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Abstract

We experiment with different ways of training LSTM networks to predict RST discourse trees.
The main challenge for RST discourse parsing is the limited amounts of training data. We combat
this by regularizing our models using task supervision from related tasks as well as alternative
views on discourse structures. We show that a simple LSTM sequential discourse parser takes
advantage of this multi-view and multi-task framework with 12-15% error reductions over our
baseline (depending on the metric) and results that rival more complex state-of-the-art parsers.

1 Introduction

Documents are not just an arbitrary collection of text spans, but rather an ordered list of structures
forming a discourse. Discourse structures describe the organization of documents in terms of discourse
or rhetorical relations. For instance, the discourse relation CONDITION holds between the two discourse
units (marked with square brackets) in example (1a) and a relation MANNER-MEANS holds between the
segments in example (1b).1

(1) a. [The gain on the sale couldn’t be estimated] [until the “tax treatment has been determined.”]

b. [On Friday, Datuk Daim added spice to an otherwise unremarkable address on Malaysia’s pro-
posed budget for 1990] [by ordering the Kuala Lumpur Stock Exchange “to take appropriate
action immediately” to cut its links with the Stock Exchange of Singapore.]

Different theories of discourse structure exist. For instance, Rhetorical Structure Theory (RST) (Mann
and Thompson, 1988) analyzes texts as constituency trees covering entire documents. This theory has led
to the RST Discourse Treebank (RST-DT) (Carlson et al., 2001) for English and the development of text-
level discourse parsers (Hernault et al., 2010; Joty et al., 2012; Feng and Hirst, 2014; Ji and Eisenstein,
2014b). Such parsers have proven to be useful for several downstream applications (Taboada and Mann,
2006; Daumé III and Marcu, 2009; Thione et al., 2004; Sporleder and Lapata, 2005; Louis et al., 2010;
Bhatia et al., 2015; Burstein et al., 2003; Higgins et al., 2004). Another corpus has been annotated for
discourse phenomena in English, the Penn Discourse Treebank (Prasad et al., 2008) (PDTB). In contrast
to RST-DT, PDTB does not encode discourse as tree structures and documents are not fully covered. In
this study we focus on the RST-DT, but among other things, we consider the question of whether the
information in PDTB can be used to improve RST discourse parsers.

Discourse parsing is known to be a hard task (Stede, 2011). It involves several complex and inter-
acting factors, touching upon all layers of linguistic analysis, from syntax, semantics up to pragmatics.
Consequently, also annotation is complex and time consuming, and hence available annotated corpora
are sparse and limited in size. The aim of this paper is to address this training data sparsity by proposing
to leverage different views of the same data as well as information from related auxiliary tasks. We aim
at investigating which source of information are relevant for the discourse parsing task.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

1The examples are taken from the RST Discourse Treebank, documents 1179 and 0613, respectively.
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Figure 1: From RST-DT discourse trees to constituency sequence labels.

Specifically, we draw upon the recent success of deep learning methods and present a novel multi-
view multi-task hierarchical deep learning model for discourse parsing. Our model, a bidirectional Long
Short-Term Memory (bi-LSTM) model, learns joint text segment representations for predicting RST-DT
discourse trees and learns from several auxiliary tasks. We encode RST-DT trees as sequences of bracket
and label n-grams, and exploit multiple views of the data (such as RST-DT structures as dependencies)
as well as multi-task learning through auxiliary tasks (such as modality information from TimeBank,
or discourse relations as annotated in the PDTB). Our multi-view learning is different from the standard
notion of multi-view learning. Jin et al. (2013), for example, combine multi-view and multi-task learning,
but here, multiple views refer to multiple, independent feature sets describing the datapoints. We are, to
the best of our knowledge, the first to use multiple views on the output structures to effectively regularize
learning.

Contributions We present a hierarchical multi-task bi-LSTM architecture for multi-task learning,
enabling better learning of discourse parsers with other views of the data and related tasks. Our
approach achieves competitive performance compared to previous state-of-the-art models by mak-
ing use of auxiliary tasks. We make the code and preprocessing scripts available for download at
http://bitbucket.org/chloebt/discourse.

2 Baseline RST parser

Discourse parsing is a prediction problem where the input is a document, i.e., a sequence of elementary
discourse units (EDUs) consisting of text fragments. The output of the task is a binary tree2 with EDUs at
the leaf nodes. The non-terminal nodes are labeled with two sets of information: (a) discourse relations
and (b) an indication of whether the daughters are nucleus or satellite. A nucleus is being considered as
the most important part of the text whereas a satellite presents secondary information. A discourse rela-
tion may involve a nucleus and a satellite (mononuclear relation) or two nuclei (multinuclear relation).

2.1 From sequences to trees

Our approach is to learn sequential models with transfer from models from related tasks, but the output
structures are trees. For this purpose, we encode trees as sequences in a very simple way that preserves
all the information from the original trees: Every EDU is labeled with its local surrounding discourse
structure. More precisely, the first EDU is labeled by the entire path of the root of the tree to itself. Then,
the following EDUs are labeled as beginning a new relation (using the opening bracket and the relation
name) or ending one or more relations (using the relation name and closing brackets). For example, the
EDU 1 in the tree in Figure 1 will be labeled with: “NS-TEXTUALORGANIZATION ( NS-SAMEUNIT (
NN-LIST”.3 Then, the EDU 2 ends a LIST relation, and the EDU 3 begins an ELABORATION relation.
See Figure 1 for a complete conversion.

2As in all the previous studies on the RST-DT, we binarize the trees using right-branching.
3‘N’ means nucleus and ‘S’ satellite, a relation is thus labeled ‘NS’ if its first argument is the nucleus of the relation and its

second argument, the satellite.
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Figure 2: RST predicted, corrected and gold trees for document 1129 from the RST-DT.

Our output will be labeled trees, but below, in our multi-task learning models, we will consider un-
labeled parsing and labeled parsing with only nuclearity or relations as auxiliary tasks. Note, however,
that in a sequence prediction model we have no guarantee that our output structures form well-formed
discourse trees. Therefore we use the following heuristics to guarantee well-formed output structures:

Heuristics The first three heuristics are enough to guarantee well-formed trees in practice: 1) If the
first predicted label only contains closing parenthesis, we replace them by opening ones. 2) We remove
any right hand side bracket that ends the tree too early, i.e., leads to a well-formed tree only covering
a left subsequence of the sequence of EDUs. 3) We add right hand side brackets at the end if there are
unclosed brackets after processing the sequence of labels.

However, we not only need to produce well-formed trees, we need to produce well-formed binary
trees. Hence, we add the following two heuristics: 4) We first transform them to Chomsky Normal
Form.4 5) We then remove unary nodes as follows:

• If the unary node is the root, an internal node whose child is a relation node, or a pre-terminal node
(its child is a leaf and an EDU node), we replace it by its child.

• If the unary node is an internal node and its child an EDU node (but not a leaf node), then the EDU
node becomes its left daughter and the daughter of the EDU node becomes its right daughter.

For example, the document 1129 in the RST-DT is predicted by our baseline model as the sequence
in (2a), corrected first using the steps from 1) to 3). Here, we only need to remove a closing parenthesis
after EDU 4. We obtain the sequence (2b) corresponding to the first tree in Figure 2. This tree only needs
to be binarized, we thus end with the second tree in Figure 2 that can then be compared to the gold tree
(third tree in Figure 2).

(2) a. ( NS-ELABORATION ( SN-ATTRIBUTION (1) ( NS-ELABORATION (2)(3) ) (4) ) ) (5) )

b. ( NS-ELABORATION ( SN-ATTRIBUTION (1) ( NS-ELABORATION (2)(3) ) (4) ) (5) )

3 Auxiliary tasks

We consider two types of auxiliary tasks: first, tasks derived from the RST-DT (multi-view), that is
dependency encoding of the trees and additional auxiliary tasks derived from the main one; second, we
consider tasks derived from additional data, namely, the Penn Discourse Treebank (Prasad et al., 2008),
Timebank (Pustejovsky et al., 2003; Pustejovsky et al., 2005), Factbank (Saurı́ and Pustejovsky, 2009),
Ontonotes (Hovy et al., 2006) and the Santa Barbara corpus of spoken American English (Du Bois,
2000).

All the auxiliary tasks are, as the main one, document-level sequence prediction tasks. In Table 1
we report the number of documents and single labels for each task. We hypothesize that such auxiliary
information is useful to address data sparsity for RST discourse parsing.

4Using the implementation available in NLTK.
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Figure 3: From RST-DT discourse trees to dependency sequence labels. The numbers indicate the
position of the head of the EDU, e.g. EDU 2 and EDU 3 have the root EDU 1 as head.

3.1 Building other views of the RST-DT trees

Binary dependencies We first use a representation of the RST-DT trees as binary dependencies (RST-
Dep). We roughly do the same transformation as (Muller et al., 2012; Li et al., 2014) but contrary to
the latter, we choose as root the nucleus of the root node of the tree rather than the first EDU of the
document. More precisely, we associate each node with its saliency set as defined in (Marcu, 1997):
The nucleus is the salient EDU of a relation, and the nuclei can go up in the tree with possibly several
nuclei in the saliency set of a node. Like Li et al. (2014), we replace all multi-nuclear relations (NN)
by mono-nuclear ones choosing the left DU as the nucleus (NS). We thus have only one nucleus in each
saliency set. Figure 3 illustrates the conversion of an RST tree into dependency sequence labels.

Nuclearity and relations We further add two alternative views that simply correspond to the main
task with one label information removed, keeping either only nuclearity labels (Nuc) or discourse rela-
tions (Lab). The idea here is to break up the labeling task, since with the set of 18 discourse relations
traditionally used, adding the nuclearity information leads to a large number of 41 labels.

Fine-grained labels Finally, we also use the main task with the original 78 fine-grained relations as an
auxiliary task, the idea being of helping the model to learn finer distinctions between the relations.

3.2 Using additional annotations

As we already discussed, discourse relation identification is a hard task that requires access to high-level
information. Previous work has shown that and indication about the events involved in the discourse
units aids identification or constrains the set of inferable relations (Asher and Lascarides, 2003; Danlos
and Rambow, 2011; Taboada and Das, 2013). Consider our examples given in the introduction. For
instance, modals can indicate conditional relations as in example (1a). Similarly, in example (1b) two
asynchronous successive events can be an indication for a causal relation, and besides marking temporal
relations, the presence of a present participle may trigger a causal or a manner relation.

In this work we consider time and factuality auxiliary tasks in a multi-task setup. We use two resources
for this, Factbank and Timebank, described next. We also include information concerning co-reference
using Ontonotes annotations, and use the Santa Barbara corpus that contains conversations split into
speaking turns. Finally, we incorporate some annotations from the PDTB, another corpus for discourse
that however follows a different annotation scheme than the RST-DT. We describe below the different
resources used, as well as how we convert the annotations into sequence labeling tasks in order to use
them into the multi-task framework. See Table 1 for dataset characteristics.

Factbank and Timebank FactBank (Saurı́ and Pustejovsky, 2009) is a corpus of news reports that
links events to their degree of factuality. The factuality corresponds to four modality values (‘certain’,
‘probable’, ‘possible’, ‘unknown’) combined to a polarity value (‘positive’, ‘negative’, ‘unknown’). Fact-
bank has been annotated on top of TimeBank and a part of AQUAINT TimeML, corpora that provide an
annotation of the events according to the TimeML specifications (Pustejovsky et al., 2005). Each event is
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annotated with several types of information, among which, of particular interest for discourse, are tense
(‘infinitive’, ‘pastpart’, ‘past’, ‘future’, ‘prespart’, ‘present’, ‘none’), aspect (‘perfective’, ‘progressive’,
‘perfective prog’, ‘none’), polarity (‘positive’, ‘negative’, ‘none’) and modality (e.g. ‘have to’, ‘would
have to’, ‘should have to’, ‘possible’, ‘must’, ‘could’, . . .).

In order to build a sequence prediction task upon FactBank and TimeBank annotations, we choose to
use sentences as minimal units. We then simply label each sentence in a document with its most frequent
tag for each dimension (tense, aspect, modality and factuality). A more fine grained approach would be
to retrieve the clause for each event.

Ontonotes OntoNotes (Hovy et al., 2006) contains, among other layers, the annotation of coreference
links between entities in documents. Coreference and rhetorical relations are linked, as shown in (Ji
and Eisenstein, 2014a). We only keep the English texts. We use sentences as minimal units. The
first sentence of the document is annotated as root. We then label each sentence as coreferent to the
immediately previous one, to one preceding sentence or as no coreferent.

Santa Barbara corpus We use the Santa Barbara corpus of spoken American English (Du Bois, 2000)
to get a sequence labeling task corresponding to turns in a conversation, the idea being that rhetorical
structure could share similarities with the structure of conversations. Specifically, we segment the dia-
logues by pauses and label the first turn-taking utterance as beginning a new turn. All other utterances are
labeled as inside the turn of the current speaker. We randomly split the data into documents containing
100 turns.

Penn Discourse Treebank The PDTB (Prasad et al., 2008) is another corpus annotated at the discourse
level for English. Contrary to the RST-DT, the annotation is theory neutral: the spans of text are not
necessarily all connected, there is no specific structure representing a document. However, the PDTB
contains much more data than the RST-DT, with more than two thousands documents annotated against
around four hundreds in the RST-DT, making it interesting to try to take advantage of this relatively
large amount of discourse annotated data. Since the PDTB and the RST-DT follow different annotation
guidelines (i.e. different definitions of the minimal discourse units, of the relations, of the structures
involved), multi-task learning is a relevant framework to try to combine them.

In PDTB, EDUs are the arguments of connectives and adjacent sentences inside paragraphs. The
EDUs are mainly clauses, but the annotators are free to choose a span not covering an entire clause, or
covering more than one sentence. In this paper, we use sentences as EDUs rather than the manually
identified segments: if a relation links more than two sentences, we keep the relation between the last
sentence of the first argument and the first sentence of the second argument; if a relation links two
fragments belonging to two different sentences, we expand the text of each argument to cover the entire
sentences. We ignore intra-sentential explicit relations.5

We use a BIO annotation scheme for relations between adjacent sentences. More precisely, a sentence
is labeled with a BIO label and a discourse relationRi among the 16 corresponding to the second level in
the PDTB hierarchy of sense6 and the pseudo relation EntRel corresponding to a link between entities.
A sentence labeled with “B-Ra” is the first argument of a relation Ra whose second argument is the
following sentence. If this following sentence is also the first argument of a relation Rb, it is labeled as
“B-Rb”, else, it is labeled as ending the current relation, thus “I-Ra”. A sentence that is not linked to the
previous or following sentence is labeled with “O”.

4 Hierarchical bi-LSTMs and baselines

Our main technical contribution is a hierarchical bi-LSTM that composes embeddings for a sequence
of words from lower-level word bi-LSTMs, and uses these to predict sequences of labels, encoding
especially discourse tree structures.

5Preliminary experiments including non overlapping intra-sentential relations did not show improvements against only keep-
ing inter-sentential ones. However, including intra-sentential instances requires more pre-processing and it makes necessary to
decide which intra-sentential relations to keep to avoid overlaps.

6We only keep the first relation annotated for a pair of arguments.
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Task # Doc # Labels

Constituent 322 1955
Nuclearity 322 284
Relation 322 1159
Dependency 322 708
Fine grained 322 2,700
Aspect 208 4
Factuality 208 7
Modality 208 10
Polarity 208 3
Tense 208 7
Coreference 2,361 4
PDTB 2,065 35
Speech 446 2

Table 1: Number of documents (# Doc)
and labels (# Labels) per task (training
data). The main task corresponds to the
first line (Constituent).

Speech

RST DT dep

RST DT

I-Turn B-TurnB-Turn

-2 NN-SameUnit-1 NN-ListRoot

( NN-TextualOrg ( NN-SameUnit ( NN-List NN-List) NS-( Elaboration

...
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...

... WnW2W1... WnW2W1Words ... WnW2W1

Document

Figure 4: Multi-task learning, hierarchical bi-LSTM net-
work architecture (with 2 layers).

In regular bi-directional recurrent neural networks (bi-RNNs), sequences are read in both regular and
reversed order, enabling conditioning predictions on both left and right context. Below, in the forward
pass, we run the input data through an embedding layer and compute the predictions of the forward and
backward states, which are connected in one or more feed-forward layers, from which we compute the
softmax predictions for the sequence based on a linear transformation. We then calculate the objective
function derivative for the sequence using cross-entropy (logistic loss) and use backpropagation to calcu-
late gradients and update the weights accordingly. LSTMs (Hochreiter and Schmidhuber, 1997) replace
the cells of RNNs with LSTM cells, in which multiplicative gate units learn to open and close access to
the error signal.

The overall architecture is shown in Figure 4: each input sequence in the document (i.e. a discourse
unit, a speaking turn, a sentence, depending on the task) goes through the hierarchical bi-LSTM that
outputs a sequence of labels for the entire document. In particular, an input sequence is represented as
a sequence of word embeddings. This sequence goes first through the bi-directional LSTM at the lower
level, and the final states (forward, backward) of the bi-LSTMs is taken as input representation for the
document-level bi-LSTM at the upper level, which consists of two stacked layers.

For multi-task learning, each task is associated with a specific output layer, whereas the inner layers –
the stacked LSTMs – are shared across the tasks. At training time, we randomly sample data points from
target or auxiliary tasks and do forward predictions. In the backward pass, we modify the weights of the
shared layers and the task-specific outer layer. Except for the outer layer, the target task model is thus
regularized by the induction of auxiliary models.

Bi-LSTMs have already been used for syntactic chunking (Huang et al., 2015) and semantic role
labeling (Zhou and Xu, 2015), as well as other tasks. Our model differs from most of these models in
being a hierarchical model, composing word embeddings into sentence embeddings that are the inputs of
a bigger bi-LSTM model. This means our model can also be initialized by pre-trained word embeddings.
We implemented our recurrent network in CNN/pycnn,7 fixing the random seed. We use standard SGD
for learning our model parameters.

5 Experiments

Data The RST-DT contains 385 Wall Street Journal articles from the Penn Treebank (Marcus et al.,
1993), with 347 documents for training and 38 for testing in the split used in previous studies. We

7https://github.com/yoavg/cnn/
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follow previous works in using gold standard segmentation (Joty et al., 2012; Ji and Eisenstein, 2014b).
Discourse segmentation on the RST-DT can be performed with performance above 95% in accuracy
(Xuan Bach et al., 2012). The RST-DT contains newswire articles from the Wall Street Journal.

Baseline As baseline, we train a standard bi-LSTMs on the RST-DT corpus without any auxiliary task
information.

Systems As our system, we use hierarchical bi-LSTMs with task supervision from other related tasks.
We experiment with using pre-trained embeddings in both baselines and systems.

Competitive systems We compare our approach with the state-of-the-art text-level discourse parser
DPLP (Ji and Eisenstein, 2014b). In our comparison, we reproduced the best results reported, including
both proposed approaches for DPLP – DPLP concat (concatenation form for the projection matrix) and
DPLP general (general form).

Parameter tuning We used a development set of 25 documents randomly chosen among the training
set. We optimized the number of passes p over the data (p ∈ [10, 60]), the value of the Gaussian noise
(σ ∈ {0.0, 0.2}), the number of hidden dimensions (d ∈ {200, 400}), the number of stacked layers (h ∈
{1, 2, 3, 4, 5}), and the auxiliary tasks to be included and combined. In the end, we report results using
2 feed-forward layers with 128 dimensions, a Gaussian noise with sigma of 0.2, 200 hidden dimensions,
20 passes over the data, 2 layers and Polyglot embeddings (Al-Rfou et al., 2013)8.

Metrics Following (Marcu, 2000b) and most subsequent work, output trees are evaluated against gold
trees in terms of how similar they bracket the EDUs (Span), how often they agree about nuclei when
predicting a true bracket (Nuclearity), and in terms of the relation label, i.e., the overlap between the
shared brackets between predicted and gold trees (Relation).9 These scores are analogous to labeled and
unlabeled syntactic parser evaluation metrics. The exact definitions of the three metrics are:

• Span: This metric is the unlabeled F1 over gold and predicted trees, and identical to the PARSEVAL
metric in syntactic parsing. This metric reflects a correct bracketing and ignores nuclearity and
relation labels.

• Nuclearity: This metric is the labeled F1 over gold and predicted discourse trees, disregarding the
discourse relations.

• Relation: This metric is the labeled F1 over gold and predicted discourse trees, disregarding the
nuclearity information.

6 Results

Our results are summarized in Table 2. We note that the bi-LSTM baseline that only receives task super-
vision from RST-DT discourse trees achieves scores comparable to the state-of-the-art for the unlabeled
structure (Span), but lower scores for the other metrics.

More importantly, multi-task learning, i.e., combining different representations of the data, leads to
substantial improvements over our baseline for 8 out of the 11 tasks tested. We found that it is much
more beneficial to have multiple views, thus, interestingly using different views on the data, with all the
tasks derived from the main one leading to improvements (RSTFin, RSTDep, Nuc+Lab). Especially,
the model takes advantage of using the data from the main task but with fine grained relations, with
82.88% in unlabelled F1 (Span), 67.46% in labelled F1 considering nuclearity (Nuclearity), and 53.25%
in labelled F1 considering relations (Relation). This auxiliary view helps the model to discriminate
between the relations.

Most of the tasks derived from additional annotations also lead to improvements. Especially, we
found that the speech data (Speech) leads to good results: this confirms our assumption that the turns

8https://sites.google.com/site/rmyeid/projects/polyglot
9We use the evaluation script provided at https://github.com/jiyfeng/DPLP.
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System RSTFin Fact Speech Asp RSTDep Nuc+lab Mod Pol PDTB Coref Ten Span Nuclearity Relation

Prior work

DPLP concat - - - - - - - - - - - 82.08 71.13 61.63
DPLP general - - - - - - - - - - - 81.60 70.95 61.75

Our work

Hier-LSTM - - - - - - - - - - - 81.39 64.54 49.15

MTL-Hier-LSTM ! - - - - - - - - - - 82.88 67.46 53.25
MTL-Hier-LSTM - ! - - - - - - - - - 83.40 67.16 52.10
MTL-Hier-LSTM - - ! - - - - - - - - 83.26 67.51 51.75
MTL-Hier-LSTM - - - ! - - - - - - - 83.69 66.25 51.25
MTL-Hier-LSTM - - - - ! - - - - - - 81.25 65.34 51.24
MTL-Hier-LSTM - - - - - ! - - - - - 82.09 65.68 51.12
MTL-Hier-LSTM - - - - - - ! - - - - 81.66 65.31 50.58
MTL-Hier-LSTM - - - - - - - ! - - - 82.01 65.29 50.11
MTL-Hier-LSTM - - - - - - - - ! - - 81.61 63.10 48.89
MTL-Hier-LSTM - - - - - - - - - ! - 80.26 63.35 47.70
MTL-Hier-LSTM - - - - - - - - - - ! 81.33 62.34 47.57

Best combination - - - - ! ! ! - ! - - 83.62 69.77 55.11

Human annotation - - - - - - - - - - - 88.70 77.72 65.75

Table 2: Parsing results of different models on the RST-DT test data. Prior work results are reprinted
(DPLP) (Ji and Eisenstein, 2014b). The auxiliary tasks are: RST-DT sequences from trees but keeping
only the relations (Lab) or the nuclearity information (Nuc), RST-DT dependency parsing (RSTDep),
sequence labels from Factbank using modality information (Mod), and inter-sentential relation from the
PDTB (PDTB).

of speech and the structures involved share some similarities with the rhetorical units and structures.
Moreover, factuality (Fact), aspect (Asp), modality (Mod) and polarity (Pol) information prove to be
useful for discourse parsing. On the other hand, the tasks derived from tense (Ten) and coreference
(Coref) annotations do not lead to improvements. These information, crucial for the task, would probably
benefit from a finer grained encoding at the sentence level. The task derived from the PDTB, taken alone,
lowers slightly the results.

Finally, we experiment with task combinations. Our best system only uses the views based on nucle-
arity and label (Nuc+lab), the encoding of the tree as dependency (RSTDep), the modality information
(Mod) and the task derived from the PDTB data. This combination leads to substantial improvements,
with 83.62% in unlabelled F1 (Span), 69.77% in labelled F1 considering nuclearity (Nuclearity), and
55.11% in labelled F1 considering relations (Relation). This closes 60,7% of the gap to human perfor-
mance on unlabelled discourse parsing. It is slightly better than state-of-the-art in discourse parsing for
Span. Feng and Hirst (2014) proposed a system with better scores for these metrics, but the comparison
to their system is not entirely fair, since they add common-sense constraints that are not clearly explained
and post-editing. Besides, there is no single approach that does best for all metrics.

Our results indicate that our architecture learns useful representations capturing some of the syntactic
and contextual information needed for the task.

7 Related work

Some of the first text-level discourse parsers were based on hand-crafted rules and heuristics, making
mainly use of the connectives as indication of the relations and using constraints to build the entire RST
trees (Marcu, 2000a; Le Thanh et al., 2004).

More recent works proposed learning based approaches inspired by syntactic parsing. Hernault et al.
(2010) (HILDA) proposed a greedy approach with SVM classifiers performing attachment and relation
classification at each step of the tree building. Joty et al. (2012) (TSP) built a two-stage parsing system,
training separate sequential models (CRF) for the intra and the inter-sentential levels. These models
jointly learn the relation and the structure, and a CKY-like algorithm is used to find the optimal tree.
Feng and Hirst (2014) noticed the inefficiency of TSP and proposed a greedy approach inspired by
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HILDA but using CRF as local models for the inter- and intra-sententials levels, allowing to take into
account sequential dependencies.

Last studies also focused on the issue of building a good representation of the data. Feng and Hirst
(2012) introduced linguistic features, mostly syntactic and contextual ones. Ji and Eisenstein (2014b)
(DPLP) proposed to learn jointly the representation and the task, more precisely a projection matrix
that maps the bag-of-words representation of the discourse units into a new vector space. This idea is
promising, but a drawback could be the limited amount of data available in the RST-DT, an issue even
more crucial for other languages.

Discourse parsing has proven useful for many applications (Taboada and Mann, 2006), ranging from
summarization (Daumé III and Marcu, 2009; Thione et al., 2004; Sporleder and Lapata, 2005; Louis et
al., 2010), sentiment analysis (Bhatia et al., 2015) or essay scoring (Burstein et al., 2003; Higgins et al.,
2004). However, the range of applications and the improvement allowed are for now limited by the low
performance of the existing discourse parsers.

We are not aware of other studies trying to combine various encodings of the RST-DT trees or to
leverage relevant information through multi-task learning to improve discourse parsing. To the best of
our knowledge, multi-task learning has only been used for discourse relation classification (Lan et al.,
2013) on the Penn Discourse Treebank to combine implicit and explicit data.

We are not the first to propose using bi-LSTMs for tree structure prediction problems. Zhou and Xu
(2015), for example, use bi-LSTMs to produce semantic role labelling structures. Zhang et al. (2015)
did the same for relation extraction. None of them considered multi-task learning architectures, however.
Multi-task learning in deep networks was first introduced by Caruana (1993), who did multi-task learning
by doing parameter sharing across several deep networks, letting them share hidden layers. The same
technique was used by Collobert et al. (2011) for various NLP tasks, and for sentence compression
in (Klerke et al., 2016). Hierarchical multi-task bi-LSTMs have been previously used for part-of-speech
tagging (Plank et al., 2016).

8 Conclusion and future work

We presented the first experiments exploiting different views of the data and related tasks to improve text-
level discourse parsing. We presented a hierarchical bi-LSTM model allowing to leverage information
from various sequence prediction tasks (multi-task learning) that achieves a new state-of-the-art perfor-
mance on unlabeled text-level discourse parsing, and competitive performance in predicting nuclearity
and discourse relations.

For relation prediction, future work includes adding additional information at the sentence level, such
as syntactic information used in most of the studies identifying discourse relation on the PDTB (Pitler
et al., 2009; Lin et al., 2009; Rutherford and Xue, 2014), or better representation of the combination
between the arguments (Ji and Eisenstein, 2014b).
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