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Abstract

Emotion classification from text typically requires some degree of word-emotion association,
either gathered from pre-existing emotion lexicons or calculated using some measure of semantic
relatedness. Most emotion lexicons contain a fixed number of emotion categories and provide
a rather limited coverage. Current measures of computing semantic relatedness, on the other
hand, do not adapt well to the specific task of word-emotion association and therefore, yield
average results. In this work, we propose an unsupervised method of learning word-emotion
association from large text corpora, called Selective Co-occurrences (SECO), by leveraging the
property of mutual exclusivity generally exhibited by emotions. Extensive evaluation, using just
one seed word per emotion category, indicates the effectiveness of the proposed approach over
three emotion lexicons and two state-of-the-art models of word embeddings on three datasets
from different domains.

1 Introduction

Emotion detection from text is the task of identifying emotions from natural language data such as user
reviews, blogs, news articles, etc. (Alm et al., 2005; Aman and Szpakowicz, 2007). Although there is
no strict definition for emotion, most researchers agree that it is a particular feeling that characterizes
the state of mind such as happiness, anger, sadness and so on. Emotion analysis is extremely popular in
the field of market research, where brands tap into their customer base by analyzing user-generated data,
readily available nowadays due to the rapid growth of social media (De Bondt et al., 2013; Shrum et al.,
2013). Mohammad and Turney (2013) present a more extensive list of applications.

Emotion detection from text typically requires some degree of word-emotion association, i.e., knowing
which words are more appropriately associated with which emotions. For example, the word “accident”
can be considered associated with the emotion SADNESS. This association can be obtained from a pre-
compiled emotion lexicon or calculated using some measure of semantic relatedness. The currently
available manually annotated emotion lexicons tend to be restricted in size due to the expensive process
of human annotation. This limited coverage leads to the undesirable effect of leaving too many words
unassociated with any emotion category. Moreover, most lexicons contain a small fixed set of emotions
which is unsuitable for a larger (Du et al., 2014) or a newly defined set of emotions (Facebook, 2016).
On the other hand, while automatically computing word-emotion association scores from text corpora
possibly provides a better coverage and more flexibility, the current techniques are ill-suited to the task
of emotion detection and therefore, tend to yield average results.

To address these issues, in this work, we propose an unsupervised method of learning word-emotion
association scores from text corpora, which we call Selective Co-occcurences (SECO). By modifying
conventional co-occurrence-based methods, we compute a uni-directional asymmetric association be-
tween a given word and an emotion seed word. The proposed approach is found to be better at capturing
the association between words and emotions than general purpose measures. Extensive evaluation of
word-emotion association scores derived from two large text corpora, Wikipedia and Amazon reviews,
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on three emotion datasets from very diverse domains demonstrates the effectiveness of employing selec-
tive co-occurrences. The proposed approach is particularly interesting as it requires no training data and
can be applied to a flexible number of emotion categories.

The remainder of this paper is organized as follows. In Section 2, we survey the related work. In
Section 3, we describe the learning of the word-emotion association scores and their use in the task of
emotion classification. Section 4 describes the evaluation setup, while Section 5 analyzes the experimen-
tal results. Lastly, Section 6 concludes the paper with a brief look at future work.

2 Related Work

In this section, we present the existing emotion lexicons, manually annotated as well as those created
using supervised machine learning, and also discuss the measures of semantic relatedness that have been
previously employed to derive word-emotion association for emotion classification.

2.1 Emotion Lexicons

2.1.1 Manually Annotated Lexicons
One of the earliest and most popular emotion resources is the WordNet Affect (Strapparava and Valitutti,
2004), developed by manually labelling about 1,314 synsets with one or more of Ekman’s (1992) six
basic emotions. Using crowd-sourcing, one of the largest manually annotated emotion lexicons created
to date is the NRC Emotion Lexicon (EmoLex) (Mohammad and Turney, 2010; Mohammad and Tur-
ney, 2013). It contains about 14,200 unigrams annotated with one or more of Plutchik’s eight emotions
(Plutchik, 2001). Another manually created lexicon, the Affect database (Neviarouskaya et al., 2007),
contains a total of 2,440 entries (emoticons, acronyms, words and modifiers) annotated by three anno-
tators using nine emotion labels as well as their intensities. Considering the fundamental role played by
lexical resources in the task of emotion detection, the current options available due to manual lexicons
seem rather limited in their coverage. Human annotation, including crowd-sourcing, requires consid-
erable lexicographic expertise, time and effort. An alternative approach involves creating such lexical
resources automatically.

2.1.2 Automatically Acquired Lexicons
More recently, DepecheMood (Staiano and Guerini, 2014), was created using supervised training by
applying distributional semantics to a dataset of crowd-annotated news articles. This lexicon consists of
37,000 words and their emotion scores across seven emotions. A different approach of generating an
emotion lexicon (18,000 words and 8 emotions) involves using the Google n-grams corpus to expand
an existing, smaller human-annotated lexicon such as the EmoLex (Perrie et al., 2013). Although these
approaches cover a larger vocabulary, they are limited to the emotion categories of the source corpus or
the lexicon which they use for training.

2.2 Measures of Semantic Relatedness

Statistical approaches that leverage large text corpora provide an alternative way of acquiring word-
emotion association scores, which can remedy the problem of unseen vocabulary to a large extent. As
these approaches employ just a handful of emotion seed words to initialize the process, they are also
applicable to a flexible number of emotion categories. Many models of computing word semantic relat-
edness exist, from the traditional count-based methods such as Pointwise Mutual Information (PMI) to
the more recent neural-network inspired models of word embeddings such as Continuous Bag of Words
(CBOW). While the models differ in their algorithms, they are fundamentally based on the intuitive
assumption that co-occurring words tend to be related to each other.

Previously, PMI has been used to classify emotions in news headlines, where the probabilities of words
were calculated using statistics collected from three search engines (Kozareva et al., 2007). Wikipedia
has also proven a useful resource for calculating word frequencies using PMI to obtain word-emotion
association scores (Agrawal and An, 2012). Alternatively, PMI has been used to first build an emotion
lexicon which is then used for classification (Yang et al., 2007). Latent Semantic Analysis (LSA)
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(Deerwester et al., 1990), which analyzes the statistical relationships among words in a corpus using
Singular Value Decomposition (SVD) dimensionality reduction technique, was used to calculate word-
emotion association scores to classify news headlines (Strapparava and Mihalcea, 2008).

Despite, and perhaps because of, its simplicity, PMI (Church and Hanks, 1990) has long been a popular
measure of semantic relatedness. It estimates the similarity between two terms x and y as PMI (x, y) =
log

(
p(x,y)

p(x)p(y)

)
, where p (x, y) is the probability that words x and y co-occur within a window of specific

length, and p (x) and p (y) are the individual probabilities of word x and word y, respectively, in the
corpus. To overcome a few well-known shortcomings of PMI (i.e., low frequency events receiving
relatively high scores, lack of a fixed upper bound), Bouma (2009) proposed a normalized version of PMI
(NPMI), where NPMI (x, y) = PMI(x,y)

−log p(x,y) , with fixed orientation values: when two words only occur
together, NPMI(x, y) = 1; when they are distributed as expected under independence, NPMI(x, y) = 0;
and, when they occur separately but not together, NPMI(x, y) = −1.

More recently proposed neural-network based approaches, such as Continuous Bag-of-Words
(CBOW) and Skip-Gram (SG) (Mikolov et al., 2013b; Mikolov et al., 2013a) output word embeddings
which can then be used to compute the similarity between two words by calculating their cosine sim-
ilarity. These methods implicitly factorize a word-context matrix whose cell values are in fact shifted
PMI (Levy and Goldberg, 2014) and have outperformed traditional count-based methods such as PMI on
many similarity-oriented tasks (Marco Baroni, Georgiana Dinu, 2014).

While these measures of semantic relatedness provide promising results on most word similarity tasks,
they do not adapt well to emotion detection. We build upon these latest advancements by proposing a
variant that is more suitable to the task at hand.

3 Word-emotion Association for Emotion Classification

Given a sentence s and a set E = {e1, e2, . . . , eg} of g emotion categories, the objective is to label s
with the best possible emotion e ∈ E. We first discuss our proposed method for deriving the word-
emotion association scores between a word and an emotion category, and then use these scores to obtain
an emotion label for each sentence.

3.1 Learning Word-emotion Association

Let W = {w1, w2, . . . , wn} be a set of n cue words in an input sentence s, where W ⊂ s. A cue word
is defined as any word within a sentence that could have some emotional connotation. Usually, these
are the nouns, adjectives, verbs and adverbs. Let E = {e1, e2, . . . , eg} be a set of g emotion categories.
Each emotion category ej ⊂ E is represented by one or more emotion seed words. Let T be the set of
all the seed words for all the emotion categories, Tj ⊂ T and Tj = {tj1 , tj2 , . . . , tjm} be the set of m
emotion seed words for each emotion category ej ⊂ E.

As an illustration, consider the sentence “We are going to a party tonight”. Here, the set of cue words
includes W = {going, party, tonight}. If the classification scheme follows, for example, Ekman’s
(1992) model of emotions, then E = {anger, disgust, fear, happiness, sadness, surprise}. The set
of seed words for HAPPINESS could be Thappiness = {happy, joy, ...} and ANGER’s seed words could
be Tanger = {angry,mad, . . .}.

We adopt the→ symbol to denote the association between a cue word w and an emotion seed word
t. The first step is to derive the association scores between a cue word and every seed word, e.g.,
Assoc. (party → joy), Assoc. (party → angry). Since our main goal is to acquire association scores
for emotion classification, the design choices for our proposed measure of learning word-emotion asso-
ciation scores, SECO, are largely motivated by the following observations:

• The intrinsic process of annotating an emotion dataset as well as that of classifying it is uni-
directional, i.e., given a word or a sentence, the task is to label it with the emotion it evokes the
most.

• Although expressions of emotions can sometimes be fuzzy, most words primarily evoke only one
emotion in a particular context, i.e., the emotion categories are, for the most part, mutually exclusive.
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In fact, in the emotion lexicon WordNet Affect (Strapparava and Valitutti, 2004), which has words
annotated with more than one emotion, about 98.7% of the terms are labelled with just one emotion.

• Most importantly, unlike other word relatedness tasks, the second half of the association pair (i.e.,
emotion seed words) in this particular task are known in advance.

These observations lead us to hypothesize that an asymmetric measure of association, where a word’s
association with an emotion seed word (and therefore by extension, with an emotion category) may
be more meaningful than trying to achieve a symmetric bi-directional association between the two. In
fact, as Tversky (1977) notes, certain linguistic relationships are characteristically asymmetric . In one
experiment to list the first meaningfully related word that comes to mind, for the cue word fear, 24% of
the participants answered scared, while only 9% of them recalled fear when given the cue word scared,
suggesting an inherent asymmetry in word associations (Altarriba et al., 1999).

As noted earlier, traditional co-occurrence based models of semantic relatedness consider two words
as co-occurring when both the words appear within a specific window of text, no matter how far they are
from each other. In reality, nearer words have been found to exhibit stronger relationships (Beeferman et
al., 1997).

In similar essence, emotions generally exhibit the property of mutual exclusivity and therefore, we
propose the concept of selective co-occurrences (SECO), where a cue word is considered as co-occurring
with only one emotion’s seed words within any particular window of text. Consider Fig. 1 containing
an example window of text, the cue word “party”, and two seed words “angry” and “happy”, represent-
ing the two different emotion categories respectively. To apply selective co-occurrences, the cue word
“party” is considered co-occurring with either “angry” or “happy”, not both.

Theater critic Michael Riedel (playing himself) also shows

up, uninvited. Ivy is put out by this and gets angry at

Michael about it. We hear but don't see Ivy singing

"Bittersweet Symphony" at her party. Derek then walks in

and gives her a present and wishes her happy birthday.

Figure 1: Sample window of text containing cue and seed words

When a context window contains multiple seed words from multiple emotion categories, three possible
settings for selecting the most appropriate seed word as co-occurring with the cue word can be explored:

• nearest (SECO-NEAR): This is the most intuitive option, where the nearest seed word to the cue
word is selected. For example, “happy” is counted as co-occurring with “party”; “angry” is ignored.

• preceding (SECO-PREC): To account for any positional predisposition, this variant considers only
the closest preceding seed word to the cue word. For example, “angry” is considered as co-occurring
with “party”; “happy” is ignored.

• following (SECO-FOLL): Similarly, this variant considers only the closest seed word that follows
the cue word as co-occurring together. For example, “happy” is considered as co-occurring with
“party”; “angry” is ignored.

The selective counting of the seed word’s co-occurrence frequency with the cue word is what essentially
makes our association measure asymmetric and therefore, the order of the cue and seed word in the
association equation cannot be interchanged. That is, Assoc. (w → t) denotes the association between a
cue word w and a seed word t, and Assoc. (w → t) 6= Assoc. (t→ w). Technically, SECO is applicable
to any traditional co-occurrence-based word association measure that estimates the relatedness between
two words by computing some function of the words’ frequencies. To this end, we adopt three popular
co-occurrence association measures, namely NPMI (Bouma, 2009), Dice (1945) and Jaccard (1912), into
their SECO counterparts, SECO-NPMI, SECO-Dice and SECO-Jaccard, respectively.

When applying SECO, in a corpus of M words, # (w, t) denotes the number of times a cue word w
co-occurs mutually exclusively with any one emotion seed word t ⊂ T within a context window of size
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k, where k is the maximum distance between those two words; # (w) and # (t) denote the frequencies
of w and t, respectively.
SECO-NPMI The normalized SECO-NPMI between w and t, within the range of [−1, 1], is:

SECO-NPMI (w → t) =
log

(
M #(w,t)

#(w)#(t)

)
log

(
M

#(w,t)

) . (1)

SECO-Dice Similarly, SECO-Dice between w and t is computed as:

SECO-Dice (w → t) =
2×# (w, t)

# (w) + # (t)
. (2)

SECO-Jaccard Lastly, one of the earliest co-occurrence associations measures, Jaccard, can be
transformed as follows:

SECO-Jaccard (w → t) =
# (w, t)

# (w) + # (t)−# (w, t)
. (3)

Empirical data shows that the association between words decays exponentially (Beeferman et al.,
1997) and this property has been successfully exploited by adding a decaying factor which allows words
that co-occur nearer to each other to be more related (Gao et al., 2002; Sahlgren, 2006; Brosseau-
Villeneuve et al., 2010; Mikolov et al., 2013a). Drawing from previous research, we also apply a context
weighting scheme whereby a seed word is linearly weighted according to its distance from the cue word
as follows: in a window of size k, the nth word from the cue word is weighted by the function k−n+1

k .
For example, in a window of 5, the first word next to the cue word is weighted by 5

5 , while the fourth
word away is of weight 2

5 . In other words, as the distance between two words increases, their weighted
association score decreases.

Finally, the word-emotion association betweenw and an emotion category ej is obtained by calculating
the average mean of the association scores between w and all the seed words of ej as:

Assoc. (w → ej) =
1
m

m∑
k=1

Assoc. (w → tjk
) (4)

where Assoc. is any association measure such as SECO-NPMI.

3.2 Classifying Sentence Emotion
For each word w, its emotion vector φw is denoted as:

φw = 〈Assoc. (w → e1) , Assoc. (w → e2) , . . . , Assoc. (w → eg)〉
and the emotion vector φs of sentence s is obtained by averaging the emotion vectors of all its n cue
words as φs = 1

n

∑n
i=1 φwi . Finally, the sentence is labelled with the emotion category e ⊂ E with the

maximum value in φs.

4 Evaluation Setup

In this section we describe the evaluation datasets, the text corpus used for learning the word-emotion
association scores and the evaluation metric for this task.

4.1 Evaluation Datasets
Below described are the three popular emotion evaluation datasets, with some sample sentences pre-
sented in Table 1 and their summarized statistics in Table 2.

Aman: Consisting of highly informal blog data, this dataset includes 1290 sentences annotated with
one of six emotions: anger, disgust, fear, joy, sadness and surprise (Aman and Szpakowicz, 2007).

Alm: Emotions are particularly significant in the literary genre of fairy tales and this dataset contains
1207 high-agreement sentences (i.e., all four annotators agreed with the same label) marked with one of
five emotions: angry-disgusted, fearful, happy, sad and surprised (Alm, 2008).
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Aman
Do you people not listen to the news or what? anger
I had a blast in california hanging out with my family and friends. happiness

Alm
Oh! cried the devil, “what are you doing?” surprised
Ha! what are you doing? cried the devil angrily. angry-disgusted

ISEAR
When I saw a ghost. fear
Slaughtering of animals. disgust

Table 1: Sample sentences from evaluation datasets

ag dg fr hp sd sp total
Aman 179 172 115 536 173 115 1290
Alm 218 166 445 264 114 1207

ISEAR 1085 1072 1086 1089 1080 - 5412

Table 2: Details of evaluation datasets

ISEAR: Developed for studying the relationships among emotions and cultures, this corpus contains
experiences evoking seven emotions: anger, disgust, fear, joy, sadness, shame and guilt, resulting in
a total of 5412 sentences1. To the best of our knowledge, no existing lexicon contains shame or guilt
categories, and therefore methods that depend on emotion lexicons cannot correctly classify sentences
belonging to these emotions. However, unsupervised approaches such as ours, which can be initialized
with as little as one seed word per emotion category, are easily applicable to such datasets.

4.2 Text Corpora
We derive the word-emotion association scores from two large text corpora of different domains, which
are pre-processed by: a) converting to lowercase; b) stripping off all non-alphanumeric characters; c)
removing stopwords; d) stemming, and e) removing words that occur less than 5 times in the corpus.

Wikipedia2: The large publicly available corpus of Wikipedia mainly consists of formal language
structured text articles considered to be more “objective” in nature. Our clean corpus contains approxi-
mately 918.5 million tokens, with each article on one line.

Amazon: The text of all the product reviews, mostly consisting of informal language makes up our
second corpus, considered to be of more “emotional” type. This data was extracted from the aggressively
deduplicated dataset (McAuley et al., 2015), which contains 82.83 million product reviews from Ama-
zon, spanning May 1996 - July 2014. Our clean corpus contains more than 3 billion tokens (three times
the size of Wikipedia corpus), with one review per line.

4.3 Evaluation Metric
Following prior studies, we calculate the F-score for each emotion class e, where F-score is the harmonic
mean of precision and recall, defined as 2

(
precision×recall
precision+recall

)
. Precision is the number of sentences cor-

rectly labeled as belonging to the class e divided by the total number of sentences labeled as belonging to
e, and recall is the number of sentences correctly labeled as belonging to e divided by the total number
of sentences that actually belong to e. We report the average F-score over all the classes.

5 Experiments and Analysis

In what follows, we evaluate the performance of the proposed approach in several experiments and
discuss their results.

5.1 How effective is selective co-occurrence?
We test the performance of the three proposed variants, SECO-NEAR, SECO-PREC and SECO-FOLL,
against regular as well as weighted versions (where the same context weighting scheme as described
in Section 3.1 is applied to regular association measures) in order to analyze the effect of selective co-
occurrence in particular, and not just the advantage obtained using weighted contexts.

1http://www.affective-sciences.org/system/files/webpage/ISEAR 0.zip. Removed instances with [no response].
2http://dumps.wikimedia.org/enwiki/20140811/enwiki-20140811-pages-articles.xml.bz2
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Figure 2: Selective co-occurrences and regular co-occurrences on Alm dataset

As observed from Figure 2, tested for context window sizes 1 to 20 and trained on the Wikipedia
corpus, our proposed approach, preceding selective co-occurrences (SECO-PREC), where only the near-
est seed word that precedes a given cue word within a context window is considered, exhibits the best
performance when applied to all the three association measures (NPMI, Dice and Jaccard), on the Alm
dataset3. In fact, the best average F-score from SECO-NPMI-PREC is almost 10% better than that
of Wt-NPMI, leading us to conclude that the gain in performance is due to selective co-occurrences
and not just weighted contexts. As expected, the weighted versions, Wt-NPMI, Wt-Dice and Wt-
Jaccard perform much better than their regular unweighted counterparts, NPMI, Dice and Jaccard, re-
spectively. SECO-NEAR has slight advantage over weighted association measures while SECO-FOLL
and regular association measures (i.e., NPMI, Dice, Jaccard) are nearly always the poorest perform-
ing. Since SECO-PREC-NPMI (Figure 2a) yielded better average F-score than SECO-PREC-Dice or
SECO-PREC-Jaccard, we further evaluate its performance in the next experiment.

5.2 How effective is SECO-PREC-NPMI?
In this experiment, we evaluate the performance of unsupervised SECO-PREC-NPMI against five base-
lines (in bold) described next.

5.2.1 Baselines
WordNet Affect (WNA), NRC Emotion Lexicon (EmoLex) and DepecheMood (DM) (Section 2.1) con-
tain words and their association with various emotions. For each emotion category, WNA contains a
simple list of words, which we interpret as a binary association; if a word exists in an emotion cate-
gory, we assign +1 for that emotion. EmoLex and DM, on the other hand, contain association scores
between a word and all the emotion categories. For instance, EmoLex lists the association between
the word “awful” and 8 emotions (anger, anticipation, disgust, fear, joy, sadness, surprise, trust) as:
1, 0, 1, 1, 0, 1, 0, 0. In DM, each word is associated with a different set of emotions by a real valued
score, summing upto 1. For instance, the word “awe” and 8 emotions (afraid, amused, angry, annoyed,
dont care, happy, inspired, sad) is listed as: 0.08, 0.12, 0.04, 0.11, 0.07, 0.15, 0.38, 0.05. We use these
emotion lexicons as a baseline by applying a keyword matching algorithm, to obtain Assoc. (w → e).
For example, Assoc. (awe→ sad) = 0.05 from DM. Note that, since DM does not contain two of the
emotions found in our evaluation datasets, i.e., disgust and surprise, we report its results on a subset
of the datasets. Instead of directly comparing our word-emotion association scores with those of emo-
tion lexicons, we extrinsically evaluate them in the task of emotion classification as there are significant
differences between the various emotion lexicons and none can be considered to be a perfect benchmark.

Semantic similarity computed from two state-of-the-art word embedding algorithms, CBOW and SG
(Mikolov et al., 2013b; Mikolov et al., 2013a) (Section 2.2), provide another baseline as they can be
used to obtain unsupervised word-emotion association scores, which is closer in spirit to our goal. We

3Consistent results were obtained on Aman and ISEAR datasets, not included here due to limited space.
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used the algorithms’ recommended default parameter settings: dimension size of feature vectors = 300;
negative sampling = 5. We present a comparison against only unsupervised methods as the focus of this
paper is on unsupervised emotion detection methods.

Since the context window size can have a significant impact on the performance of an algorithm, we
run each method of semantic relatedness on 20 different window sizes (1 to 20) on both the corpora
(Wikipedia and Amazon) and report the average result with standard deviation for each setting in Table
3. To keep the process as unsupervised as possible, in this study only one seed word per emotion category
is used to derive the association scores. The seed words “angry, disgust, happy, scared, sad, surprise”
represent the six emotion categories “anger, disgust, happiness, fear, sadness, surprise”, respectively.

Aman Alm ISEAR
SGwiki 0.242 ± 0.04 0.209 ± 0.05 0.259 ± 0.08

CBOWwiki 0.382 ± 0.02 0.426 ± 0.03 0.446 ± 0.03
SECO-PREC-NPMIwiki 0.410 ± 0.01** 0.443 ± 0.01** 0.488 ± 0.02**

SGamazon 0.410 ± 0.02* 0.406 ± 0.02 0.438 ± 0.04
CBOWamazon 0.393 ± 0.02 0.373 ± 0.02 0.484 ± 0.03

SECO-PREC-NPMIamazon 0.403 ± 0.01 0.409 ± 0.01** 0.498 ± 0.02**

Table 3: Average F-scores (of windows 1 to 20) for three evaluation datasets. SG, CBOW and
SECO-PREC-NPMI were run on Wikipedia and Amazon corpora for windows 1 to 20. The best av-
erage result for each dataset is in bold. **p < .00001, *p < .01 (one-way ANOVA test for each dataset
results using the same training corpus, i.e., wiki or amazon)

5.2.2 Results
Usually it is difficult to determine the best window size in advance, and therefore, for window sizes 1 to
20, we summarize the average F-scores over all 20 window sizes in Table 3. The best results obtained
using any particular window are presented in Table 4 and the details of different emotion category results
are further shown in Table 5. Finally, Figure 3 presents the window sensitivity graphs.

i) The average F-score results summarized in Table 3 indicate that on average, SECO-PREC-NPMI
yields better overall results, with SGamazonobtaining competitive results on one dataset (Aman), suggest-
ing the effectiveness of selective co-occurrences in this task. Interestingly, contrary to popular intuition,
the “objective” text from Wikipedia training corpus yields better F-scores on average than the “subjec-
tive” Amazon reviews corpus for two out of the three evaluation datasets.

Aman Alm ISEAR
WNA 0.286 0.362 0.343

EmoLex 0.316 0.341 0.318
DM 0.324 0.340 0.290

SGwiki 0.338 (2) 0.345 (1) 0.433 (1)
CBOWwiki 0.410 (15) 0.456 (11) 0.481 (19)

SECO-PREC-NPMIwiki 0.422 (10) 0.464 (8) 0.497 (10)
SGamazon 0.435 (6) 0.440 (1) 0.490 (5)

CBOWamazon 0.411 (6) 0.399 (18) 0.510 (19)
SECO-PREC-NPMIamazon 0.412 (11) 0.422 (15) 0.512 (20)

Table 4: Details of best results for three evaluation datasets. The best result for each dataset is in bold.
The window size is shown in parentheses.

ii) The results of Table 4 indicate that, on all three evaluation datasets, with just one seed word per
emotion category used to derive the word-emotion association scores, all the unsupervised measures of
semantic relatedness (SECO-PREC-NPMI, SG and CBOW) outperform all the emotion lexicons (WNA,
EmoLex and DM) that were created using considerable human input and training data, indicating that
semantic similarity approaches provide an effective unsupervised way of extracting meaningful word-
emotion association scores. Within the emotion lexicons, WNA provides the best performance on two out
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of the three datasets despite being the smallest in size. Unsupervised association measures demonstrate
two significant advantages over emotion lexicons: firstly, association measures are able to provide a
wider coverage by exploiting the inherent associations between words that are present in text corpora;
and secondly, while lexicons have fixed pre-determined emotion categories, association measures can be
flexibly extended to any number and types of emotions. As for the recommended window settings for
each approach, it seems that SG works well with window size = 1 on Wikipedia corpus and around 5 on
Amazon; CBOW usually does well on windows larger than 15 and SECO-PREC-NPMI is recommended
to be used with window 10 on Wikipedia and larger than 15 on Amazon.

AMAN
ag dg fr hp sd sp

Avg
P R F P R F P R F P R F P R F P R F

SGamazon 0.66 0.25 0.36 0.65 0.40 0.50 0.33 0.71 0.45 0.79 0.34 0.47 0.34 0.64 0.44 0.24 0.66 0.34 0.435
CBOWamazon 0.38 0.39 0.38 0.48 0.51 0.49 0.22 0.70 0.33 0.82 0.39 0.53 0.33 0.46 0.38 0.47 0.24 0.32 0.411

SECO-PREC-NPMIwiki 0.41 0.44 0.43 0.46 0.23 0.30 0.34 0.44 0.38 0.66 0.64 0.65 0.48 0.39 0.43 0.27 0.49 0.34 0.422

ALM
ag-dg fr hp sd sp

Avg
P R F P R F P R F P R F P R F

SGamazon 0.58 0.44 0.50 0.40 0.55 0.46 0.77 0.31 0.44 0.40 0.71 0.51 0.23 0.33 0.27 0.440
CBOWamazon 0.48 0.47 0.47 0.31 0.73 0.43 0.76 0.31 0.44 0.39 0.59 0.47 0.50 0.08 0.14 0.399

SECO-PREC-NPMIwiki 0.52 0.27 0.36 0.42 0.52 0.47 0.64 0.70 0.67 0.57 0.53 0.55 0.24 0.33 0.28 0.464

ISEAR
ag dg fr hp sd

Avg
P R F P R F P R F P R F P R F

SGamazon 0.67 0.27 0.38 0.73 0.45 0.56 0.49 0.64 0.55 0.50 0.44 0.47 0.36 0.65 0.46 0.490
CBOWamazon 0.42 0.62 0.50 0.61 0.47 0.53 0.53 0.67 0.59 0.60 0.32 0.42 0.51 0.47 0.49 0.510

SECO-PREC-NPMIamazon 0.48 0.54 0.51 0.78 0.44 0.56 0.52 0.69 0.59 0.55 0.34 0.42 0.41 0.57 0.48 0.512

Table 5: Details of emotion category results for best window size/training corpus combination for three
evaluation datasets. ag = anger, dg = disgust, fr = fear, hp = happy, sd = sad, sp = surprise. P = precision,
R = recall, F = F-score.

iii) To analyze the individual emotion category results, we present the results of the best ap-
proach/training corpus combination in Table 5. In general, the happiness category obtains the highest
results in two datasets while fear does best on the third. On the other hand, the most difficult category
to be classified correctly seems to be surprise. One avenue of future work could include experimenting
with various seed words to increase the accuracy of such emotions.

iv) Figure 3 summarizes the results of sensitivity of the three algorithms, SG, CBOW
and SECO-PREC-NPMI, to different window parameter settings. On Wikipedia corpus,
SECO-PREC-NPMI is consistently better than the others, whereas SG takes better advantage of the
Amazon corpus. While SECO-PREC-NPMI and CBOW get better with bigger context windows, SG
depicts the opposite trend, best on windows less than 5.

To summarize the results:

• Initialized using one seed word per emotion category, the measures of semantic relatedness yield
better results than the emotion lexicons.

• When the window size is not known, in general, SECO-PREC-NPMI yields consistent promising
results on all the evaluation datasets, while SG provides competitive results on one dataset.

• SECO-PREC-NPMI and CBOW yield better results with larger window sizes, whereas SG is best
on windows less than 5.
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Figure 3: Parameter sensitivity results for 20 window sizes

6 Conclusion

Emotion detection from text requires the degree of word-emotion association which is generally obtained
from emotion lexicons or measures of semantic relatedness. While manual lexicons require considerable
human time and effort, automatic techinques provide average performance. In this paper, we described a
novel approach to automatically learning word-emotion association scores. Using just one seed word per
emotion category, our proposed approach SECO-PREC-NPMI significantly outperformed three emotion
lexicons and two state-of-the-art word embeddings models when trained using the Wikipedia text corpus.

As future work, we plan to further improve the accuracy of emotion classification by experimenting
with a variety of seed words and also adapt SECO to other tasks that require association between two
words.
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