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Abstract

In this paper, we investigate four important issiogether for explicit discourse relation label-
ling in Chinese texts: (1) discourse connectiveastion, (2) linking ambiguity resolution, (3)
relation type disambiguation, and (4) argument loaiy identification. In a pipelined Chinese
discourse parser, we identify potential connectieadidates by string matching, eliminate
non-discourse usages from them with a binary dlassresolve linking ambiguities among
connective components by ranking, disambiguatdioelaypes by a multiway classifier, and
determine the argument boundaries by conditiomadamn fields. The experiments on Chinese
Discourse Treebank show that the F1 scores of 6,76(06693, 0.7458, and 0.3134 are
achieved for discourse usage disambiguation, lmkilsambiguation, relation type disambigu-
ation, and argument boundary identification, respely, in a pipelined Chinese discourse
parser.

1 Introduction

Discourse relations represent how discourse unifiedlly connect with eacbther. A discourse con-
nective explicitly signals the presence of a disseuelation, and therefore it is an important clue for
discourse analysis. There are several challengéhimesediscoursegparsing.

Firstly, there are more discourse connective€hinese than in English and their partsspgech
have more varieties (Huang et al., 201 erefore, it is likely to encounter words that didlve same
surface forms as real connectives buhdofunction as discourse connectives.

Secondly, many Chinese connectives are parallehamiives that have multiple discontinuous
components (Zhou and Xue, 2012). Each connectimebeacomposed of one or mocennective
components. For example, g& 7% -2 " (although-but) consists of two connective conmgrun: %2 7"
(although) and & " (but). When multiple connectives are presend iparagraph, their components
often link with each other in multiple possible wayS1) is an example. There are five possible con-
nective candidates, including (1%"7 ...i&" (in addition to ... also), (2}%...» " (also ... also), (3)*4%

7 " (in addition to), (4) 2" (also), and (5)~' " (also). Figure 1 illustrates the ambiguous ligkiOn-

ly candidates (1) and (5) are correct. Moreoverenvlpurious component candidates exist in a para-
graph, they form many more spurious connective iclabels by linking together in different ways.
Finding the correct linking between correct compugaés useful for discourse analysis because they
provide clues to determine the positions of thatiehs.

(S1) @Jb’l?fﬁﬁt BAx > BAN R P ETEF PASER (L) EPEEFRLL G
< ehd # v * o (In_addition to superior investment environment #lso due to the product ad-
vantages possessed by the enterprise. (...) lthalsareat effect in promoting the optimizationref
dustries in Shanghai.)
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Figure 1: Ambiguoﬁs Iinking' between connective conmgnts.

o

Thirdly, the sentence structures in Chinese tendsnat clearly defined. Thus it is more challenging
to detect the arguments for a given relation. Harguments of a discourse relation are the diseours
units it involves. Since the relations form a hiehécal discourse structure, the arguments fotiogla
higher in the hierarchy or lower in the hierarcloyicl span over ranges of various lengths.

In this paper, we aim at investigating these unichegdlenges at the same time. The goal of this re-
search is to build an end-to-end system to andhesexplicit discourse relations in Chinese tekts.
particular, we deal with four tasks together: (dfy&ction of explicit discourse connectives, (2klng
resolution between the component candidates, &3pification of the relation type for each disceurs
connective, and (4) extraction of the discourseigents of a connective.

This paper is organized as follows. Section 2 siathe related work. Section 3 describes the da-
tasets used in this study. Section 4 presents bure€e discourse parser. Section 5 shows and dis-
cusses the experimental results. Section 6 conglilnderemarks.

2 Related Work

Rhetorical Structure Theory Discourse Treebank {S7J (Carlson et al., 2001) and the Penn Dis-
course Treebank 2.0 (PDTB2) (Prasad et al., 20@8jva popular English discourse corpora for dis-
course analysis. Many groups have investigateeréifit subtasks of English discourse parsing on
PDTB2, including discourse connective identificatiorelation type disambiguation (Pitler and
Nenkova, 2009; Wellner, 2009; Faiz and Mercer, 20Bhd argument extraction (Wellner and
Pustejovsky, 2007; Elwell and Baldridge, 2008; Ghes al., 2011; Ghosh et al., 2012; Kong et al.,
2014). Lin et al. (2014) build an end-to-end digseuparser. As RST-DT provides hierarchical dis-
course structure annotations, there are also maem@ts to construct the discourse structures auto-
matically for sentences (Sporleder and Lapata, 2B&#er and Roark, 2007; Joty et al., 2012) and
documents (Hernault et al., 2010; Feng and Hikt22Joty et al., 2013; Li, Li et al., 2014; Ji daid
senstein, 2014).

Comparatively, there have been few large-scale €3eirdiscourse corpora until recently (Zhou and
Xue, 2012; Zhou and Xue, 2015; Zhang et al., 2Q14Feng et al., 2014). Due to limited resource,
early studies often used self-constructed corploaf made it difficult to compare between different
works. T'sou et al. (1999), T'sou et al. (2000) &han et al. (2000) investigated connective deiacti
in Chinese texts as a part of a tagging systemetHal. (2009) developed an automatic system to ex-
tract connective components from sentences. Theg asule-based method and found that the per-
formance was sensitive to the connective lexicdmeyTimproved their performance by removing
words commonly used in non-discourse contexts. &ial. (2012) and Li, Carpuat et al. (2014) em-
ployed cross-lingual information to deal with digcge usage ambiguity. Li, Carpuat et al. (2014yluse
5-way classification to classify a connective bedwédour relation types and non-discourse usage. Li
et al. (2015) used CDTB to investigate detectiod elassification of connective components. They
used maximum entropy and decision tree algorithiitts warious syntactic features. Chen et al. (2016)
investigated fine-grained Chinese discourse raidtbelling. Hu et al. (2011) dealt with linking am
biguity. However, they only focused on intra-setigmelations in sentences that have multiple €lau
es and assumed all connective components in thiersenhave already been correctly identified.

As researchers start to focus on higher level problfor linguistic analysis, interest in discourse
parsing also grows. The CoNLL-2015 Shared Task (#ual., 2015) and the CoNLL-2016 Shared
Task (Xue et al.,, 2016) both focus on shallow disse parsing. In particular, the CoNLL-2016
Shared Task features Chinese discourse parsingGhitiese Discourse Treebank 0.5 (Zhou and Xue,
2015), a PDTB-style annotated corpus.

3 Datasets

In this section, we briefly introduce the datasetsd in this study and provide some statistics.
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3.1 ChineseDiscourse Treebank (CDTB)

In Chinese Discourse Treebank (CDTB) (Li, Fenglet2®14), 500 documents selected from the Chi-
nese Treebank (CTB) (Xue et al., 2005) were anedtafotally, CDTB contains 2,342 paragraphs.
Each paragraph was segmented into elementary dssconits (EDUs), and each paragraph is repre-
sented as a discourse tree as shown in Figurech. igation is represented by an internal nodelewhi
each EDU is represented by a leaf node. The ekpiid implicit relations between different spans of
EDUs were annotated. In addition, discourse comexfor each relation were annotated. The exact
positions of the arguments for a relation is hgawifluenced by the complete discourse tree, amd ca
range over multiple sentences in a paragraph.

explanation (implicit)

u coordination” (implicit)

summary-elaboration (explicit) coordination” (explicit)

(a)

H + (among them) i (and)
/\
T
(b) () d (& O (2 @

Figure 2: A discourse tree.

In CDTB, total 7,310 relations are annotated, aj&14 of them are explicit. The set of discourse
relation types is organized in a three-level higmgr In this paper, we only focus on the four tepel
relation types, i.e., causality, coordination, sigion, and explanation.

Some errors including duplicate annotations andnewus positions are found in the corpus. After
manual correction for explicit relation annotatipitsere are 1,813 explicit relations, each of which
consists of exactly one connective instance. The8E3 connectives are composed of 2,131 connec-
tive component instances.

The length distribution for the annotated connediis shown in Table 1. The distribution is imbal-
ance. There are totally 274 classes of connectinats,147 of them appear only onc8ince some
connectives share the same components, there lgrd2ihclasses of connective components. Most of
the connective classes only have one unique tag-felation type.

#Components 1 2 3 4 6 7
#Connective Classes 143 108 15 6 1 1
#Instances 1,544 235 24 8 1 1

Table 1: Lengths of connectives.

Table 2 shows the number of arguments for expléétions. Most relations only have two argu-
ments, but there are relations that have as manyaaguments. The number of arguments does not
always match with the number of connective comptmdror example, single connectivé * (and)
can have as many as 5 arguments because it conmdtde parallel segments together.

#Arguments 2 3 4 5 6 7

#Instances 1,688 85 33 4 2 1

Table 2: Number of arguments for each explicittreta

Totally there are 3,802 arguments for explicit tielas. Depending on the position the relation re-
sides in the discourse tree, the length of an aegtirtould vary greatly, but most of the argumeats f

1 These numbers are computed by their surface farensinstances of the same connective class magy different relation
types.
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explicit relation are composed of only one EDU. &erage, each argument is composed of 1.6 EDUs,
and the longest argument is composed of 20 EDUs.

3.2 NTU PN-Gram Corpus

Recently, efficient methods to learn word embedslingve been developed. In this paper, we investi-
gate whether such word vectors are useful for dgadiith discourse issues. NTU PN-Gram Corpus
released by Yu et al., (2012), which was constdibe POS-tagging the Chinese texts extracted from
the ClueWeb09 dataset (Callan et al., 2009). It Ra217,147 unique sentences, containing
326,996,602 tokens. We used this corpus to cre@feddnensional embeddings using GloVe tool
(Pennington et al., 2014) and word2vec tool (Mikoéa al., 2013a; Mikolov et al., 2013b) with skip-
gram and continuous bag-of-words models.

3.3 Connective Component Dictionary

Discourse connectives serve as linking elementsctivanect discourse units. There are three kinds of
linking directions (Li and Thompson, 1989): (1) ard-linking, (2) backward-linking, and (3) cou-
ple-linking. Such linking directions could be udefor identifying the positions of arguments for a
given connective. We used the connective linkingiaihary collected by Huang et al. (2014) as fea-
tures for argument boundary identification. Totallycontains 301 distinct connective components
that are annotated with linking directions.

4  Chinese Discour se Par ser

There are five modules in the proposed pipelinetiesy. Each paragraph in CDTB is processed by the
following modules: (1) identify connective candigst (2) eliminate non-discourse usages from con-
nective candidates, (3) resolve linking ambiguiti@y disambiguate relation types, and (5) extract
arguments.

4.1 Connective Candidate Extraction

We use string matching with the connective lexicoliected from CDTB to extract all possible in-
stances. Directly matching with raw text would gliel2,498 candidate componéritecause many
characters used for connectives appear in othexlated words. Therefore, Stanford Chinese seg-
menter (Chang et al., 2008) is employed to segmardgraphs into tokens. Only the components
composed of complete tokens are extracted.

Total 7,649 component candidates which recover®g@®,131 annotated components are extract-
ed. These candidates form 7,976 connective camdidalich recover 1,755 of 1,813 annotated con-
nectives. While some correct instances are nobetdd due to segmentation errors, it reduces the
number of spurious candidates substantially whegntaining high recall.

4.2  Discourse Usage Disambiguation

A logistic regression classifier is trained to ehate spurious connective candidates. The feaanes
listed below:

P& N: We used a subset of the features selected frder Bnd Nenkova (2009). It includes four
binary features for each connective componentith{&)highest category that dominates exactly the
component itself, which is called self-category), it parent, (3) the left-sibling, and (4) thehtig
sibling of the self-category. Null features arewhten no such nodes exist. For example, in Figure 3
there is no node that dominates exactly the compdrie £ (but). For multi-component connectives,
the union of the features is used. We have alserarpnted with the full feature set, but the perfor
mance does not increase.

CONNECTIVE: The string of the connective.

2 Candidate components that could not form completmectives are already eliminated. If we simply ratdth compo-
nent lexicon without checking whether they couldhiconnectives, 24,539 candidate components waaildetected.
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Figure 3: A sub-parsing tree fér £_.

POS: The feature set contains: (1) POS tags for &kiie that constitute the connective component,
(2) POS tag of the token to the left of the compwnand (3) POS tag of the token to the right ef th
component. For multi-component connectives, themnf the features is used.

NUM: The feature set contains a one-hot encoded fedh@ number of components. In addition,
there are seven numerical features: (1) the numibeverlapped connective candidates, (2) the num-
ber of connective candidates that enclose any coewge of the current connective, (3) the distance
between the leftmost and the rightmost tokens @tttinnective measured by tokens, (4) the geometric
mean of distances between all neighbouring conrecomponents for the current connective candi-
date, (5) the distances from the leftmost compoteat separating element including “12:}, or the
paragraph boundary on the left, (6) the distanomen fthe rightmost component to a separating element
on the right, and (7) the minimum distance from aagarating element to any connective component.
We normalize the numerical features by scaling ¢aa®ero mean and unit variance.

VECTOR: This feature set is built using word embeddirigse vectors are used to construct three
features for each connective component: (1) thenmoéaéhe vectors representing each token that con-
stitutes the connective component, (2) the vedaorthie token to the left, and (3) the vector fog th
token to the right. Zero-valued vector is used wtienvector does not exist. In total, it is a 1;200
dimensional vector for each component when the dio@nsional embeddings are used. For multi-
component connectives, we averaged the vectors.

4.3 Connective Linking Disambiguation

If we can classify discourse usage perfectly, waildidave already solved the linking ambiguities
because only the correct connectives remain. Diragerfect classification, there may still existrs
overlapped candidates. Here, we propose a gregdyithim to resolve linking ambiguities among a
set of connective candidates as outlined in Alparitl. The algorithm filters the candidate €eand
produces a result satthat contains only non-overlapped connective aatds. All connective candi-
dates are ranked under some criteria and the dhelva highest priority is greedily accepted. W# wi
use different ranking criteria to evaluate our misdmcluding (1) Score: the probability obtaineg b
logistic regression as described in Section 4.2 éxgth: the number of components each connective
candidate has, the larger the better, and (3)iBosPosition is used mainly as a tiebreaker. Iriqa

lar, we accept the left-most candidate first.

Algorithm 1. Linking Resolution Algorithm
Input C: A set of connective candidates
Output A: A set of accepted connectives
A-{}
Rank all connective candidatesGn
while C is not emptydo
let ci be the connective candidate that has the highisttpr
A~ AD{c}
Remove all connective candidatgSC that overlap witlt;
end while
return A

©COoN O A~WNE
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4.4 Discourse Rdation Type Disambiguation

We use a logistic regression classifier to inveddgvhether the features we discussed in Sectin 4.
are useful for relation type disambiguation.

45 Connective Argument Extraction

We formulate argument extraction as a sequencdlitaberoblem. As we know the arguments span
over a continuous interval, we use four labelstfier EDUs:before, start, inside, andafter. Each ar-
gument is represented bys@rt followed by zero or morensides. Figure 2 is a discourse tree, where
the explanation relation has two arguments (a)(ard), while the coordinatidrrelation has five ar-
guments (d), (e), (), (g), and (h). Figure 4 shatws arguments and the corresponding labels for
summary elaboration relation shown in Figure 2.

As our goal is to extract the arguments, only trguent boundaries must be determined. Alt-
hough correct EDU segmentation is unavailable tosystem because we attempt to extract argu-
ments from raw texts, the EDU boundaries in CDTB/@tcur with certain punctuation symbols that
separate phrases and sentences. Thus, we segmpardgraph by these symbols, and solve the se-
guence labelling problem on these segments insteBBUSs.

We use Conditional Random Fields (CRFs) to deah Wit sequence labelling problem. CRFsuite
(Okazaki, 2007) is adopted along with its defawtgmeters. When training, each explicit relation
with its corresponding labelling is used as a trajrcase. When testing, CRFs are used to label the
segments for each connective we extracted. Therefioe same segments for a paragraph are labelled
independently for each explicit relation inside tr@ragraph. The resulting argument boundaries are
used to extract the connective's arguments.

summary-elaboration

(a) (6) (c) (d) (e) (f) (9) (h)
\) ) \! ) \: ) \ )
Before Start Start After After After After After

——
argl arg?2

Figure 4: Sequence labelling for relation argumddtastification.

The features, which are determined by the currenhective being considered and the segment, are
shown as follows.

CONTEXT: The concatenation of the self-category and thegoaies of the parent, the left-sibling,
and the right-sibling is used as a binary featsrdane by Kong et al. (2014).

PATH: The feature set is similar to the CON-NT-Pathuess of Kong et al. (2014). We use the
path from the self-category of each connective aomept to the self-category of the segment as the
feature.

POS: The POS tags for all tokens in the segment.

SUBJ: The SUBJ feature is set if a segment containggest.

ENDCHAR: The last token in the segment, i.e., the syniat separates the current segment from
the next one.

COMPONENT: The feature set contains the information abonnhective components: (1) wheth-
er the segment has a connective component, (Xttimg of the component if it exists, (3) whether
there exists a component at the beginning of thenseat, (4) whether there exists a component at the
end of the segment, (5) whether the segment cantaity a component and the separating symbol, (6)
whether the segment is before all connective compian (7) the distance to the first segment that
contains a component as a binary feature, (8) ven¢kie segment is after all connective components,
and (9) the distance to the last segment that r@n#éaconnective component as a binary feature.

LINK: The feature set contains the linking directionsoanective component could be used if it
exists in the given segment. A connective compoditionary is consulted.

CONNECTIVE: This feature set contains connective relatedrinédion, including the string of
the connective and the number of connective compsriehas.

1896



5 Resultsand Discussions

In the experimental setups, we first evaluate tagopmance of each individual disambiguation task
and then examine the propagation effects in thelipigd system.

5.1 Discourse Usage Disambiguation

We evaluate our models using 10-fold cross-validaatiThe 2,342 paragraphs are divided into 10
splits while keeping the distribution for the numlad explicit relations in each paragraph roughly
equal. The averaged precision, recall, and F1 sdorethe positive connective instances are regdorte

As there are many spurious connectives, we baltre¢raining set by oversampling the correct in-
stances for three times, but keep the originatitligion when evaluating on test set.

For statistical significance, we use Wilcoxon sigmmanks test (Wilcoxon, 1945) as suggested by
DemsSar (2006) at confidence level 95%. For eaclerx@nt, we select the best model (denoted by
bold), and * is used to denote the scores thasigreficantly different.

We firstly investigate the performance betweeneddht word embeddings as shown in Table 3.
The vectors constructed by skip-gram model arartbst useful. We will use them in the remaining
experiments. Table 4 shows the results for allufest The best results are obtained with ALL-SKIP-
GRAPM in discourse usage disambiguation. We algmiment with different learning models in-
cluding Naive Bayes, SVM, decision trees, and ramflarest. Logistic Regression performs the best.
For all models, we use default parameters providedcikit-learn without tuning, i.e., C=1.0, penal-
ty=I2 for Logistic Regression.

Features Precision Recall F1 Score
CBOW 0.5808 0.7625 0.6593
SKIP-GRAM 0.6013 0.8068 0.6887
GLOVE 0.5980 0.7996 0.6840
ALL 0.5837 0.7439 0.6539
Table 3: Performance of discourse usage disamliguasing different word embeddings.
Features Precision Recall F1 Score
P&N 0.4239 0.8409 0.5634
CONNECTIVE 0.5205 0.8620 0.6487
POS 0.5426 0.7805 0.6399
NUM 0.4298 0.8456 0.5696
SKIP-GRAM 0.6013 0.8068 0.6887
ALL-P&N 0.6547 0.8186 0.7273
ALL-POS 0.6576 0.8222 0.7305
ALL-NUM 0.6357 0.8160 0.7144
ALL-SKIP-GRAM 0.6503 0.8882 0.7506
ALL 0.6682 0.8203 0.7363

Table 4: Performance of discourse usage disamliiguasing different features.

5.2 Connective Linking Disambiguation

To evaluate linking disambiguation individually, iest assume all correct connective components
are already known. We use the 10-fold for paragsegpiecified in Section 5.1 to evaluate our model
using each connective as an instance. The resalteported in Table 5. We evaluate different rank-
ing criteria and the combination. A baseline mdtiat simply ranks the candidates by their positions
is also reported. We find that the ambiguity amtrgcomponents is low. The baseline model already
achieves an F1 score of 0.8797. In fact, only 41206 2,131 components are involved in more than
one connective candidate. Length is relatively veedkan Score reported by the logistic regression
model. Moreover, we also evaluate linking disamhbt@gn within the pipelined system. The results are
shown in Table 6. Integrating both Score and Lewrgteria performs the best. The comparison shows
that most of the linking ambiguity is caused byrgmus linking with spurious connective component

candidates.
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Ranking Criteria Precision Recall F1 Score
Baseline 0.8528 0.9084 0.8797
Score 0.9770 0.9796 0.9783
Length 0.9760 0.9604 0.9681
Length+Score 0.9793 0.9636 0.9714
Table 5: Performance of linking disambiguation wittown connective components.
Ranking Criteria Precision Recall F1 Score
Baseline 0.6696 0.7919 0.7254
Score 0.7024 0.8222 0.7573
Length 0.7099 0.8238 0.7624
Length+Score 0.7165 0.8310 0.7693
Table 6: Performance of linking disambiguationtia pipelined system.
Methods Precision Recall F1 Score
w/o Linking resolution 0.7399 0.8680 0.7985
Length+Score 0.7493 0.8585 0.7999
Li et al. (2015) ME 0.7880 0.6180 0.6920
Li et al. (2015) DT 0.5680 0.4960 0.5230

Table 7: Performance of discourse connective digguation on the component level.

In the above evaluation, we consider a connectigtaince as an evaluation unit. To compare with
the related work we also take a connective compoaem@n evaluation unit. Table 7 summarizes the
results of discourse connective disambiguationhis level. The first model is for discourse usage
disambiguation without linking disambiguation. Téecond model eliminates additional candidates by
resolving linking ambiguity. The experimental rasubf Li et al. (2015) are listed for reference be-
cause they use the same dataset as us. The hétst fsMaximum Entropy (ME) and Decision Tree
(DT) classifiers with automatic parsing tree featuare selected. Although linking disambiguatios ha
small effect for identifying individual componentiseffectively improves the performance of connec-
tive extraction as shown in Table 6. The resultl&® important for argument extraction, because the
positions of connective components provide cluegie positions of the arguments of an explicit re-
lation.

5.3 Discourse Relation Type Disambiguation

At first, we evaluate the relation type disambiguaby assuming connectives are known. We use 10-
fold cross-validation with the 1,813 explicit comtiges to evaluate our model. We keep the distribu-
tion for the relation types roughly equal for eéald. While the NUM features have some discrimina-
tive power for discourse usage disambiguationoiésdnot help for relation disambiguation. When
used independently, the performance is the sarabvays predicting the major category. On the other
hand, the string of the connective provides strdngs for the relation type. When used individually
it already achieves a micro average F1 of 0.930&ddition, the SKIP-GRAM feature is also useful
for this task, achieving a micro average F1 of 8®4n Table 8, we show the performance for differ-
ent relation types using ALL-NUM as features. Wa @iad that the number of instances affects the
performance of the learning model. The lesser istances, the worse the performance. To compare
with Li et al. (2015), we also evaluate the resoltscomponent level. Table 9 shows that we also
achieve better performance on relation type classion.

Relation Type Precision Recall F1 Scofe  #instances
causality 0.9634 0.9504 0.9561 465
coordination 0.9575 0.9723 0.9645 974
transition 0.9372 0.9131 0.9234 173
explanation 0.9754 0.9450 0.9588 201

macro average 0.9584 0.9452 0.950Y 1,818

Table 8: Performance of relation type disambigumatitien connectives are known.
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Our Model Li et al. (2015)
Relation Type P R F1 P R F1
causality 0.9584| 0.9420| 0.9490 | 0.8380| 0.6840 | 0.7510
coordination 0.9566 0.9734 | 0.9645| 0.8250| 0.9360 | 0.8770
transition 0.9504| 0.9178| 0.9318 | 0.7850 | 0.5960 | 0.6700
explanation 0.9754 0.9407 | 0.9563 | 0.8970| 0.8280 | 0.8590

Table 9: Performance of relation type disambigumatin component level.

We further evaluate the relation type classificatim the pipelined system. We predict the relation
type with features ALL-NUM for each connective catade extracted by using the Length+Score ap-
proach. The 10-fold for paragraphs specified intiac5.1 is used. We obtain micro-averaged F1
score of 0.7458. Compared with the F1 score ofdB&hown in Table 6, the performance only de-
creases a little when one more module is integriatiedthe pipelined system. That shows the effec-
tiveness of our model for relation type disambigprat

54 Connective Argument Extraction

To evaluate argument extraction individually, wistfiassume all connectives are already correctly
identified. The 10-fold for paragraphs specifiedSection 5.1 is used for cross-validation. The iprec
sion, recall, and F1 scores for the argument baigsl@are computed. In addition, accuracy scores
evaluated on 1,813 connective instances are cochpbteh instance is counted as correct only when
all boundaries are all correctly identified. Theeeged results over all folds are reported in Table
While the best F1 for argument boundaries is 0.784& accuracy for the connectives as evaluation
units is only 0.4074. It means that for each cotinecwe are able to recover most of its argument
boundaries, but it is challenging to recover alltifm at the same time.

An analysis on the errors reveals that our modelh@ndle the relations that have exact two argu-
ments. For more arguments, the error rates aresalobose to 1. In addition, out of the 1,074 error
cases, there are only 164 cases that both sidén dfterval the arguments span over are incorrect.
The reason behind this is probably due to thetfattthe existence of a connective often givesstro
hint on at least one side of the interval. On theti@ry, there is often no explicit indication dret
boundary of the other side of the interval.

Finally, we evaluate the performance of the pipaginChinese discourse parser. Here, the
Length+Score approach is used for connective gidrgadhe ALL-NUM features are used to disam-
biguate the 4 top-level relation types, and the @Rfdels with ALL features are used for argument
boundary detection. Each explicit relation is cednas true positive only when the three tasks lare a
correctly done; otherwise, it is counted as falgsitjve. Under the rigorous evaluation, precisia,
call, and F1 score are 0.2917, 0.3389 and 0.3E3pectively. We also evaluate on a relaxed partial
match for argument extraction. An F1 score is cagbfior each argument tokenwise, and an instance
is treated as correct when the number of argumerasrrect and the averaged tokenwise F1 score is
above a threshoRiThe F1 scores computed with 0.3, 0.5, 0.7, anda8.@hresholds are 0.6013,
0.5782, 0.5063 and 0.3455, respectively.

Features Precision Recall F1 Score Accuragy
CONTEXT 0.5225 0.3030 0.3835 0.0189
PATH 0.7660 0.5645 0.6497 0.1471

POS 0.5576 0.3856 0.4556 0.0734
SUBJ 0.8800 0.0788 0.1440 0.0000
ENDCHAR 0.4606 0.2974 0.3614 0.0000
LINK 0.7690 0.4001 0.5261 0.0183
CONNECTIVE 0.4695 0.3046 0.3695 0.0049
COMPONENT 0.6884 0.6698 0.6789 0.2190

ALL 0.8024 0.7680 0.7848 0.4074

Table 10: Performance of argument boundary detectsing different features.

3 The tokenwise averaged F1 is adopted from patiafing for CoNLL 2016 Shared Task:
http://conll16st.blogspot.tw/2016/04/partial-scgriand-other-evaluation.html.
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6 Conclusion

In this paper, we investigate four issues regard@ihghese discourse analysis at the same time. We
propose four types of features for discourse usiggmbiguation. A greedy algorithm is also devel-
oped to resolve linking ambiguities. Besides, wad ahvestigate relation type disambiguation and ar-
gument extraction. These modules are integratam anpipelined system that extracts explicit dis-
course relations and their arguments from the g The pipelined system achieves an overall F1
score of 0.3134.

There still exist some issues that need to be durtivestigated. Firstly, a closer integration be-
tween discourse usage disambiguation and linkisgndbiguation may be valuable. In our work, these
two stages are pipelined. Although some linkinginfation is used as features, the greedy algorithm
still ranks each candidate individually. We expdbett utilizing global relationship between confiigt
candidates may improve the performance for botksta&8econdly, the arguments for a relation may be
useful for relation type recognition. However, #ieeuracy for argument extraction must be improved
before the extracted arguments are used as feakiredly, implicit relations must be dealt with to
construct the full discourse structure. Resolvingst issues will be helpful to construct a complete
Chinese discourse parser.
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