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Abstract

For the task of implicit discourse relation recognition, traditional models utilizing manual fea-
tures can suffer from data sparsity problem. Neural models provide a solution with distributed
representations, which could encode the latent semantic information, and are suitable for recog-
nizing semantic relations between argument pairs. However, conventional vector representations
usually adopt embeddings at the word level and cannot well handle the rare word problem without
carefully considering morphological information at character level. Moreover, embeddings are
assigned to individual words independently, which lacks of the crucial contextual information.
This paper proposes a neural model utilizing context-aware character-enhanced embeddings to
alleviate the drawbacks of the current word level representation. Our experiments show that the
enhanced embeddings work well and the proposed model obtains state-of-the-art results.

1 Introduction

It is widely agreed that in a formal text, units including clauses and sentences are not isolated but instead
connected logically, semantically, and syntactically. Discourse parsing is a fundamental task in natural
language processing (NLP) that analyzes the latent relation structure and discovers those connections
across text units. It could benefit various downstream NLP applications such as question answering
(Chai and Jin, 2004; Verberne et al., 2007), machine translation (Hardmeier, 2012; Guzmán et al., 2014),
sentiment analysis (Bhatia et al., 2015; Hu et al., 2016b), and automatic summarization (Maskey and
Hirschberg, 2005; Murray et al., 2006).

For discourse parsing, Penn Discourse Treebank (PDTB) (Prasad et al., 2008) provides the lexically-
grounded annotations of discourse relations. Each discourse relation consists of two abstract object
arguments and the corresponding sense annotations, which can be roughly characterized according to
whether explicit connectives could be drawn from the texts. In Explicit relations, explicit connectives
can be found in the texts; when such indicators are not given directly, an inferred connective expression
could be inserted, forming Implicit relations. The following two examples describes these two kinds of
discourse relations: the former has an explicit connective “so” which reveals the Explicit relation, while
in the latter case, an inferred Implicit connective “that is” has to be inserted to express the relation.

(1) Arg1: We’re standing in gasoline.
Arg2: So don’t smoke. (Contingency.Cause.Result - wsj 0596)

(2) Arg1: The ploy worked.
Arg2: Implicit=that is The defense won. (Contingency.Cause - wsj 1267)

It has been shown that discourse connective is crucial for high-accuracy relation recognition (Pitler et
al., 2009; Lin et al., 2014). Compared to explicit discourse relations in which senses between adjacent
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clauses are effectively indicated by explicit connectives like “but” and “so”, implicit discourse relation
recognition is much more difficult. Without effective indicators, the relations could only be inferred
from indirect plain texts, which makes implicit discourse relation recognition the bottleneck of the entire
discourse parsing system (Qin et al., 2016a; Li et al., 2016; Chen et al., 2015). This paper attempts to
deal with this challenging task.

The challenge stems from the fact that, without connective cues, recognizing implicit relation has to
rely solely on two textual arguments, and it must capture latent semantic and logical relationship between
two arguments in discourse-level. First, given limited amount of annotated corpus, both the traditional
indicator feature based methods and the recent embedding based neural methods (Wang et al., 2015)
can suffer from insufficient data. The training is especially difficult for rare words, which appear rarely
in the corpus but generally take up a large share of the dictionary, making it hard to effectively learn
their representations, resulting in high perplexities for discourse relation recognition. Moreover, implicit
relation recognition calls for semantic understanding, which needs to encode the word meaning in the
context and the sentence-level understanding for the argument pairs. Considering the complexity of
natural language, the task is quite nontrivial and requires more effective encoding of the arguments.

Conventional methods for implicit discourse relation recognition are based on manually specified indi-
cator features, such as bag-of-words, production rules, and other linguistically-informed features (Zhou
et al., 2010; Park and Cardie, 2012; Biran and McKeown, 2013; Rutherford and Xue, 2014). Recently,
embedding based neural models have been proved effective to address the data sparsity problem that
is not well solved in traditional methods. The key techniques include real-valued dense embeddings
for feature representations and non-linear neural models for feature combinations and transformations.
However, most of the neural models take words as the smallest processing units, which can suffer a lot
from insufficient training on rare words. Discourse parsing, as the highest level language processing at
present, covers word and sentence levels for feature representation. This work extends the current word-
level representation onto more fine-grained character-level which is helpful for encoding morphology
information and alleviating the rare word problem.

In summary, this paper presents a neural model with context-aware character-enhanced embeddings
to address implicit discourse relation recognition task. Recently, character-aware models have been pop-
ular for English and other morphologically rich languages (Kim et al., 2016; Zhang et al., 2015b; Ling
et al., 2015). The proposed model enhanced the word embeddings with character-aware representations
learned from stacked convolutional and recurrent neural models. Utilizing these enhanced embeddings,
the model covers information of three levels from character, word, to sentence. Through extensive exper-
iments on standard discourse corpus, we analyze several models and show the superiority of the proposed
method.

The remaining of the paper is organized as follows: Section 2 discusses related work; Section 3
describes the proposed model; Section 4 provides the details of experiments and model analysis; and
Section 5 concludes the paper.

2 Related work

Implicit discourse relation recognition is the subcomponent of the end-to-end discourse parsing system,
which is also used as the share-task in CoNLL 2015 and CoNLL 2016 (Xue et al., 2015; Xue et al.,
2016). In the share-task, the classification task concerns other Non-Explicit types including EntRel and
AltLex, in addition to the Implicit relations.

Early work for implicit discourse relation recognition focuses on typical machine learning solutions
with sparse indicator features and linear models. Pitler et al. (2009) use several linguistically informed
features, including polarity tags, Levin verb classes and length of verb phrases. Zhou et al (2010) im-
prove the performance through predicting connective words as extra features. Park and Cardie (2012)
propose a method using a locally-optimal feature set. Biran and McKeown (2013) collect word pairs
from arguments of explicit examples to help the learning. Rutherford and Xue (2014) employ Brown
cluster pairs to represent discourse relation and incorporate coreference patterns to identify the meaning
in text. Li and Nenkova (2014) introduce a syntactic representation to reduce sparsity. Rutherford and
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Figure 1: Architecture of the proposed model.

Xue (2015) and Ji et al. (2015) add automatically-labeled instances to expand data. Fisher and Simmons
(2015) incorporate a mixture of labeled and unlabeled data to reduce the need for annotated data.

More recently, neural network models have been proved effective for NLP tasks (Wang et al., 2016;
Zhang et al., 2016; Cai and Zhao, 2016; Hu et al., 2016a) and also utilized for implicit discourse rela-
tion recognition. Ji and Eisenstein (2015) adopt recursive neural network and incorporated with entity-
augmented distributed semantics. Zhang et al. (2015a) propose a simplified neural network which con-
tains only one hidden layer and use three different pooling operations (max, min, average). Chen et al.
(2016) adopt a deep gated neural model to capture the semantic interactions between argument pairs. Ji et
al. (2016) propose a latent variable recurrent neural network architecture for jointly modeling sequences
of words. (Qin et al., 2016b) propose a stacking neural network model to solve the classification prob-
lem. In their model, convolutional neural network is utilized for sentence modeling and a collaborative
gated neural network is proposed for feature transformation.

3 Model

3.1 Architecture

The architecture of our model is shown in Figure 1. The model is a hybrid neural network includ-
ing a character-level module and a word-level module. The character-level module receives inputs of
character-level embeddings followed by stacked CNN and bidirectional LSTMs layers. First, the convo-
lutional and max-pooling operations perform local information encoding and feature selection, obtaining
a fixed-dimensional representation of the character-based word representation sequence. Then via bidi-
rectional LSTMs, the sequence is transformed to a new sequence which encodes the rich contextual
information. This new sequence is the output of the character-level module which models context-aware
character-level information, and will be utilized in later layers. In the word-level module, the character-
based word representations will be concatenated to ordinary word embeddings, forming enhanced em-
beddings which integrate both character-level and word-level information. Later CNN will be utilized
again to obtain sentence-level representations for the two arguments, followed by conventional hidden
layers and a softmax layer for the final classification.

3.2 Character-Level Module

This module aims to get the most out of the character sequence and obtain the character-based word
representations, utilizing an architecture of stacked CNN and LSTM. Modeling from character level
could alleviate rare words problem and useful capture morphological information, like the prefixes and
suffixes of words.
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Character Embedding The character representation will still be in the form of embeddings. In this
task, we define an alphabet of characters which contains uppercase and lowercase letter as well as num-
bers and punctuation. The input word will be decomposed into a character sequence. Through a char-
acter look-up table, a word will be projected to a sequence of character vectors: [c1, c2, . . . , cn], where
ci ∈ Rdc is the vector for the i-th character in the word with dimension dc and n is word length. For the
convenience of notation, the character vectors for a word can be regarded as a character matrix C:

C = [c1; c2; . . . ; cn]

Convolutional Neural Network A convolutional operation followed by a max-pooling operation will
be applied to the character matrix C of each word. The convolutional layer is used to extract and combine
local features from adjacent characters and the following max-pooling layer forms the representations
for the current word. For the convolutional operation, k groups of filter matrices [F1, F2, . . . , Fk]
with variable sizes [l1, l2, . . . , lk] and biases [b1, b2, . . . , bk] are utilized. Each of them transforms the
character matrix C to another sequence. The transformed sequences C′j(j ∈ [1, k]) will be obtained as
follows:

C′j = [. . . ; tanh(Fj ·C[i:i+lj−1] + bj); . . . ]

Here, i indexes the convolutional window. Next, a one-max-pooling operation is adopted and the repre-
sentation w for a word is obtained through concatenating all the mappings after pooling as follows:

w′j = max(C′j)

w = [w′1 ⊕w′2 ⊕ . . .w′k]

Bidirectional LSTM The character-based word representation obtained through CNN can be directly
utilized in the word-level module, however, each word vector from the CNN is individually obtained
and lacks of the encoding of contextual information. In a sentence, word can never be understood inde-
pendently without context. Nearby words can offer important cues to the current word as suggested by
N -gram language model and context-aware sentence modeling. Motivated by this, we propose to utilize
bidirectional LSTMs to encode the character-based word vectors.

Given the character-based word representations [w1,w2, . . . ,wn] as the input sequence, an LSTM
computes the state sequence [h1,h2, . . . ,hn] by applying the following formulation for each time step:

it = σ(Wi
wwt + Wi

hht−1 + Wi
cwt−1 + bi)

ft = σ(Wf
wwt + Wf

hht−1 + Wf
c wt−1 + bf )

ct = ft � ct−1 + it � tanh(Wc
wwt + Wc

hht−1 + bc)
ot = σ(Wo

wwt + Wo
hht−1 + bo)

ht = tanh(ct)� ot

Here the σ denotes the sigmoid function and the� denotes element-wise multiplication. it, ft, ct, ot and
ht stand for input gate, forget gate, memory cells, output gate and the current state, respectively. Finally,
the state sequence [h1,h2, . . . ,hn] will be utilized as the context-aware word representations. Recent
works (Graves et al., 2013; Graves et al., 2005) show that backward LSTM can also effectively encode
the context by modeling the word sequence backward, combined with the ordinary forward LSTM, the
so-called Bidirectional LSTM could effectively capture the information from both past and future words,
and we will utilize it in this module. We will denote the output state sequence (originally noted as h) of
forward LSTM as [wf

1 ,w
f
2 , . . . ,w

f
n] and the one of the backward LSTM as [wb

1,w
b
2, . . . ,w

b
n].

3.3 Word-Level Module
In recent neural models, words are represented as real-valued dense vectors. With the prevalence of deep
learning methods in NLP, continuous space word vectors have been found an effective means for word
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representations. Unlike the traditional model in which words usually represent as one-hot vectors and are
independent with each other, vector space models reveal the relationship and capture the intuition among
words which different or similar to others along a variety of dimensions (Mikolov et al., 2013). However,
embeddings considering only at word level is usually not good for rare words as discussed above and we
introduce character-level embedding to enhance the current word embedding.

Enhanced Word Embedding For obtaining word representations, we enhance ordinary word vectors
with the character-based vectors obtained from the character-level module by concatenating all the rep-
resentations on words. Thus a sequence of enhanced word embeddings could be obtained, which could
cover contextual information from character-level to word-level, and the character-based embedding
could alleviate rare word problems in some way. Formally speaking, an argument could be represented
as a sequence as follows:

M = [wf
1 ⊕ e1 ⊕wb

1;w
f
2 ⊕ e2 ⊕wb

2; . . . ;w
f
n ⊕ en ⊕wb

n]

where ⊕ is the concatenation operator. wf , e,wb stand for the state of forward LSTM, word embedding
and the state of backward LSTM, respectively.

Convolutional Neural Network In the word-level module, CNN is utilized again to extract local con-
text features. Like the convolutional layer in character-level module, several groups of filter matrices with
various filter window sizes are utilized to extract features from different ranges. This procedure is quite
similar to the one in character-level module and we will leave out the formulas. Unlike the character-
level CNN, here the convolutional operation is applied on the arguments and the following max-pooling
layer will produce the sentence vectors. Via parameter sharing, this feature extraction procedure become
same for both arguments. We will note the sentence vectors for the two arguments as s1 and s2.

Softmax Getting the sentence-level representations, we can concatenate the sentence vectors and feed
them to the conventional softmax layer for the final classification.

v = s1 ⊕ s2

Pr(yi) =
expwi × v∑l
j expwj × v

Here, Pr(yi) means the probability of assigning the instance to label i, w indicates the parameters in the
final softmax layer. Additionally, multilayer perceptron (MLP) hidden layers could be added between
sentence vectors and the final softmax layer, and we will leave out the descriptions for brevity.

3.4 Training
For training, the object is the cross-entropy error with L2 regularization:

E(ŷ, y) = −
l∑
j

yj × log(Pr(ŷj))

J(θ) =
1
m

m∑
k

E(ŷ(k), y(k)) +
λ

2
‖θ‖2

where y(k) is the gold labels and ŷ(k) is the predicted ones. For the optimization process, we apply the
diagonal variant of AdaGrad (Duchi et al., 2011) with mini-batches.

4 Experiment

PDTB 2.01, which is one of the largest manually annotated corpus of discourse relation, is utilized for
the experiments. Annotated on Wall Street Journal corpus with one million words, the data contain

1http://www.seas.upenn.edu/ pdtb/
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16,224 implicit relations. It provides three hierarchies of relations: Level 1 Class, Level 2 Type, and
Level 3 Subtypes. The first level consists of four major relation Class: COMPARISON, CONTINGENCY,
EXPANSION and TEMPORAL. There are 16 Level 2 relation types of implicit relations. The third level
of Subtypes is types that are only available for specific types.

For the evaluation of implicit relation classification, there are two settings in previous works: one is
multi-class classification for second-level discourse relations (Lin et al., 2009); the other is the “One-
Versus-Others” setting which employs binary classification only for Level 1 Class, which is first used
by Pitler et at. (2009). Note that the results for the latter setting can be also derived from the specific
statistics over the results of the former setting. In this paper, we will focus on the more practical multi-
class classification, which is a necessary component for building a complete discourse parser such as
that for the shared tasks of CoNLL-2015 and 2016 (Xue et al., 2015; Xue et al., 2016). For the model
analysis, we perform the experiments with the multi-classification setting. In order to compare with
previous results, we will also evaluate our system on the binary relation classification task.

4.1 Multi-class classification

Following (Lin et al., 2009), we adopt the standard PDTB splittings as follows: Sections 2-21 as training
set, Section 22 as development set and Section 23 as test set. We will denote this dataset as the PDTB
Standard setting PDTB-STD. In order to be in consistence with previous setting, we also remove 5 Types
which are too few in the corpus: CONDITION, PRAGMATIC CONCESSION, PRAGMATIC CONCESSION,
PRAGMATIC CONTRAST and EXCEPTION. Thus, we use the remaining 11 Level 2 Types in our exper-
iments. In addition, for nearly 2% of the implicit relations have more than one type during annotating
in PDTB, we consider these relations as two relation types with the same argument pairs when training.
During testing, the predictions which match one of the gold types will be considered as correct. To com-
pare with the state-of-the-art system (Ji and Eisenstein, 2015), which uses a slightly different setting:
Sections 2-20 as training set, 0-1 as development set, and 21-22 as testing set. We also run experiments
on this setting (noted as the PDTB Alternative setting PDTB-ALT) and show the comparisons.

4.1.1 Hyper-Parameters
For the hyper-parameters of the model and training process, we fix the lengths of both arguments (num-
ber of words) to be 80 and the lengths of the words (number of characters) to be 20, and apply truncat-
ing or zero-padding when necessary. The dimensions for character embeddings and word embeddings
are 30 and 300 respectively. The word embeddings are initialized with pre-trained word vectors us-
ing word2vec2 (Mikolov et al., 2013) and other parameters are randomly initialized by sampling from
uniform distribution in [-0.5, 0.5] including character embeddings. The learning rate is set as 0.002.

In the character-level module, the CNN part uses three groups of 128 filters, with filter window sizes
of (2, 3, 4); while the output dimensions of bidirectional LSTMs is set to 50. In the word-level module,
the CNN part also contains three groups of filters. For we need more parameters to accurately model the
sentence level information, each group has 1024 filters and their filter window sizes are (2, 4, 8). We also
add another hidden layer above the concatenated sentence vectors and its dimension is set to 100.

4.1.2 Models
In this sub-section, we will describe the models in the comparisons of our main experiments, which show
the effectiveness of the proposed neural model with enhanced embeddings. Our experiments mainly
concerns four group of models: Baseline Models, Word-level Only Neural Models, Character-level Only
Neural Models and Combined Models. The proposed model, namely Char+Word-Enhanced, falls into
the last group and many other models can be considered as partial models of it.

Baseline Models These include simplified models or previous traditional model.

• Majority Baseline The most commom Type class is CAUSE, which accounts for 26.1% of the
implicit relations in the PDTB test set.

2http://www.code.google.com/p/word2vec
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Model Accuracy
Majority Baseline 26.10
Word Representation 34.07
Lin et al. (2009) 40.20
Word-BiLSTMs 33.42
Word-CNN 41.12
Char-CNN 30.15
Char-[CNN+BiLSTMs] 34.86
Char+Word-Concat 42.55
Char+Word-Enhanced 43.81

Table 1: Comparisons on test set of PDTB-STD
for multi-class classification.

Model Accuracy
Majority Baseline 26.03
Word Representation 36.86
Lin et al. (2009) -
+Brown clusters 40.66
Ji and Eisenstein (2015) 36.98
+Entity semantics 37.63
+Surface features 43.75
+both 44.59
Char+Word-Enhanced 45.04

Table 2: Comparisons on test set of PDTB-ALT
for multi-class classification.

• Word Representation This model just utilizes sum of word vector as sentence vectors, for showing
how the model with only word vector embeddings can work.

• Lin et al. (2009) Traditional linear model with manually specified features, including production
rules, dependency rules, word pairs and context features.

Word-level Models These models only utilize conventional word vectors through a word-level embed-
ding table looking-up process and does not use the character-level module.

• Word-level CNN This model adopts CNN with conventional word embeddings, which does not
utilize the character-level module.

• Word-level BiLSTMs This model replaces CNN to Bidirectional LSTMs, also with conventional
word embeddings. The sentence vectors will be the last state vector of the LSTMs.

Character-level Models These models only make use of the word representations learned from the
Character-level module. For the word-level module (from word-level representations to sentence-level
ones), CNN will be used.

• Char-level CNN This model utilizes only the embeddings from character-level module (without
concatenating the word-level embeddings), and in the character-level part BiLSTMs are not utilized
and the word representations are directly from CNN.

• Char-level CNN+BiLSTMs This model integrates BiLSTMs in the character-level module, which
could encode the context information in the character-level embeddings.

Combined Models These combine the Char-level and Word-level modules (Char-level
CNN+BiLSTMs and Word-level CNN) through concatenation on different levels.

• Char+Word-Concat This model combines the two modules at the sentence representation level,
by concatenating the sentence vectors.

• Char+Word-Enhanced This is the proposed model, which combines the modules at the word
embedding level, forming enhanced embeddings.

4.1.3 Model Analysis
The analysis of the models will be based on the results of Table 1 and we will discuss them in groups.
First, the traditional linear model performs well, but it needs manually specified features. Simply adding
word vectors is not a very good idea, because it ignores the crucial information of word order. In the
second group, we could see that CNN performs well, for it provides the capacity of modeling local
word sequences (via convolutional operations) and capturing sentence-level features (via max-pooling
operations). Somewhat surprisingly, the model of BiLSTMs seems not good for this sentence-pair mod-
eling task, the reason might be that using the last states of LSTMs ignores too much information of the
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Competitive System COMP. CONT. EXP.+ TEMP. AVG.
Pitler et al. (2009) 21.96 47.13 76.42 16.76 40.57
Zhou et al. (2010) 31.79 47.16 70.11 20.30 40.32
Park and Cardie (2012) 31.32 49.82 79.22 26.57 46.73
McKeown and Biran (2013) 25.40 46.94 75.87 20.23 42.11
R&Xue (2014) 39.70 54.42 80.44 28.69 50.81
Ji and Eisenstein (2015) 35.93 52.78 80.02 27.63 49.09
Braud (2015) 36.36 55.76 61.76 29.30 45.80
Zhang et al.(2015a) 33.22 52.04 - 30.54 -
Chen et al. (2016) 40.17 54.76 80.62 31.32 51.72
Char+Word-Enhanced 38.67 54.91 80.66 32.76 51.75

Table 3: Comparisons of F1 scores (%) for binary classification. (symbol + means EXP. with Entrel)

previous words of the sequence. Thus, for the rest models, CNN will be selected to compute sentence
vectors. In the third group, we will explore how the character-based embeddings will perform without
conventional word-level embeddings. The character-based embeddings learned from Char-CNN model
are individually calculated and lacks of the information of surrounding words, thus stacking BiLSTMs
improves the accuracies because the recurrent layer could effectively capture rich context characteris-
tics. Not surprisingly, utilizing only character-level embedding performs not that good, even the simple
adding-word-vectors method gives better accuracies. This suggests that conventional word-level em-
beddings should not be abandoned because a word is only meaningful at the word-level. However, the
character forming of a word could be also helpful, especially when we are dealing with rare words. Thus
in the fourth group, we will explore the combination of character-level and word-level representations.
The Char+Word-Concat model that concatenates the sentence vectors (from different CNNs) indeed
improves the performance. The proposed model, Char+Word-Enhanced, combines the two modules at
the word representation level, this is different from the Concat model because the influence of character-
level representations are directly integrated into the final word representations before fed to CNN. The
proposed model outperforms all the others, which shows the character-based representations do make
extra helps.

4.2 Binary Classification

In order to compare with some previous work, we run our model on the binary implicit relation classifica-
tion task. The dataset is also from PDTB and conventional splitting for binary classification is followed:
Section 2-20 for training, 0-1 for development and Section 21-22 for testing. For the training set, since
the number of negative examples is much greater than the number of positive examples, extra negative
examples are extracted randomly to provide balanced training set. All examples in sections 21 and 22
are included for testing. Following previous work, the evaluation metric for binary classification will be
Macro-F1 score. The hyper-parameters of our model are roughly the same as in multi-class classification
expect that learning rate is set to 0.0002 for the binary classification task.

4.3 Results

As shown in Table 1, 2 and 3, the proposed model Char+Word-Enhanced outperforms most of the
previous models, both for multi-class and binary classification task. This shows the effectiveness of
context-aware character-enhanced embeddings and that these enhanced embeddings corporate well with
sentence-level neural models.

5 Conclusion

In this paper, we propose a character-level neural module to obtain context-aware character-based em-
beddings for implicit discourse relation recognition. Utilizing the combined character-enhanced em-
beddings, our model performs well, which shows that the character-level information captured by the

1921



proposed model may effectively improve this semantic understanding task.
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