistently achieved by embeddings with 150-dimensions,
and of those, Word2vec trained on Wikipedia had the best accuracy. Hence, these settings were used
throughout the remainder of the experiments.

5.2 Decay Rate

LSTM uses standard backpropagation to adjust network connection weights (see Eq. 9), where E is the
error and Wij is the weight matrix between two nodes, i and j.

wij ← wij − η ∂E
∂wij

, (9)

where η is the learning rate. To avoid overfitting, a regularization factor is added to Eq. 9 to penalize
large changes in wij .

wij ← wij − η ∂E
∂wij

− ηλwij . (10)

The term −ηλwij is the regularization factor and λ is the decay factor that causes wij decay in scale to
its prior measure. We found that changing η does not impact the accuracy so we set η = 1e − 3 and
change λ to find the best fit for the data (Table 2).

As can be seen from Table 2, the positive trend of increasing accuracy fails after setting λ = 0.8.
Therefore, we set λ = 0.7 in our experiments.

1https://dumps.wikimedia.org/enwiki/20160421
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Accuracy (%) λ

70.76 0.1
70.79 0.2
70.87 0.3
71.32 0.4
71.85 0.5
71.90 0.6
71.95 0.7
70.95 0.8

Table 2: The impact of changing λ on accuracy.

5.3 Dropout

Most of the recent studies that exploit deep learning approaches use the dropout technique (Hinton et
al., 2012). Dropout is a kind of regularization technique that prevents the network from overfitting by
discarding some weights. In each training cycle, it is possible that some neurons are co-adapted by
randomly assigning zero to their weights. Dropout methods were originally introduced for feed-forward
and convolutional neural networks but recently have been applied pervasively in the input embeddings
layer of recurrent networks including LSTMs (Zaremba et al., 2014; Pachitariu and Sahani, 2013; Bayer
et al., 2013). Bayer et al. (2013) report that standard dropout does not work effectively with RNNs due to
noise magnification in the recurrent process which results in diminished learning. Since standard dropout
is proven not to work effectively for RNNs, we apply the dropout technique proposed by Zaremba et al.
(2014) for regularizing RNNs that is used by most studies in the literature employing LSTM models (Lei
et al., 2015; Barzilay et al., 2016; Jaech et al., 2016; Swayamdipta et al., 2016; Lu et al., 2016). Zaremba
et al. (2014) postulate that their approach reduces overfitting on a variety of tasks, including language
modeling, speech recognition, image caption generation, and machine translation. We experimented with
dropout probability settings in the range between 0.0 and 0.5.

Accuracy (%) Dropout probability
71.95 0.5
72.01 0.4
72.05 0.3
72.15 0.2
72.55 0.1
73.29 0.0

Table 3: Impact of changing dropout on accuracy.

As can be seen in Table 3, any dropout at all hurt the accuracy. Hence, the value was set at 0.0 –
dropout was not used in later tuning or in the final model.

5.4 Number of LSTM Layers

Finally, we tuned the number of layers. If you utilize only two layers, the model does not detect relevant
tokens that are distant from each other. Conversely, if you use too many LSTM layers, the model will be
prone to overfitting. We tested values in the range of 2 to 15. Table 4 illustrates our settings’ performance
on the development set – the accuracy increases up to a 10 LSTM cells before dropping significantly at
15.

5.5 Other Parameters

In addition to the aforementioned parameters, we investigated the impact of changing L2-reg, pooling,
and activation and finally set them to 1e− 5, last pooling, and tanh respectively. These settings were
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Accuracy (%) No. of layers
73.29 2
73.61 5
73.92 10
72.90 15

Table 4: Impact of LSTM layers on accuracy.

consistent with previous findings in the literature and we did not observe significant improvements by
changing these values.

6 Results and Discussion

In previous sections, we found the best setting for our model, with which we gained the best accuracy on
the SwDA development set. In this section, we report our results on the SwDA and MRDA test set.

Model Accuracy (%)
Our RNN Model 80.1
HMM (Stolcke et al., 2000) 71.0
CNN (Lee and Dernoncourt, 2016) 73.1
RCNN (Kalchbrenner and Blunsom, 2013) 73.9
DRLM-joint training (Ji et al., 2016) 74.0
DRLM-conditional training (Ji et al., 2016) 77.0
Tf-idf (baseline) 47.3
Inter-annotator agreement 84.0

Table 5: SwDA dialogue act tagging accuracies.

Table 5 shows the results achieved by our model in comparison with previous works. As a baseline,
we consider the accuracy obtained from a Naive Bayes classifier using tf-idf bigrams as features (Naive
Bayes outperformed other classifiers including SVM and Random Forest). Our model improved results
over the state-of-the-art methods and the baseline by 3.11% and 32.85%, respectively.

We also applied our model to classify dialogue acts in the MRDA with 5 dialogue acts. To do so,
we used the same settings as described above for classifying dialogue acts in SwDA (Table 5). Table 6
shows our results on the MRDA corpus.

Model Accuracy (%)
Our RNN Model 86.8
CNN (Lee and Dernoncourt, 2016) 84.6
Graphical Model (Ji and Bilmes, 2006) 81.3
Naive Bayes (Lendvai and Geertzen, 2007) 82.0
Tf-idf (baseline) 74.6

Table 6: MRDA dialogue act tagging accuracies.

We calculate the baseline as before, by using tf-idf bigram features. The Random Forest classifier
achieved the best result in comparison to other classifiers such as Naive Bayes and SVM. Our results in
Table 6 show that our model outperformed the state-of-the-art method by 2.2%. It should be emphasized
that our model achieved this result without being tuned on an MRDA development set.

7 Conclusion

In this study, we used a deep recurrent neural network for classifying dialogue acts. We showed that our
model improved over the state-of-the-art in classifying dialogue act in open-domain conversational text.
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We ran several experiments to realize the effects of setting each hyperparameter on the final results. We
found that dropout regularization should be applied to LSTM-based structures (even for LSTM-adapted
dropout methods that have been proven to have a positive impact on some datasets) cautiously to ensure
that it does not have a negative impact on the accuracy of the system.
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