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Abstract 

In this paper, we investigate four important issues together for explicit discourse relation label-
ling in Chinese texts: (1) discourse connective extraction, (2) linking ambiguity resolution, (3) 
relation type disambiguation, and (4) argument boundary identification. In a pipelined Chinese 
discourse parser, we identify potential connective candidates by string matching, eliminate 
non-discourse usages from them with a binary classifier, resolve linking ambiguities among 
connective components by ranking, disambiguate relation types by a multiway classifier, and 
determine the argument boundaries by conditional random fields. The experiments on Chinese 
Discourse Treebank show that the F1 scores of 0.7506, 0.7693, 0.7458, and 0.3134 are 
achieved for discourse usage disambiguation, linking disambiguation, relation type disambigu-
ation, and argument boundary identification, respectively, in a pipelined Chinese discourse 
parser. 

1 Introduction 

Discourse relations represent how discourse units logically connect with each other. A discourse con-
nective explicitly signals the presence of a discourse relation, and therefore it is an important clue for 
discourse analysis. There are several challenges in Chinese discourse parsing.  

Firstly, there are more discourse connectives in Chinese than in English and their parts of speech 
have more varieties (Huang et al., 2014). Therefore, it is likely to encounter words that have the same 
surface forms as real connectives but do not function as discourse connectives.  

Secondly, many Chinese connectives are parallel connectives that have multiple discontinuous 
components (Zhou and Xue, 2012). Each connective can be composed of one or more connective 
components. For example, ''雖然-但'' (although-but) consists of two connective components: ''雖然'' 
(although) and ''但'' (but). When multiple connectives are present in a paragraph, their components 
often link with each other in multiple possible ways. (S1) is an example. There are five possible con-
nective candidates, including (1) ''除了...還'' (in addition to ... also), (2) ''還...也'' (also ... also), (3) ''除
了'' (in addition to), (4) ''還'' (also), and (5) ''也'' (also). Figure 1 illustrates the ambiguous linking. On-
ly candidates (1) and (5) are correct. Moreover, when spurious component candidates exist in a para-
graph, they form many more spurious connective candidates by linking together in different ways. 
Finding the correct linking between correct components is useful for discourse analysis because they 
provide clues to determine the positions of the relations. 

(S1) 除了投資環境優越，還在於這些企業所具有的產品優勢。(...) 對上海的產業優化也有很
大的帶動作用。(In addition to superior investment environment, it's also due to the product ad-
vantages possessed by the enterprise. (...) It also has great effect in promoting the optimization of in-
dustries in Shanghai.) 

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: 
http://creativecommons.org/licenses/by/4.0/ 
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Figure 1: Ambiguous linking between connective components. 

Thirdly, the sentence structures in Chinese texts are not clearly defined. Thus it is more challenging 
to detect the arguments for a given relation. Here, arguments of a discourse relation are the discourse 
units it involves. Since the relations form a hierarchical discourse structure, the arguments for relations 
higher in the hierarchy or lower in the hierarchy could span over ranges of various lengths. 

In this paper, we aim at investigating these unique challenges at the same time. The goal of this re-
search is to build an end-to-end system to analyse the explicit discourse relations in Chinese texts. In 
particular, we deal with four tasks together: (1) extraction of explicit discourse connectives, (2) linking 
resolution between the component candidates, (3) classification of the relation type for each discourse 
connective, and (4) extraction of the discourse arguments of a connective. 

This paper is organized as follows. Section 2 surveys the related work. Section 3 describes the da-
tasets used in this study. Section 4 presents our Chinese discourse parser. Section 5 shows and dis-
cusses the experimental results. Section 6 concludes the remarks.  

2 Related Work 

Rhetorical Structure Theory Discourse Treebank (RST-DT) (Carlson et al., 2001) and the Penn Dis-
course Treebank 2.0 (PDTB2) (Prasad et al., 2008) are two popular English discourse corpora for dis-
course analysis. Many groups have investigated different subtasks of English discourse parsing on 
PDTB2, including discourse connective identification, relation type disambiguation (Pitler and 
Nenkova, 2009; Wellner, 2009; Faiz and Mercer, 2013), and argument extraction (Wellner and 
Pustejovsky, 2007; Elwell and Baldridge, 2008; Ghosh et al., 2011; Ghosh et al., 2012; Kong et al., 
2014). Lin et al. (2014) build an end-to-end discourse parser. As RST-DT provides hierarchical dis-
course structure annotations, there are also many attempts to construct the discourse structures auto-
matically for sentences (Sporleder and Lapata, 2005; Fisher and Roark, 2007; Joty et al., 2012) and 
documents (Hernault et al., 2010; Feng and Hirst, 2012; Joty et al., 2013; Li, Li et al., 2014; Ji and Ei-
senstein, 2014). 

Comparatively, there have been few large-scale Chinese discourse corpora until recently (Zhou and 
Xue, 2012; Zhou and Xue, 2015; Zhang et al., 2014; Li, Feng et al., 2014). Due to limited resource, 
early studies often used self-constructed corpora that made it difficult to compare between different 
works. T'sou et al. (1999), T'sou et al. (2000) and Chan et al. (2000) investigated connective detection 
in Chinese texts as a part of a tagging system. Hu et al. (2009) developed an automatic system to ex-
tract connective components from sentences. They used a rule-based method and found that the per-
formance was sensitive to the connective lexicon. They improved their performance by removing 
words commonly used in non-discourse contexts. Zhou et al. (2012) and Li, Carpuat et al. (2014) em-
ployed cross-lingual information to deal with discourse usage ambiguity. Li, Carpuat et al. (2014) used 
5-way classification to classify a connective between four relation types and non-discourse usage. Li 
et al. (2015) used CDTB to investigate detection and classification of connective components. They 
used maximum entropy and decision tree algorithms with various syntactic features. Chen et al. (2016) 
investigated fine-grained Chinese discourse relation labelling. Hu et al. (2011) dealt with linking am-
biguity. However, they only focused on intra-sentential relations in sentences that have multiple claus-
es and assumed all connective components in the sentence have already been correctly identified. 

As researchers start to focus on higher level problems for linguistic analysis, interest in discourse 
parsing also grows. The CoNLL-2015 Shared Task (Xue et al., 2015) and the CoNLL-2016 Shared 
Task (Xue et al., 2016) both focus on shallow discourse parsing. In particular, the CoNLL-2016 
Shared Task features Chinese discourse parsing with Chinese Discourse Treebank 0.5 (Zhou and Xue, 
2015), a PDTB-style annotated corpus. 

3 Datasets 

In this section, we briefly introduce the datasets used in this study and provide some statistics. 
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3.1 Chinese Discourse Treebank (CDTB) 

In Chinese Discourse Treebank (CDTB) (Li, Feng et al., 2014), 500 documents selected from the Chi-
nese Treebank (CTB) (Xue et al., 2005) were annotated. Totally, CDTB contains 2,342 paragraphs. 
Each paragraph was segmented into elementary discourse units (EDUs), and each paragraph is repre-
sented as a discourse tree as shown in Figure 2. Each relation is represented by an internal node, while 
each EDU is represented by a leaf node. The explicit and implicit relations between different spans of 
EDUs were annotated. In addition, discourse connectives for each relation were annotated. The exact 
positions of the arguments for a relation is heavily influenced by the complete discourse tree, and can 
range over multiple sentences in a paragraph. 

 
Figure 2: A discourse tree. 

In CDTB, total 7,310 relations are annotated, and 1,814 of them are explicit. The set of discourse 
relation types is organized in a three-level hierarchy. In this paper, we only focus on the four top-level 
relation types, i.e., causality, coordination, transition, and explanation. 

Some errors including duplicate annotations and erroneous positions are found in the corpus. After 
manual correction for explicit relation annotations, there are 1,813 explicit relations, each of which 
consists of exactly one connective instance. These 1,813 connectives are composed of 2,131 connec-
tive component instances. 

The length distribution for the annotated connectives is shown in Table 1. The distribution is imbal-
ance. There are totally 274 classes of connectives, but 147 of them appear only once.1 Since some 
connectives share the same components, there are only 227 classes of connective components. Most of 
the connective classes only have one unique top-level relation type. 

#Components 1 2 3 4 6 7 
#Connective Classes 143 108 15 6 1 1 
#Instances 1,544 235 24 8 1 1 

Table 1: Lengths of connectives. 

Table 2 shows the number of arguments for explicit relations. Most relations only have two argu-
ments, but there are relations that have as many as 7 arguments. The number of arguments does not 
always match with the number of connective components. For example, single connective “並” (and) 
can have as many as 5 arguments because it connects multiple parallel segments together. 

#Arguments 2 3 4 5 6 7 
#Instances 1,688 85 33 4 2 1 

Table 2: Number of arguments for each explicit relation. 

Totally there are 3,802 arguments for explicit relations. Depending on the position the relation re-
sides in the discourse tree, the length of an argument could vary greatly, but most of the arguments for 

                                                 
1 These numbers are computed by their surface forms, i.e., instances of the same connective class may have different relation 
types. 
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explicit relation are composed of only one EDU. On average, each argument is composed of 1.6 EDUs, 
and the longest argument is composed of 20 EDUs. 

3.2 NTU PN-Gram Corpus 

Recently, efficient methods to learn word embeddings have been developed. In this paper, we investi-
gate whether such word vectors are useful for dealing with discourse issues. NTU PN-Gram Corpus 
released by Yu et al., (2012), which was constructed by POS-tagging the Chinese texts extracted from 
the ClueWeb09 dataset (Callan et al., 2009). It has 21,217,147 unique sentences, containing 
326,996,602 tokens. We used this corpus to create 400-dimensional embeddings using GloVe tool 
(Pennington et al., 2014) and word2vec tool (Mikolov et al., 2013a; Mikolov et al., 2013b) with skip-
gram and continuous bag-of-words models. 

3.3 Connective Component Dictionary 

Discourse connectives serve as linking elements that connect discourse units. There are three kinds of 
linking directions (Li and Thompson, 1989): (1) forward-linking, (2) backward-linking, and (3) cou-
ple-linking. Such linking directions could be useful for identifying the positions of arguments for a 
given connective. We used the connective linking dictionary collected by Huang et al. (2014) as fea-
tures for argument boundary identification. Totally, it contains 301 distinct connective components 
that are annotated with linking directions. 

4 Chinese Discourse Parser 

There are five modules in the proposed pipelined system. Each paragraph in CDTB is processed by the 
following modules: (1) identify connective candidates, (2) eliminate non-discourse usages from con-
nective candidates, (3) resolve linking ambiguities, (4) disambiguate relation types, and (5) extract 
arguments. 

4.1 Connective Candidate Extraction 

We use string matching with the connective lexicon collected from CDTB to extract all possible in-
stances. Directly matching with raw text would yield 12,498 candidate components2 because many 
characters used for connectives appear in other unrelated words. Therefore, Stanford Chinese seg-
menter (Chang et al., 2008) is employed to segment paragraphs into tokens. Only the components 
composed of complete tokens are extracted. 

Total 7,649 component candidates which recover 2,068 of 2,131 annotated components are extract-
ed. These candidates form 7,976 connective candidates which recover 1,755 of 1,813 annotated con-
nectives. While some correct instances are not extracted due to segmentation errors, it reduces the 
number of spurious candidates substantially while maintaining high recall. 

4.2 Discourse Usage Disambiguation 

A logistic regression classifier is trained to eliminate spurious connective candidates. The features are 
listed below: 

P&N: We used a subset of the features selected from Pitler and Nenkova (2009). It includes four 
binary features for each connective component: (1) the highest category that dominates exactly the 
component itself, which is called self-category, (2) the parent, (3) the left-sibling, and (4) the right-
sibling of the self-category. Null features are set when no such nodes exist. For example, in Figure 3, 
there is no node that dominates exactly the component “卻是” (but). For multi-component connectives, 
the union of the features is used. We have also experimented with the full feature set, but the perfor-
mance does not increase. 

CONNECTIVE: The string of the connective. 

                                                 
2 Candidate components that could not form complete connectives are already eliminated. If we simply match with compo-
nent lexicon without checking whether they could form connectives, 24,539 candidate components would be detected. 
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Figure 3: A sub-parsing tree for 卻是. 

POS: The feature set contains: (1) POS tags for all tokens that constitute the connective component, 
(2) POS tag of the token to the left of the component, and (3) POS tag of the token to the right of the 
component. For multi-component connectives, the union of the features is used. 

NUM: The feature set contains a one-hot encoded feature−the number of components. In addition, 
there are seven numerical features: (1) the number of overlapped connective candidates, (2) the num-
ber of connective candidates that enclose any components of the current connective, (3) the distance 
between the leftmost and the rightmost tokens of the connective measured by tokens, (4) the geometric 
mean of distances between all neighbouring connective components for the current connective candi-
date, (5) the distances from the leftmost component to a separating element including “!?:;,。” or the 
paragraph boundary on the left, (6) the distance from the rightmost component to a separating element 
on the right, and (7) the minimum distance from any separating element to any connective component. 
We normalize the numerical features by scaling each to zero mean and unit variance. 

VECTOR: This feature set is built using word embeddings. The vectors are used to construct three 
features for each connective component: (1) the mean of the vectors representing each token that con-
stitutes the connective component, (2) the vector for the token to the left, and (3) the vector for the 
token to the right. Zero-valued vector is used when the vector does not exist. In total, it is a 1,200-
dimensional vector for each component when the 400-dimensional embeddings are used. For multi-
component connectives, we averaged the vectors. 

4.3 Connective Linking Disambiguation 

If we can classify discourse usage perfectly, we would have already solved the linking ambiguities 
because only the correct connectives remain. Due to imperfect classification, there may still exist some 
overlapped candidates. Here, we propose a greedy algorithm to resolve linking ambiguities among a 
set of connective candidates as outlined in Algorithm 1. The algorithm filters the candidate set C and 
produces a result set A that contains only non-overlapped connective candidates. All connective candi-
dates are ranked under some criteria and the one with the highest priority is greedily accepted. We will 
use different ranking criteria to evaluate our models, including (1) Score: the probability obtained by 
logistic regression as described in Section 4.2, (2) Length: the number of components each connective 
candidate has, the larger the better, and (3) Position. Position is used mainly as a tiebreaker. In particu-
lar, we accept the left-most candidate first. 

Algorithm 1. Linking Resolution Algorithm 
Input C: A set of connective candidates 
Output A: A set of accepted connectives 
1. A←{} 
2. Rank all connective candidates in C 
3. while C is not empty do 
4.  let ci be the connective candidate that has the highest priority 
5.  C←C−{ ci} 
6.  A←A∪{ ci} 
7.  Remove all connective candidates cj∈C that overlap with ci 
8. end while 
9. return A 
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4.4 Discourse Relation Type Disambiguation 

We use a logistic regression classifier to investigate whether the features we discussed in Section 4.2 
are useful for relation type disambiguation. 

4.5 Connective Argument Extraction 

We formulate argument extraction as a sequence labelling problem. As we know the arguments span 
over a continuous interval, we use four labels for the EDUs: before, start, inside, and after. Each ar-
gument is represented by a start followed by zero or more insides. Figure 2 is a discourse tree, where 
the explanation relation has two arguments (a) and (b-h), while the coordination+ relation has five ar-
guments (d), (e), (f), (g), and (h). Figure 4 shows the arguments and the corresponding labels for 
summary elaboration relation shown in Figure 2. 

As our goal is to extract the arguments, only the argument boundaries must be determined. Alt-
hough correct EDU segmentation is unavailable to our system because we attempt to extract argu-
ments from raw texts, the EDU boundaries in CDTB only occur with certain punctuation symbols that 
separate phrases and sentences. Thus, we segment a paragraph by these symbols, and solve the se-
quence labelling problem on these segments instead of EDUs. 

We use Conditional Random Fields (CRFs) to deal with the sequence labelling problem. CRFsuite 
(Okazaki, 2007) is adopted along with its default parameters. When training, each explicit relation 
with its corresponding labelling is used as a training case. When testing, CRFs are used to label the 
segments for each connective we extracted. Therefore, the same segments for a paragraph are labelled 
independently for each explicit relation inside the paragraph. The resulting argument boundaries are 
used to extract the connective's arguments. 

 
Figure 4: Sequence labelling for relation arguments identification. 

The features, which are determined by the current connective being considered and the segment, are 
shown as follows. 

CONTEXT: The concatenation of the self-category and the categories of the parent, the left-sibling, 
and the right-sibling is used as a binary feature as done by Kong et al. (2014). 

PATH: The feature set is similar to the CON-NT-Path features of Kong et al. (2014). We use the 
path from the self-category of each connective component to the self-category of the segment as the 
feature. 

POS: The POS tags for all tokens in the segment. 
SUBJ: The SUBJ feature is set if a segment contains a subject. 
ENDCHAR: The last token in the segment, i.e., the symbol that separates the current segment from 

the next one. 
COMPONENT: The feature set contains the information about connective components: (1) wheth-

er the segment has a connective component, (2) the string of the component if it exists, (3) whether 
there exists a component at the beginning of the segment, (4) whether there exists a component at the 
end of the segment, (5) whether the segment contains only a component and the separating symbol, (6) 
whether the segment is before all connective components, (7) the distance to the first segment that 
contains a component as a binary feature, (8) whether the segment is after all connective components, 
and (9) the distance to the last segment that contains a connective component as a binary feature. 

LINK: The feature set contains the linking directions a connective component could be used if it 
exists in the given segment. A connective component dictionary is consulted. 

CONNECTIVE: This feature set contains connective related information, including the string of 
the connective and the number of connective components it has. 
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5 Results and Discussions 

In the experimental setups, we first evaluate the performance of each individual disambiguation task 
and then examine the propagation effects in the pipelined system. 

5.1 Discourse Usage Disambiguation 

We evaluate our models using 10-fold cross-validation. The 2,342 paragraphs are divided into 10 
splits while keeping the distribution for the number of explicit relations in each paragraph roughly 
equal. The averaged precision, recall, and F1 scores for the positive connective instances are reported. 
As there are many spurious connectives, we balance the training set by oversampling the correct in-
stances for three times, but keep the original distribution when evaluating on test set. 

For statistical significance, we use Wilcoxon signed-ranks test (Wilcoxon, 1945) as suggested by 
Demšar (2006) at confidence level 95%. For each experiment, we select the best model (denoted by 
bold), and * is used to denote the scores that are significantly different. 

We firstly investigate the performance between different word embeddings as shown in Table 3. 
The vectors constructed by skip-gram model are the most useful. We will use them in the remaining 
experiments. Table 4 shows the results for all features. The best results are obtained with ALL-SKIP-
GRAPM in discourse usage disambiguation. We also experiment with different learning models in-
cluding Naive Bayes, SVM, decision trees, and random forest. Logistic Regression performs the best. 
For all models, we use default parameters provided by scikit-learn without tuning, i.e., C=1.0, penal-
ty=l2 for Logistic Regression. 

Features Precision Recall F1 Score 
CBOW 0.5808 0.7625 0.6593* 

SKIP-GRAM 0.6013 0.8068 0.6887 
GLOVE 0.5980 0.7996 0.6840 
ALL 0.5837 0.7439 0.6539* 

Table 3: Performance of discourse usage disambiguation using different word embeddings. 
 

Features Precision Recall F1 Score 
P&N 0.4239 0.8409 0.5634* 

CONNECTIVE 0.5205 0.8620 0.6487* 
POS 0.5426 0.7805 0.6399* 
NUM 0.4298 0.8456 0.5696* 
SKIP-GRAM 0.6013 0.8068 0.6887* 

ALL-P&N 0.6547 0.8186 0.7273* 
ALL-POS 0.6576 0.8222 0.7305* 
ALL-NUM 0.6357 0.8160 0.7144* 
ALL-SKIP-GRAM 0.6503 0.8882 0.7506 
ALL 0.6682 0.8203 0.7363* 
Table 4: Performance of discourse usage disambiguation using different features. 

5.2 Connective Linking Disambiguation 

To evaluate linking disambiguation individually, we first assume all correct connective components 
are already known. We use the 10-fold for paragraphs specified in Section 5.1 to evaluate our model 
using each connective as an instance. The results are reported in Table 5. We evaluate different rank-
ing criteria and the combination. A baseline model that simply ranks the candidates by their positions 
is also reported. We find that the ambiguity among the components is low. The baseline model already 
achieves an F1 score of 0.8797. In fact, only 472 out of 2,131 components are involved in more than 
one connective candidate. Length is relatively weaker than Score reported by the logistic regression 
model. Moreover, we also evaluate linking disambiguation within the pipelined system. The results are 
shown in Table 6. Integrating both Score and Length criteria performs the best. The comparison shows 
that most of the linking ambiguity is caused by spurious linking with spurious connective component 
candidates. 
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Ranking Criteria Precision Recall F1 Score 
Baseline 0.8528 0.9084 0.8797* 

Score 0.9770 0.9796 0.9783 
Length 0.9760 0.9604 0.9681* 
Length+Score 0.9793 0.9636 0.9714* 

Table 5: Performance of linking disambiguation with known connective components. 

Ranking Criteria Precision Recall F1 Score 
Baseline 0.6696 0.7919 0.7254* 

Score 0.7024 0.8222 0.7573* 
Length 0.7099 0.8238 0.7624* 
Length+Score 0.7165 0.8310 0.7693 

Table 6: Performance of linking disambiguation in the pipelined system. 

Methods Precision Recall F1 Score 
w/o Linking resolution 0.7399 0.8680 0.7985 
Length+Score 0.7493 0.8585 0.7999 
Li et al. (2015) ME 0.7880 0.6180 0.6920 
Li et al. (2015) DT 0.5680 0.4960 0.5230 

Table 7: Performance of discourse connective disambiguation on the component level. 

In the above evaluation, we consider a connective instance as an evaluation unit. To compare with 
the related work we also take a connective component as an evaluation unit. Table 7 summarizes the 
results of discourse connective disambiguation on this level. The first model is for discourse usage 
disambiguation without linking disambiguation. The second model eliminates additional candidates by 
resolving linking ambiguity. The experimental results of Li et al. (2015) are listed for reference be-
cause they use the same dataset as us. The best results for Maximum Entropy (ME) and Decision Tree 
(DT) classifiers with automatic parsing tree features are selected. Although linking disambiguation has 
small effect for identifying individual components, it effectively improves the performance of connec-
tive extraction as shown in Table 6. The result is also important for argument extraction, because the 
positions of connective components provide clues for the positions of the arguments of an explicit re-
lation. 

5.3 Discourse Relation Type Disambiguation 

At first, we evaluate the relation type disambiguation by assuming connectives are known. We use 10-
fold cross-validation with the 1,813 explicit connectives to evaluate our model. We keep the distribu-
tion for the relation types roughly equal for each fold. While the NUM features have some discrimina-
tive power for discourse usage disambiguation, it does not help for relation disambiguation. When 
used independently, the performance is the same as always predicting the major category. On the other 
hand, the string of the connective provides strong clues for the relation type. When used individually, 
it already achieves a micro average F1 of 0.9308. In addition, the SKIP-GRAM feature is also useful 
for this task, achieving a micro average F1 of 0.9473. In Table 8, we show the performance for differ-
ent relation types using ALL-NUM as features. We can find that the number of instances affects the 
performance of the learning model. The lesser the instances, the worse the performance. To compare 
with Li et al. (2015), we also evaluate the results on component level. Table 9 shows that we also 
achieve better performance on relation type classification. 

Relation Type Precision Recall F1 Score #instances 
causality 0.9634 0.9504 0.9561 465 
coordination 0.9575 0.9723 0.9645 974 
transition 0.9372 0.9131 0.9234 173 
explanation 0.9754 0.9450 0.9588 201 
macro average 0.9584 0.9452 0.9507 1,813 

Table 8: Performance of relation type disambiguation when connectives are known. 
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 Our Model Li et al. (2015) 
Relation Type P R F1 P R F1 
causality 0.9584 0.9420 0.9490 0.8380 0.6840 0.7510 
coordination 0.9566 0.9734 0.9645 0.8250 0.9360 0.8770 
transition 0.9504 0.9178 0.9318 0.7850 0.5960 0.6700 
explanation 0.9754 0.9407 0.9563 0.8970 0.8280 0.8590 

Table 9: Performance of relation type disambiguation on component level. 

We further evaluate the relation type classification on the pipelined system. We predict the relation 
type with features ALL-NUM for each connective candidate extracted by using the Length+Score ap-
proach. The 10-fold for paragraphs specified in Section 5.1 is used. We obtain micro-averaged F1 
score of 0.7458. Compared with the F1 score of 0.7693 shown in Table 6, the performance only de-
creases a little when one more module is integrated into the pipelined system. That shows the effec-
tiveness of our model for relation type disambiguation. 

5.4 Connective Argument Extraction 

To evaluate argument extraction individually, we first assume all connectives are already correctly 
identified. The 10-fold for paragraphs specified in Section 5.1 is used for cross-validation. The preci-
sion, recall, and F1 scores for the argument boundaries are computed. In addition, accuracy scores 
evaluated on 1,813 connective instances are computed. Each instance is counted as correct only when 
all boundaries are all correctly identified. The averaged results over all folds are reported in Table 10. 
While the best F1 for argument boundaries is 0.7848, the accuracy for the connectives as evaluation 
units is only 0.4074. It means that for each connective, we are able to recover most of its argument 
boundaries, but it is challenging to recover all of them at the same time. 

An analysis on the errors reveals that our model can handle the relations that have exact two argu-
ments. For more arguments, the error rates are almost close to 1. In addition, out of the 1,074 error 
cases, there are only 164 cases that both sides of the interval the arguments span over are incorrect. 
The reason behind this is probably due to the fact that the existence of a connective often gives strong 
hint on at least one side of the interval. On the contrary, there is often no explicit indication on the 
boundary of the other side of the interval. 

Finally, we evaluate the performance of the pipelined Chinese discourse parser. Here, the 
Length+Score approach is used for connective extraction, the ALL-NUM features are used to disam-
biguate the 4 top-level relation types, and the CRF models with ALL features are used for argument 
boundary detection. Each explicit relation is counted as true positive only when the three tasks are all 
correctly done; otherwise, it is counted as false positive. Under the rigorous evaluation, precision, re-
call, and F1 score are 0.2917, 0.3389 and 0.3134, respectively. We also evaluate on a relaxed partial 
match for argument extraction. An F1 score is computed for each argument tokenwise, and an instance 
is treated as correct when the number of arguments is correct and the averaged tokenwise F1 score is 
above a threshold.3 The F1 scores computed with 0.3, 0.5, 0.7, and 0.9 as thresholds are 0.6013, 
0.5782, 0.5063 and 0.3455, respectively. 

Features Precision Recall F1 Score Accuracy 
CONTEXT 0.5225 0.3030 0.3835* 0.0189 
PATH 0.7660 0.5645 0.6497* 0.1471 
POS 0.5576 0.3856 0.4556* 0.0734 
SUBJ 0.8800 0.0788 0.1440* 0.0000 
ENDCHAR 0.4606 0.2974 0.3614* 0.0000 
LINK 0.7690 0.4001 0.5261* 0.0183 
CONNECTIVE 0.4695 0.3046 0.3695* 0.0049 
COMPONENT 0.6884 0.6698 0.6789* 0.2190 
ALL 0.8024 0.7680 0.7848 0.4074 

Table 10: Performance of argument boundary detection using different features. 
                                                 
3 The tokenwise averaged F1 is adopted from partial scoring for CoNLL 2016 Shared Task: 
http://conll16st.blogspot.tw/2016/04/partial-scoring-and-other-evaluation.html. 
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6 Conclusion 

In this paper, we investigate four issues regarding Chinese discourse analysis at the same time. We 
propose four types of features for discourse usage disambiguation. A greedy algorithm is also devel-
oped to resolve linking ambiguities. Besides, we also investigate relation type disambiguation and ar-
gument extraction. These modules are integrated into a pipelined system that extracts explicit dis-
course relations and their arguments from the raw text. The pipelined system achieves an overall F1 
score of 0.3134. 

There still exist some issues that need to be further investigated. Firstly, a closer integration be-
tween discourse usage disambiguation and linking disambiguation may be valuable. In our work, these 
two stages are pipelined. Although some linking information is used as features, the greedy algorithm 
still ranks each candidate individually. We expect that utilizing global relationship between conflicting 
candidates may improve the performance for both tasks. Secondly, the arguments for a relation may be 
useful for relation type recognition. However, the accuracy for argument extraction must be improved 
before the extracted arguments are used as features. Finally, implicit relations must be dealt with to 
construct the full discourse structure. Resolving these issues will be helpful to construct a complete 
Chinese discourse parser. 
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