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Abstract

We propose a new word embedding model, inspired by GloVe, which is formulated as a feasible
least squares optimization problem. In contrast to existing models, we explicitly represent the
uncertainty about the exact definition of each word vector. To this end, we estimate the error that
results from using noisy co-occurrence counts in the formulation of the model, and we model the
imprecision that results from including uninformative context words. Our experimental results
demonstrate that this model compares favourably with existing word embedding models.

1 Introduction

Several vector space models for word meaning have already been proposed (Lund and Burgess, 1996;
Landauer and Dumais, 1997; Turney and Pantel, 2010; Mikolov et al., 2013; Pennington et al., 2014).
While there are considerable differences in how these vector space models are learned, most approaches
represent words as vectors. However, a few authors have proposed models that represent words as regions
or densities in a vector space (Erk, 2009; Vilnis and McCallum, 2015), motivated by the view that region
or density based representations are better suited to model the diversity of word meaning, and can thus
capture e.g. hyponymy in a natural way. In this paper, we also use densities in a low-dimensional vector
space to represent word meaning. In contrast to previous work, however, we use densities for modelling
our lack of knowledge about the precise meaning of a word. This allows us to use a more cautious
representation for rare words, and leads to better confidence estimates in downstream tasks. Note that
this use of densities is indeed fundamentally different from its use in previous work. For example,
increasing the corpus size in our case will lead to more precise estimates (i.e. distributions with lower
variance) while the models from (Erk, 2009; Vilnis and McCallum, 2015) may arrive at distributions
with higher variance, reflecting the broader set of context windows that may be found.

Our approach is based on the GloVe model for word embedding (Pennington et al., 2014). In particular,
we also associate two vectors with each word i: the vector wi, which intuitively represents the meaning
of word i, and the vector w̃j , which intuitively represents how the occurrence of i in the context of
another word j affects the meaning of that word. Moreover, we also use a least squares formulation to
constrain these vectors such that wi · w̃j reflects the co-occurrence statistics of words i and j. In contrast
to GloVe, however, we explicitly model two factors that contribute to the residual error of this model: (i)
the fact that corpus statistics for rare terms are not reliable and (ii) the fact that not all words are equally
informative. This has two key advantages. First, it allows us to formulate the underlying optimization
problem as a feasible generalized least squares problem. As we show in our experiments, this leads to
word embeddings (as vectors) that substantially outperform those obtained from the GloVe model, and
other baselines, in standard word similarity and analogy tasks. Second, it allows us to explicitly represent
our uncertainty about the precise definitions of the word vectors. Rather than using wi for modelling the
meaning of word i, we then consider a density which is defined by the residual error model.

Specifically, the residual error model allows us to naturally associate a univariate density with each
context vector w̃j , given a target word i. A natural geometric interpretation can be obtained by fixing the
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Figure 1: Density modelling the possible values of wi, induced by a single context word w̃j .

context vectors. The density associated with a given context word can then be viewed as a soft constraint
on the possible values of the vector wi, as illustrated in Figure 1. The variance of this density depends on
the size of the corpus (larger corpora lead to more precise estimates) and on the informativeness of the
context word, where densities associated with uninformative context words should have a high variance,
reflecting the fact that they should not have a strong impact on the word embedding.

The remainder of this paper is structured as follows. In the next section, we give an overview of related
work. Subsequently, in Section 3 we introduce our probabilistic model for word embedding and discuss
its relationship with the GloVe model. Finally, we present our experimental results and conclusions.

2 Related work

Word embedding models construct vector space models of word meaning by relying on the distributional
hypothesis, which states that similar words tend to appear in similar linguistic contexts (Harris, 1954).
One class of methods relies on constructing a term-document (Landauer and Dumais, 1997) or, more
commonly, a term-term (Lund and Burgess, 1996) co-occurrence matrix. Intuitively, we can think of
the row vectors in these matrices as representing the contexts in which a given word occurs. Given the
sparse and high-dimensional nature of these vectors, most approaches use some form of dimensionality
reduction based on matrix factorization, such as singular value decomposition (SVD). An important
factor in the performance of such methods is how co-occurrences are weighted, with Positive Pointwise
Mutual Information (PPMI) generally considered to be a suitable choice (Bullinaria and Levy, 2007).

In the last few years, a number of neural network inspired methods have been proposed that formulate
the problem of learning word embeddings as an optimization problem. The well-known skip-gram (SG)
method (Mikolov et al., 2013), for example, aims to construct vectors, such that the log-probability that
word c appears in the context of word w is proportional to w · c. The related Continuous Bag of Words
(CBOW) model uses a similar idea, but instead focuses on predicting the probability of a given target
word, given its context. The GloVe model (Pennington et al., 2014), which our approach is based on,
learns two word vectors wi and w̃j and a bias bi for each word i, using the following least squares
regression formulation:

n∑
i=1

n∑
j=1

f(xij)(wi · w̃j + bi + b̃j − log xij)2

where xij is the number of times words wi and w̃j co-occur, b̃j is the bias for the context word j, and
n is the number of different words in the considered corpus. The function f weights the terms of the
model to limit the effect of small co-occurrence counts, as these are deemed to be noisy. It is defined as
f(xij) =

( xij

xmax

)α if xij < xmax and f(xij) = 1 otherwise. The purpose of xmax is to prevent common
words from dominating the objective function too much.

An interesting property of the representations learned by SG, CBOW and GloVe is that they capture
similarity as well as analogies and related linear relationships. As a result, both word similarity and
word analogy tasks are now commonly used to evaluate the quality of word embeddings. Finally, note
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that while methods such as SG might seem like a radical departure from matrix factorization based
methods, it was shown in (Levy and Goldberg, 2014) that SG implicitly finds a factorization of a shifted-
PMI weighted term-term co-occurrence matrix. It has been observed that, compared to the factorization
model underlying SG, SVD remains a useful choice for modeling word similarity, but it is less suited for
discovering analogies (Levy and Goldberg, 2014).

The standard word embedding models have recently been improved in various ways. For example,
some authors have proposed so-called multi-prototype representations, where the idea is to deal with
ambiguity by learning several vectors for each word (Reisinger and Mooney, 2010; Huang et al., 2012;
Liu et al., 2015; Neelakantan et al., 2015), intuitively by clustering the contexts in which the word
appears, as a proxy for word senses, and learning one vector for each context. Other authors have shown
how word embeddings can be improved by taking into account existing structured knowledge, e.g. from
lexical resources such as WordNet or from knowledge graphs such as Freebase (Yu and Dredze, 2014;
Xu et al., 2014; Faruqui et al., 2015).

While most word embedding models represent words as vectors, a few authors have explored the
usefulness of region and density based representations. For example, in (Erk, 2009), two models are
proposed to induce regions from context vectors. Among others, it is shown that these regions can be
used to encode hyponym relations. In (Vilnis and McCallum, 2015), a model is proposed which rep-
resents words as Gaussian densities, and the usefulness of this model for discovering word entailment
is demonstrated. As already mentioned in the introduction, while our model also represents words as
densities, our densities model the uncertainty about the true location of a word vector, rather than mod-
elling the diversity of the underlying concept. As a result, for instance, Kullback-Leibler divergence is
meaningful for modelling word similarity in the approach from (Vilnis and McCallum, 2015), but would
not be appropriate in our model. To the best of our knowledge, the model presented in this paper is
the first that explicitly models the uncertainty associated with the word vectors. Note that while several
probabilistic models have been proposed for word embedding (Maas and Ng, 2010; Li et al., 2015), these
works model the probability that a document has been generated, rather than the probability that a given
vector is the correct representation of a given word.

3 Our model

Similar to the GloVe model, we propose to learn word embeddings by solving the following weighted
least squares problem:

n∑
i=1

∑
j∈Ji

1
σ2
ij

(wi · w̃j + b̃j − sij)2 (1)

where n is the number of words in the vocabulary, Ji ⊆ {1, ..., n}, and b̃j and sij are constants. In
particular, the GloVe model can be recovered by choosing Ji = {j |xij > 0}, σ2

ij = 1
f(xij)

and sij =
log xij − bi. However, as we explain below, these choices are sub-optimal. First, in Section 3.1 we
propose to use a Dirichlet-Multinomial language modeling approach and choose sij as the expectation
of logP (j|i) in this model. Section 3.2 then explains how suitable estimates for σ2

ij can be obtained. The
importance of these estimates is twofold: they should improve the quality of the word vectors that we
obtain by solving (1) and they will enable us to precisely model our uncertainty about the exact location
of each word vector. This latter point is discussed in more detail in Section 3.3, which explains how we
can evaluate the likelihood that a vector is the correct representation of a given word.

3.1 Dealing with imperfect corpus statistics

Let us write sglove
ij = log xij − bi. The idea behind the derivation of the GloVe model in (Pennington et

al., 2014) is that sglove
ij is an estimation of logP (j|i), with P (j|i) the probability of seeing word j in the

context of word i. Rather than fixing bi = log
∑

l xil, in line with this view, it is assumed that log
∑

l xil
is absorbed in the bias term bi. One of the main advantages of this choice is that it makes the model
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symmetric w.r.t. the role of the target vectors wi and context vectors w̃j ; e.g. in some experiments it was
observed that using the average of wi and w̃j can lead to a small increase in performance.

In our model, sij will be chosen as an estimation of logP (j|i). This will enable a more elegant mod-
eling of the residual errors, and offer a more principled way of dealing with sparse frequency counts. It
also leads to a clearer geometric interpretation. In particular, let us write pij for the orthogonal projection
of wi on the line Lj = {p | p = λ · w̃j , λ ∈ R} (see Figure 1), then wi · w̃j = ‖w̃j‖ · ‖pij‖. This allows
us to write the residual error as eij = ‖w̃j‖ · ‖pij‖ − sij + b̃j . We can think of ‖pij‖ as the coordinate
of word i in a one-dimensional word embedding, which is constrained by the model to correspond to
a linear function of sij . The relation between this one-dimensional embedding and the full embedding
is determined by ‖w̃j‖ and b̃j , which only depend on the context word j. Another way to look at this
geometric interpretation is that each context word j acts as a soft constraint on the possible choices of
wi, which is illustrated by the shaded area in Figure 1.

Clearly xij∑
l xil

only gives us a reliable estimate ofP (j|i) if the number of occurrences of i is sufficiently
large. This problem is well known and can be alleviated by various smoothing techniques (Zhai and
Lafferty, 2004). In this paper, we will adopt Bayesian smoothing. In addition to smoothing the frequency
counts, this will give us a way to estimate variance. In particular, we assume that for each target word
i there is a multinomial distribution from which all words that appear in the context of i are drawn. A
standard approach is to assume that the parameters of that multinomial distribution are drawn from a
Dirichlet distribution. Specifically, let xij be the number of times word j appears in the context of word
i in the considered corpus, as before, and let xi =

∑
l xil. Note that xi is the total number of tokens

that occur in the context of i. The probability that among these there are y1 occurrences of word 1, y2

occurrences of word 2, etc. is given by

P (y |α) =
xiB(

∑
j αj , xi)∏

yj>0 yjB(αj , yj)

where y = (y1, ...., yn), α = (α1 + xi1, ..., αn + xin) and B is the Beta function. In the experiments,
we will use the overall corpus statistics to set the parameters of the Dirichlet prior, i.e. we will choose
αi = λ · ni∑

j nj
, where ni is the total number of occurrences of word i in the corpus and λ > 0 is a

parameter that will be chosen based on tuning data.
Using this Dirichlet-Multinomial model, we can set sij as the expectation of log Yij

xi
, where the random

variable Yij represents the number of occurrences of word j in the context of word i. We estimate this
expectation using a Taylor expansion:

sij = E[log Yij ]− log xi ≈ logE[Yij ]− Var[Yij ]
(2 · E[Yij ]2)

− log xi

where

E[Yij ] =
xiα
∗
j∑

l α
∗
l

Var[Yij ] =
( xiα

∗
j∑

l α
∗
l

)(
1− α∗j∑

l α
∗
l

)(xi +∑l α
∗
l

1 +
∑

l α
∗
l

)
with α∗j = αj + xij . This choice of sij has two advantages over sglove

ij . First, by smoothing the raw
frequency counts, we obtain more reliable estimates for rare terms. Second, context words j for which
xij = 0 are completely ignored in the GloVe model. From the point of view of the proposed geometric
interpretation, this means that valuable information is ignored. In particular, if we want ‖pij‖ to reflect
how strongly context word j is related to word i, we should require that it is small when xij = 0. On
the other hand, evaluating (1) for every pair (i, j) is not feasible as it would make the complexity of the
model quadratic. Therefore, we let Ji contain all indices j for which xij > 0, as well as a random sample
of indices for which xij = 0. In our experiments, we choose the sample size such that the number of
indices for which xij > 0 is equal to the number of indices for which xij = 0.
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Figure 2: Scatter plot comparing term frequency with Var[einfo
j ].

3.2 Estimating the variance of residual errors
The choice of f(xij) as the weight for the term corresponding to target word i and context word j
reflects the implicit assumption that 1

f(xij)
is a reasonable estimate of the variance σ2

ij of the residual

error eglove
ij = wi · w̃j + bi + b̃j − log xij . As we will see, this assumption is rather questionable.

A standard technique for selecting the weights in weighted least squares problems, called feasible gen-
eralized least squares, consists in estimating the variance of the residual errors in an initial solution (e.g.
obtained using standard least squares). This allows us to reformulate the objective function by deriving
appropriate weights from the estimated variances σ2

ij . Solving the resulting optimization problem in turn
allows us to obtain better estimates of the variances. This process is repeated for a fixed number of times,
or until the estimated variances converge.

In our model, we will follow this strategy to estimate the variances σ2
ij from the observed residual

errors eij . This requires us to make assumptions about which factors affect these variances, as we can
clearly not estimate σ2

ij from eij alone. We will assume that eij is the sum of two independent errors,

viz. eij = ecount
ij + einfo

j . Intuitively ecount
ij is the error that results from using unreliable co-occurrence

statistics and einfo
j is the error that results when the target word j is uninformative. Again using a Taylor

expansion, we can estimate Var[ecount
ij ] as follows:

Var[ecount
ij ] = Var[log Yij ] ≈ Var[Yij ]

E[Yij ]2

where E[Yij ] and Var[Yij ] are evaluated as before. Furthermore, we can estimate Var[einfo
j ] from the

observed residual errors, as follows:∑{e2ij : j ∈ Ji} −
∑{Var[ecount

ij ] : j ∈ Ji}
|{e2ij : j ∈ Ji}| (2)

This allows us to estimate σ2
ij as Var[ecount

ij ] + Var[einfo
j ].

Figure 2 shows the relationship between Var[einfo
j ] and the number of occurrences of the context word

j in the text collection (for a subset of Wikipedia1). As can be seen from the figure, the correlation
1http://mattmahoney.net/dc/text8.zip
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Table 1: Examples illustrating the weak correlation between term frequency and informativeness, mea-
sured in terms of the variance Var[einfo

j ].
Frequent and informative

Term Frequency Var[einfo
j ]

one 411764 1.39
time 21412 0.720
states 14916 0.259
united 14494 0.282

city 12275 0.221
university 10195 0.632

french 8736 0.270
two 192644 0.815

american 20477 1.26
government 11323 1.54

Frequent and uninformative

Term Frequency Var[einfo
j ]

in 372201 58.08
was 112807 43.16
or 68945 57.10
his 62603 47.05
also 44358 44.87
their 31523 84.35
used 22737 31.80
these 19864 25.96

e 11426 45.75
without 5661 30.38

Infrequent and uninformative

Term Frequency Var[einfo
j ]

wendell 40 29.38
actuality 42 29.75

ebne 54 30.17
christology 45 31.04

mico 45 33.38
utilised 30 21.52

reopened 54 21.32
generalizes 24 19.07

flashing 49 19.83
eitc 27 20.77

Infrequent and informative

Term Frequency Var[einfo
j ]

psycho 56 0.05
quantization 56 0.25

residue 56 0.02
inert 54 0.98
imap 54 0.19

batsman 52 0.68
bilinear 52 0.18
crucified 50 0.08

germanium 50 0.11
lactose 50 0.45

between these two quantities is very weak, e.g. high-frequency words can be very informative. For
example, the words ‘family’ and ‘service’ are frequent in Wikipedia but were still found to be highly
informative context words (i.e. Var[einfo

j ] is low for these words), while stop words such as ‘were’ and

‘is’ are found to be uninformative (i.e. Var[einfo
j ] is high for these words). Similarly, there are low-

frequency words which are found to be uninformative, such as ‘ga’, ‘scoula’ and ‘niggle’ while other
low-frequency words were found to be highly informative, such as ‘compactness’ and ‘nasdaq’. Table 1
shows a number of additional examples of words with high/low frequency and high/low variance.

3.3 Evaluating likelihood
Explicitly modelling the residual error allows us to associate a density with each word. For example, the
density shown in Figure 1 intuitively captures the evidence about the embedding of the word i that is
provided by the context word j. In this section, we will assume that each target word is associated with a
random vector. Note that the residual error eij then is a random variable. We will evaluate the likelihood
that eij takes a given value by evaluating the likelihood that ecount

ij takes a given value s and that einfo
ij

takes the value r − s. Let Sij ⊆ R be the set of possible values that ecount
ij can take, i.e.:

Sij = {E[log Yij ]− logP (Yij = k) : 0 ≤ k ≤ xi}

With each target word i and context word j we can associate the density fij defined for r ≥ 0 as:

fij(r) =
1
|Sij |

∑
s∈Sij

P (Yij = k) · f info
ij (r − s) (3)

Here fij(r) is the likelihood that the residual error eij takes the value r, while f info
ij (s) is the likelihood

that einfo
ij takes the value s. The variance σinfo

ij of f info
ij is given by (2). If we furthermore assume that einfo

ij

is normally distributed, we obtain:

f info
ij (r − s) = N (r − s, 0, σinfo

ij )
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If we treat each context word as an independent source of evidence, we obtain the following density gi,
modelling our knowledge about the possible choices of a word vector for word i ( wi ∈ Rs):

gi(wi) =
∏
j∈Ji

fij(wi · w̃j − sij + b̃j) (4)

Note that we assume that the context vectors w̃j are given.

4 Evaluation

In this section we compare our method with existing word embedding models on a range of standard
benchmark tasks.

4.1 Methodology

Corpora We have used the following text collections: Wikipedia2 (1,335,766,618 tokens), the En-
glish Gigaword corpus3 (1,094,733,691 tokens), a concatenation of the Wikipedia and Gigaword
corpora (2,430,500,309 tokens), UMBC4 (2,714,554,484 tokens) and ClueWeb-2012 Category-B5

(6,030,992,452 tokens). Note that the first three text collections have also been used in (Pennington et al.,
2014). We adopted a straightforward text preprocessing strategy. In particular, following (Pennington
et al., 2014), we have removed punctuations, lower-cased the tokens, removed HTML/XML tags, and
conducted sentence segmentation. For the ClueWeb collection, we used the preprocessing implementa-
tion of the reVerb tool6, which was specifically designed to process ClueWeb, and only considered terms
which occur at least 100 times in the collection, to offset the larger size of this collection. This led to
a vocabulary size of 283,701 words. For the other collections, we used our own code, which is avail-
able along with the rest of our implementation7, and used the NLTK library8 for sentence segmentation.
As these collections are smaller than the ClueWeb collection, we considered all words that appear at
least 10 times. The resulting vocabulary sizes are 1,252,101 words for Wikipedia, 469,052 words for
the Gigaword corpus, 1,524,043 words for Wikipedia+Gigaword and 541,236 words for UMBC. When
counting word co-occurrence statistics, we do not cross sentence boundaries. Similar to GloVe, words in
the context windows in our model were weighted using the harmonic function. For the baseline models,
we used the context word weighting scheme from their original implementations.

Baseline methods and variants We consider the following state-of-the-art word embedding baselines:
the Skip-Gram (SG) and Continuous-Bag-of-Words (CBOW) models from (Mikolov et al., 2013), GloVe
(Pennington et al., 2014), and the Gaussian word embedding model (Gauss) from (Vilnis and McCallum,
2015). In all cases, we have used existing implementations of these models91011. Furthermore, we have
considered several variants of our model to better understand what components are responsible for the
improvements over GloVe. In the standard version, we estimate the similarity between words wi and wj
by evaluating the likelihood gi(wj), as defined in (4). In variant DG-ZC we instead use cosine similarity,
as in the GloVe model. In variant DG-C we also use the cosine similarity and in addition set Ji as in the
GloVe model (i.e. we disregard pairs (i, j) for which xij = 0). Variant DG-UfL differs from the standard
model by not considering the error term einfo

j .

Evaluation tasks We have evaluated the models on traditional word analogy and word similarity tasks
(Levy et al., 2015). In particular, we have used an existing Google Word analogy dataset which we
obtained from the GloVe project12. In addition, we have used the Microsoft Word analogy dataset13 as
well as twelve existing word similarity datasets14. The aim of these evaluation tasks has been explained
in detail in (Levy et al., 2015). A new evaluation task for word embedding has recently been proposed

2We used the dump from November 2nd, 2015.
3https://catalog.ldc.upenn.edu/LDC2011T07
4http://ebiquity.umbc.edu/resource/html/id/351
5http://lemurproject.org/clueweb12/
6http://reverb.cs.washington.edu/
7https://github.com/bashthebuilder/pGlove
8http://www.nltk.org/

9https://code.google.com/archive/p/word2vec/
10http://nlp.stanford.edu/projects/glove/
11https://github.com/seomoz/word2gauss
12http://nlp.stanford.edu/projects/glove/
13https://bitbucket.org/omerlevy/hyperwords/src
14https://github.com/mfaruqui/retrofitting
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Table 2: Comparison with baseline methods on standard word embedding evaluation tasks.
Gsem Gsyn MSR S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Outlier

Acc Spearman’s ρ Acc OPP
Wikipedia

SG 71.6 64.2 68.6 0.658 0.773 0.784 0.645 0.708 0.456 0.500 0.415 0.435 0.773 0.655 0.731 70.3 93.8
CBOW 74.2 62.4 66.2 0.644 0.768 0.740 0.532 0.622 0.419 0.341 0.361 0.343 0.707 0.597 0.693 73.4 95.3
Gauss 61.3 53.3 43.8 0.593 0.632 0.681 0.409 0.506 0.256 0.392 0.337 0.416 0.649 0.601 0.644 04.6 40.0
GloVe 80.2 58.0 50.3 0.595 0.755 0.746 0.515 0.577 0.318 0.533 0.382 0.354 0.690 0.652 0.724 58.8 92.6
D-GloVe 81.4 59.1 59.6 0.670 0.789 0.789 0.560 0.658 0.401 0.540 0.413 0.391 0.780 0.656 0.749 73.5 96.1

Gigaword
SG 61.5 63.2 67.5 0.676 0.628 0.594 0.550 0.614 0.446 0.408 0.422 0.408 0.691 0.621 0.696 74.9 84.1
CBOW 50.2 58.1 64.8 0.615 0.568 0.600 0.416 0.518 0.405 0.259 0.347 0.343 0.625 0.520 0.610 74.1 84.0
Gauss 38.2 45.1 40.1 0.600 0.474 0.548 0.413 0.507 0.326 0.223 0.307 0.204 0.504 0.473 0.567 56.0 66.2
GloVe 64.4 59.6 55.8 0.600 0.669 0.599 0.511 0.535 0.336 0.486 0.327 0.255 0.593 0.606 0.668 74.2 83.2
D-GloVe 65.5 61.5 58.9 0.697 0.673 0.599 0.521 0.555 0.394 0.499 0.387 0.289 0.663 0.622 0.696 75.2 86.0

Gigaword+Wikipedia
SG 74.4 69.6 69.3 0.678 0.712 0.794 0.659 0.719 0.459 0.511 0.518 0.437 0.731 0.631 0.733 82.8 91.6
CBOW 72.2 61.2 66.2 0.633 0.699 0.681 0.528 0.592 0.419 0.321 0.405 0.359 0.688 0.561 0.662 80.1 90.1
Gauss 56.1 53.2 51.9 0.601 0.583 0.619 0.421 0.518 0.311 0.318 0.332 0.319 0.581 0.557 0.617 40.1 55.9
GloVe 78.8 66.9 58.6 0.608 0.741 0.735 0.598 0.581 0.388 0.578 0.399 0.357 0.711 0.616 0.719 81.8 89.6
D-GloVe 86.8 67.2 66.3 0.689 0.749 0.799 0.606 0.589 0.459 0.589 0.482 0.401 0.743 0.640 0.742 85.2 92.5

UMBC
SG 62.0 65.8 68.7 0.619 0.778 0.753 0.594 0.620 0.355 0.572 0.390 0.367 0.684 0.664 0.735 76.2 86.2
CBOW 73.5 67.4 65.3 0.619 0.768 0.733 0.586 0.616 0.345 0.577 0.347 0.352 0.684 0.658 0.723 76.1 85.3
Gauss 56.7 64.4 55.2 0.614 0.764 0.742 0.583 0.608 0.342 0.571 0.362 0.344 0.674 0.652 0.717 45.9 59.2
GloVe 65.9 66.5 65.2 0.618 0.770 0.731 0.587 0.613 0.344 0.572 0.374 0.363 0.679 0.660 0.723 75.9 85.2
D-GloVe 77.5 66.7 65.3 0.620 0.796 0.756 0.591 0.618 0.355 0.592 0.394 0.368 0.684 0.667 0.736 77.1 87.1

ClueWeb12-B
SG 37.3 58.9 87.5 0.674 0.725 0.713 0.632 0.680 0.463 0.384 0.389 0.388 0.730 0.643 0.718 86.7 98.1
CBOW 50.0 61.7 87.5 0.636 0.702 0.704 0.514 0.612 0.422 0.329 0.362 0.367 0.691 0.612 0.668 86.4 97.9
Gauss 39.5 49.0 72.1 0.611 0.664 0.670 0.416 0.520 0.261 0.314 0.339 0.312 0.669 0.599 0.647 75.8 81.7
GloVe 48.9 51.7 85.2 0.651 0.724 0.720 0.621 0.681 0.421 0.321 0.356 0.361 0.700 0.619 0.678 79.8 97.1
D-GloVe 56.7 60.4 87.0 0.675 0.744 0.736 0.629 0.683 0.533 0.383 0.390 0.389 0.731 0.653 0.724 86.8 98.2

Table 3: Results for different variants of our model on the Wikipedia collection.
Gsem Gsyn MSR S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Outlier

Acc Spearman’s ρ Acc OPP
D-GloVe 81.4 59.1 59.6 0.670 0.789 0.789 0.560 0.658 0.401 0.540 0.413 0.391 0.780 0.656 0.749 73.5 96.1
DG-ZC 80.9 58.8 51.8 0.659 0.781 0.786 0.521 0.589 0.320 0.533 0.383 0.370 0.779 0.661 0.747 66.1 95.0
DG-C 80.8 58.3 51.5 0.659 0.781 0.784 0.518 0.581 0.321 0.533 0.382 0.361 0.778 0.661 0.740 62.8 94.9
DG-UfL 79.9 56.2 50.1 0.615 0.763 0.758 0.491 0.568 0.311 0.509 0.376 0.349 0.709 0.645 0.704 61.8 93.7

in (Camacho-Collados and Navigli, 2016), which we have also considered, using the evaluation script
provided by the authors15. The aim of this task is to find the outlier in a given set of words. We
refer to (Camacho-Collados and Navigli, 2016) for a detailed explanation of the task and the considered
evaluation metrics.

Parameter tuning We select the parameters for each of the methods using a 25% validation set and
report results on the remaining 75% of each evaluation set. The parameters were tuned separately for
each of the evaluation tasks. For CBOW and SG, we chose the number of negative samples from a pool
of {1, 5, 10, 15}. For GloVe, we selected the xmax value from {10, 50, 100} and α from {0.1, 0.25,
0.5, 0.75, 1}. For the Gaussian word embedding approach, we used the spherical Gaussian with KL-
divergence model. For our model, we selected the Dirichlet prior constant λ from {0.0001, 0.001, 0.01,
0.1, 1000, 2000, 5000, 8000}. For all models, the number of dimensions was chosen from {100, 300},
the size of the context windows was chosen from {2, 5, 10}, and the number of iterations was fixed as
50. In our model, we re-estimate the variances σ2

ij every five iterations.

15http://lcl.uniroma1.it/outlier-detection/
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Table 4: Results for high-frequency and low-frequency words for Wikipedia (left) and UMBC (right).
Most frequent S4 S5 S6 S8 S9

SG 0.504 0.452 0.598 0.711 0.596
D-GloVe 0.530 0.560 0.650 0.773 0.724

Least frequent S4 S5 S6 S8 S9
SG 0.623 0.445 0.400 0.560 0.559

D-GloVe 0.579 0.328 0.200 0.182 0.245

Most frequent S4 S5 S6 S10
SG 0.511 0.256 0.591 0.287

D-GloVe 0.575 0.354 0.626 0.333
Least frequent S4 S5 S6 S10

SG 0.661 0.372 0.100 0.331
D-GloVe 0.605 0.312 0.091 0.313
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Figure 3: Confidence ranking plot for the Google word analogy test set.

4.2 Results
We present our main results in Table 2. The word similarity datasets are indexed as: S1: EN-MTurk-
287, S2: EN-RG-65, S3: EN-MC-30, S4: EN-WS-353-REL, S5: EN-WS-353-ALL, S6: EN-RW-
STANFORD, S7-EN-YP-130, S8-EN-SIMLEX-999, S9-EN-VERB-143, S10-EN-WS-353-SIM, S11:
EN-MTurk-771, and S12: EN-MEN-TR-3k. We can see from the results that our model consistently
outperforms GloVe. To further understand what components are responsible for this improvement, Ta-
ble 3 shows the result for some variants of our model, showing that each of the proposed adaptations
of the GloVe model contributes to the overall result. Compared to the other baselines, the results in Ta-
ble 2 show that our model performs substantially better for the semantic instances of the Google analogy
datasets (Gsem), while it is outperformed by SG (and in some cases CBOW) for the syntactic instances
(Gsyn) and for the Microsoft dataset (MSR), which contains only syntactic instances. Our model also
outperforms the baselines for the outlier detection task. For the similarity test instances, the performance
is mixed. What is noticeable is that our model performs comparatively better for large corpora (e.g.
ClueWeb) and worse for smaller corpora (e.g. Gigaword).

In Table 4 we present a more detailed analysis of the similarity test sets for which our model performs
worse than SG. In particular, the table shows the results of a modified test set that only considers the
30% most frequent terms and a modified test set that only considers the 30% least frequent terms. These
results clearly show that our model outperforms SG for high-frequency terms and that it is outperformed
by SG for low-frequency terms. Dirichlet-Multinomial model are indeed known to struggle with low-
frequency terms (Sridhar, 2015), which can e.g. be addressed by the use of asymmetric Dirichlet priors
(Wallach et al., 2009). Note that this observation also explains why our model performs comparatively
better for larger corpora and why it performs worse for syntactic analogy instances (given that such
instances tend to contain low-frequency terms). While this can be seen as a limitation of our model,
the fact that our model treats low-frequency terms in a cautious way may actually be advantageous in
downstream applications.

An advantage of our approach is that the likelihood based formulation naturally allows us to estimate
the confidence that a given prediction is correct. In Figure 4.2 we show the accuracy for the k analogy
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instances of the Google dataset about which our model was most confident, for varying values of k.
Similarly, the figure also shows the accuracy of the predictions made by SG, ranked in terms of cosine
similarity. As can be seen, our model is better able to identify those instances that it can answer correctly
(e.g. the accuracy of the top 5000 instances remains close to 1).

5 Conclusions

We have proposed a new word embedding model in which each word is represented as a density, obtained
by associating with each word i and each context word j a univariate density. These univariate densities
are in turn obtained by explicitly modelling the residual error of the considered least squares optimization
function. Our experiments reveal that the model consistently outperforms the GloVe model, on which
it is based. The proposed model also outperforms skip-gram, and other baselines, for high-frequency
terms. For low-frequency terms, our model takes a rather cautious approach, which means that it is often
outperformed by skip-gram in standard evaluation settings.
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