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Abstract

Sentence compression is a way to perform text simplification and is usually handled in a
monolingual setting. In this paper, we study ways to extend sentence compression in a
bilingual context, where the goal is to obtain parallel compressions of parallel sentences.
This can be beneficial for a series of multilingual natural language processing (NLP)
tasks. We compare two ways to take bilingual information into account when compressing
parallel sentences. Their efficiency is contrasted on a parallel corpus of News articles.

1 Introduction

Text simplification is a well studied application of Natural Language Processing (NLP) tech-
niques. Its main goal is to reduce the complexity of a text without degrading the informational
content. This task proves useful for a wide range of applications, be they human-oriented
(e.g. text adaptation for language learning purposes, for people with reading disabilities etc.
(Siddharthan, 2014; Klaper et al., 2013)) or machine-oriented, serving as a basis to improve
the efficiency of other NLP downstream components (e.g., parsing (Jonnalagadda et al., 2009),
semantic role labeling (Vickrey and Koller, 2008) etc.). Simplification can be performed at dif-
ferent linguistic levels: lexical (Paetzold and Specia, 2016), syntactic (Siddharthan, 2011), or
both (Paetzold and Specia, 2013).

Sentence compression is a way to perform simplification at the level of sentences, by reducing
the sentence length without sacrificing important information. Many works only consider purely
syntactic simplifications, though lexical changes are also possible, especially in language learning
scenarios (Cohn and Lapata, 2008; Napoles et al., 2011a).

By and large, the motivations that have been put forward for monolingual sentence com-
pression can be also used to motivate bilingual sentence compression, understood here as the
generation of parallel compressions of parallel sentences. Bilingual Sentence Compression can
be used, for instance, to produce simpler versions of a parallel text for learning purposes, or
to generate summaries and subtitles in different languages, or even to build simplified parallel
corpora for training a Machine Translation (MT) system.

Parallel sentence compression can be approached in many ways: it is first possible to compress
independently each side of a bitext using monolingual simplification, an approach which however
runs the risk of breaking the parallelism of the resulting corpus. Compression could also be
performed in a symmetric manner by generalizing monolingual algorithms to the case of parallel
sentences. We focus here on an asymmetrical scenario, where the target compression is a
translation of a previously simplified source sentence.

In this context, our main contribution consists in studying various bitext compression method-
ologies that should ensure the parallelism of the simplified bitext, which, to our knowl-
edge, is the first attempt of this kind. Two compression methods are developed and compared
in Section 2 : (1) a dynamic programming (DP) approach, considering the final compression

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http:
//creativecommons.org/licenses/by/4.0/

1503



as a result of a series of local optimal decisions and (2) an integer linear programming (ILP)
method, capable to handle global constraints. These methods are used to compress texts in the
News domain (see Section 3); we experiment there with data distributed in the context of the
WMT’15 translation task (English-French, automatic compression attempted on French).

2 Bilingual and Monolingual Methods for Sentence Compression

In our asymmetrical bilingual context, we formulate the compression problem as follows: given
a source sentence e = e1, e2, . . . , eJ , its compressed version e′ = e′1, e′2, . . . , e′J ′ and its translation
f = f1, f2, . . . , fI , we search for f′ = f ′1, f ′2, . . . , f ′I′ that translates e′. f′ should both preserve
the meaning of e′ and respect the grammaticality requirements of the target language. Most
approaches to monolingual compression further assume that a (dependency) parse tree of f is
available, taking the form of a set of (dependent, head) pairs. We make the same assumption
here, denoting τ = {(fi, h(fi)), 1 ≤ i ≤ I} this dependency tree.

Recent proposals for solving this task use dynamic programming (DP) techniques (McDonald,
2006; Filippova, 2010) or integer linear programming (ILP) (Clarke and Lapata, 2008; Filippova
et al., 2015), in both cases actively taking syntactic information into account. Inspired by those
approaches, we propose below two methods for bilingual compression, enriched with MT-related
bilingual information. We also include a description of our baseline compression system, based
on two independent monolingual compressions.

2.1 Compressing with Finite-State Machines and Dynamic Programming (DPbi)

Our first approach to compression (DPbi) uses finite-state techniques. Recall that a weighted
finite-state automaton (WFSA) over a set of weights K is represented by a 7-tuple A =
(Σ, Q,B, F,E, λ, ρ), where Σ is a finite alphabet, Q is a finite set of states, B ⊆ Q contains
the initial states and F ⊆ Q the final states; E ⊆ Q×Σ×K×Q is a set of weighted transitions,
λ : B → K and ρ : F → K are respectively the initial and final weight functions (Mohri, 1997).

Given f, the search space for compression is built as follows: assuming f conventionally starts
(respectively ends) with <s> at index f0 (resp. </s> at index fI+1), we first build the standard
automaton Af for f, the states of which correspond to the prefixes of f.

We then add “skip” transitions (qk, fl, w, ql, ), ∀l > k+1. In this step, we make sure to preserve
the syntactic dependency relationships so as to ensure that the subgraph induced by words in
the compression is a subtree of the complete dependency tree. To this end, skip transitions
(qk, fl, w, ql, ) are created subject to the condition that ∀m, k < m < l, fm is neither an ancestor
of fk nor an ancestor of fl.

When the dependency trees are projective, these conditions are sufficient to ensure that com-
pressions will be grammatical: if a compression contains a word fi, it will also contain its head.
To see why, assume with no loss of generality that h(fi) < fi for some i. If fi is in the com-
pression, the incoming arc in Af either starts in node fk with k < l, or h(fi) precedes fk (it
cannot be skipped). Either fk = h(fi), which is what we seek; or fk is a descendant of h(fi).
We can then repeat the same argument with the arc labeled fk. It is also routine to check that
all possible grammatical compressions can be obtained in this way.

Transitions (qk, fl, w, ql, ), with l > k + 1, are weighted according to a score w aggregating:

• SLM - a 2-gram language model (LM) score : SLM (fl|fk) = logP (fl|fk). The generalization
to higher-order n-grams is straightforward. In our implementation, we have used a POS-
based LM, as we believe it will provide a better generalization than a word-based LM;

• SIBM (fl|e′) - the posterior log-probability of fl in the IBM model 1 of Brown et al. (1993):

SIBM (fl|e′) = log
( 1

(J ′ + 1)

J ′∑
j=1

t(fl|e′j)
)
. (1)

These scores are summed along a path and yield the total IBM score: IBM1(f′|e′).
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• Sali(fl) - this score approximates the contribution of fl to the posterior log-probability of
the IBM1(e′|f) at the sentence level:

Sali(fl) =
J ′∑

i=1

1{fl = argmax
f

t(e′i|f)}t(e′i|fl), (2)

where 1{T} is the indicator function for predicate T . This approximation is required due
to the impossibility to decompose the inverse IBM model 1 score over the arcs of Af.

The use of IBM model 1 scores is meant to ensure the preservation of the meaning of the
provided source compression e′, hence the parallelism of the resulting sentence pair. Each arc
is additionally weighted with a word penalty, which should ensure that short paths are not
improperly given preference over longer ones.

The score of a path generating a target string f′ is finally computed as a summation of all
arcs in the path:

S(f′|e′) = α · SLM (f′) + β · SIBM (f′|e′) + γ · Sali(f′) + δ · lf′ , (3)

where α, β, γ and δ are tunable parameters. The optimal target compression is computed via
standard shortest path techniques. Note that this approach can be generalized in many ways,
notably including additional costs, subject to locality constraints: scoring functions evaluat-
ing properties of the compressed sentence should decompose over the arcs of the automaton.
This restriction warrants a more generic approach to the problem, relying on Integer Linear
Programming.

2.2 Compressing with Integer Linear Programming (ILPbi)

Integer Linear Programming (ILP) (Dantzig and Thapa, 1997) is an optimization approach to
solving combinatorial problems that can be expressed as linear programs and in which some or
all of the variables are restricted to be non-negative integers. In the following, we heavily rely on
the work of Clarke and Lapata (2008), who develop an approach based on ILP for monolingual
sentence compression.

The formulation of an ILP problem requires the definition of:

• decision variables, they will be binary in our case;

• an objective function, corresponding to the compression score we wish to maximize;

• constraints, i.e. linguistic or consistency conditions restricting the possible values of decision
variables.

The main decision variables in our problem indicate whether a target word fi initially in f
also occurs in the compressed text:

∀i ∈ [1 . . . I], xi =

{
1 if fi is in the compression
0 otherwise

Following again Clarke and Lapata (2008), we define additional decision variables for the
2-gram LM scores (again, the generalization to higher-order n-grams is straightforward):

∀i ∈ [1 . . . I], yi =

{
1 if fi starts the compression
0 otherwise

∀i ∈ [1 . . . I], pi =

{
1 if fi ends the compression
0 otherwise
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∀i ∈ [1 . . . I − 1],∀k ∈ [i+ 1 . . . I],zik =

{
1 if the pair (fi, fk) is in the compression
0 otherwise

Our ILPbi model is again integrated with IBM model 1 scores, which help ensure the preser-
vation of meaning in e′. For our approximation of the IBM1(e′|f) score described in Section 2.1,
we introduce a new variable:

∀i ∈ [1 . . . I], ∀m ∈ [1 . . . J ], aim =

{
1 if g(t(e′m|fi)) > 0
0 if g(t(e′m|fi)) = 0

, (4)

where g(t(e′m|fi)) = 1f=argmaxf t(e′
m|f)(t(e

′
m|fi)) tests whether fi is the best alignment for e′m.

Our objective function models 2-gram LM scores, as well as bilingual IBM1(f|e′) and our
approximation of IBM1(e′|f):

S(f′|e′) =α
I∑

i=1

xi · log
( 1

(I + 1)

I∑
i=1

t(fl|e′i)
)

+ γ
I∑

i=1

yi · logP (fi|<s>)

+ γ

I−1∑
i=1

I∑
k=i+1

zik · logP (fk|fi) + β

J∑
m=1

I∑
i=1

ai,m · log t(e′mfi) + γ

I∑
i=1

pi · logP (</s>|fi)

(5)

subject to: xi, yi, zik, pi, ai,m ∈ {0, 1}. The following constraints are also applied for generation
of valid n-gram sequences without word repetition:

Constraint 1 Exactly one word can start a compression.

I∑
i=1

yi = 1 (6)

Constraint 2 If a word is in the compression it must either start it, or must follow another
word.

∀k : k ∈ [1 . . . I], xk − yk −
k−1∑
i=1

zik = 0 (7)

Constraint 3 If a word is in the compression it must either be followed by another word or
end the sentence.

∀i : i ∈ [1 . . . I], xi − (
I∑

k=i+1

zik)− pi = 0 (8)

Constraint 4 Exactly one word can end a compression.

I∑
i=1

pi = 1 (9)

Constraint 5 A dependent fi cannot be included in a compression without its head h(fi)
from the dependency tree τf, the constraint that ensures the grammaticality of f′. This is a
simplified version of constraints (20)-(24) of (Clarke and Lapata, 2008).

∀i, xh(i) − xi ≥ 0 (10)
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Constraint 6 If a compression contains a left bracket/quote mark it should contain the right
bracket/quote mark.

xleft − xright = 0 (11)

Constraint 7 A compression is to be at least b tokens long. This constraint controls the
compression length and prevents the model to generate too short compression preferred by LM.

I∑
i=1

xi ≥ b (12)

Constraint 8 If a word is in the compression it can have a best alignment in e′.

xi − aim >= 0 (13)

To complete this section, we now present our tools for monolingual compression, that will be
used in our baseline system.

2.3 Monolingual Compression (DPmono and ILPmono)

In the monolingual scenario, we are given a target sentence f = f1, f2, . . . , fI . The goal is to
produce a target compression f′ = f ′1, f ′2, . . . , f ′I′ by removing any subset of words in f, given the
dependency tree τ . Here we also assume to be given the lemmas corresponding to the words in
f: m(f) denotes the lemma associated with word f . Here again, we look for f′ that should be
grammatical and preserve the main aspects of the meaning of f.

We introduce grammaticality constraints in our compressions in a way similar to our bilingual
methods. To help meaning preservation we introduce the following semantic importance score
for the sense-bearing words of f, namely nouns, verbs, adjectives and adverbs, inspired again
by Clarke and Lapata (2008):

Ssem =
1

Dfsb

frm(sb) log
F

Fm(sb)
(14)

This score is a TD-IDF measure for the lemma m(f) of each sense-bearing word, weighted
proportionally to its depth in the dependency tree Dfsb

, where frm(sb) and Fm(sb) are respectively
the frequency of the lemma in the news article and in the corpus, and F is the count of all sense-
bearing lemmas in the corpus.

1. DPmono For the DPmono approach, we construct an WFSA in a way similar to the
one described in 2.1. We weight each arc in the automaton with SLM and Ssem. The score of a
path generating a target string f′ is computed as:

S(f′|e′) = α · SLM (f′) + β · Ssem(f′) + γ · lf′ , (15)

where α, β and γ are tunable parameters.
2. ILPmono The objective function for ILPmono similarly models Ssem(fi) and 2-gram

LM scores:

S(f′|e′) =
I∑

i=1

xi · θSsem(fi) + η

I∑
i=1

yi · logP (fi|<s>) + η

I−1∑
i=1

I∑
k=i+1

zik · logP (fk|fi)+

η

I∑
i=1

pi · logP (</s>|fi),

subject to: xi, yi, zik, pi ∈ {0, 1}, with θ and η as tunable parameters. Constraints 1-7 of ILPbi
are applied.
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3 Experimental Setup

In our evaluation experiments we were guided by the following questions: (1) Does the proposed
bilingual compression methodology ensure the resulting corpus parallelism (compressed
target text succeeds in preserving the meaning of the input compressed source text)? (2) Which
of the proposed bilingual compression methods is more efficient?

3.1 Metrics

To answer the above questions, we compared the results of our bilingual methods DPbi and
ILPbi to the results of our monolingual methods DPmono and ILPmono (baselines) using
the compression rate (CompR) estimation, F-score metric for the relations in grammatical
dependency parse trees (Chen and Manning, 2014), as well as the standard MT metric BLEU
(Papineni et al., 2002; Clarke and Lapata, 2008; Napoles et al., 2011b). F-score measures how
much meaning is preserved in the compression using the grammatical-functional information,
BLEU measures the fluency of the produced compressions.

We also computed the confidence score (CS) of the parallelism between the produced compres-
sions and the compressed source. We used a Logistic Regression model trained on the parallel
sentences extracted from a corpus of manual alignments. The model exploits such features
as the length difference ratio, IBM model 1 scores, the cosine similarity of the distributional
representations for source and target etc. Details regarding the model are in (Xu et al., 2015).

3.2 Data and Translation Models

Our experiments used the News data provided by the organizers of the WMT’15 news translation
task (English-French) 1. Details regarding data preparation are in (Marie et al., 2015).

We randomly chose around 60 articles from the News 2014 test set to be used as our develop-
ment and test sets. The compressed source and reference data were created manually by three
annotators. Two of them were native French speakers, all the three annotators were fluent in
both English and French. The annotators were given the instruction to delete any quantity
of words without disturbing the meaning and the grammaticality of a source English sentence.
Target French words “translating” deleted source words were deleted accordingly under the
condition that a sentence stays grammatical. This resulted in the small compression rate of
CompR = 79.74 at the source side and of CompR = 84.45 at the target side 2.

In our experiments, we used the French 3-gram POS LMs trained with Witten-Bell smoothing
on a part of the target side of the parallel Giga corpus (≈14% of the available corpus) using
the SRILM (Stolcke, 2002) toolkit. The same parallel data and the uncompressed develop-
ment and test sets were used to compute the IBM1 scores in both directions with the help of
MGIZA++ (Gao and Vogel, 2008), and to estimate the lemma frequencies for the semantic im-
portance scores (Schmid, 1995). The dependency parse trees were produced using the Stanford
parser (Chen and Manning, 2014).

The statistics of the development and test data, as well as the data used for model estimation
are in Table 1.

Full Compression
lines tok., en tok., fr tok., en tok., fr

development set 504 11K 13K 9K 11K
test set 489 12K 14K 10K 12K

Giga 3M 71M 86M

Table 1: Data Statistics

For the WFSA experiments, we mostly used the SriLM toolkit (Stolcke, 2002). The ILP

1http://www.statmt.org/wmt15/translation-task.html
2The traces of compression operations for the corpus are available at http://perso.limsi.fr/ive.
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experiments were performed with the GLPK toolkit.3 All the tunable parameters were tuned to
optimize BLEU. In our implementation of ILPbi, we slightly modified constraint 5 to take into
account the negation relations: when the head of such relation are included in the compression,
then their immediate dependent must also be selected. This is because the preservation of such
relation is crucial for the overall meaning of a sentence. Finally, constraint 7 is parametrized by a
preset compression ratio, rather than a preset target length; in our experiments this compression
ratio was set to match the compression ratio of DPbi so as to make our results more comparable.

3.3 Evaluation

Results of our experiments comparing bilingual and monolingual methods are in Table 2.

model CompR F-score BLEU CS

DPmono 82.58 80.37 73.37 0.94
DPbi 84.63 81.71 76.09 0.96

ILPmono 85.10 80.18 62.59 0.95
ILPbi 85.06 82.72 69.85 0.97
Ref. 83.59 0.99

Table 2: Evaluation results

As reflected by the automatic metrics, the bilingual methods produce compressions that bet-
ter preserve the meaning of the source sentence than the corresponding monolingual meth-
ods, hence improving the parallelism of the resulting compressions (average ∆F-score = 1.94,
∆BLEU = 4.99 and ∆CS = 0.02, between the ILP and DP monolingual and bilingual methods)
(see Table 3).

Ref. Irak: octobre a été le mois le plus sanglant depuis 2008
’Iraq: October was the bloodiest month since 2008’

DPmono Irak: a été le mois le plus sanglant depuis 2008
’Iraq: was the bloodiest month since 2008’

DPbi Irak : octobre a été le mois le plus sanglant depuis 2008
’Iraq: October was the bloodiest month since 2008’

Ref. La ville de New York en envisage un.
’The city of New York is considering one.’

ILPmono La ville de New York en envisage.
’The city of New York is considering.’

ILPbi Ville de New York en envisage un.
’City of New York is considering one.’

Table 3: Examples of compressions produced by the monolingual and bilingual methods

F-score and CS estimations suggest that ILPbi is a slightly more efficient method than DPbi
in terms of preserving parallelism (+1.01 F-score, +0.01 CS). Due to the global constraints,
ILPbi tends to include more sense-bearing words in the compression (see Table 4, first example).
Our example shows that ILPbi kept the word ”cour” ’court’. This noun is more important for
understanding the meaning of the sentence than the preposition ”en” ’in’ following the verb
”présenter” ’appear’, chosen due to the local decision taken by DPbi.

At the same time the length constraint “obliges” ILPbi to compress every sentence. In
our setting with the small compression rate, short sentences often stay uncompressed. In this
case, DPbi is able to choose the automaton path of the maximum length (see Table 4, second
example). ILPbi though in this case deletes the auxiliary words (articles in our example). This

3http://glpk-java.sourceforge.net
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is reflected in the decrease of the BLEU score for ILPbi as compared to DPbi (-6.24 BLEU).
BLEU here is heavily penalized by the decrease in matching n-grams of the order n > 1.

ILP methods can also be very convenient for a series of reasons. E.g., in the absence of
development corpora ILP compressions can be obtained with minimum or without any tuning.
Another advantage is the easy parameterization of the compression rate. This criteria was very
important for our task with the small compression rate. Keeping it was crucial for correct evalu-
ation of our methodology. Thus, for the DP methods we observe the compression rate variation
of ∆CompR = 2.05, for the ILP methods this variation is insignificant (∆CompR = 0.04).

Ref. Omar Hassan est toujours en détention et se présenter en cour vendredi.
’Omar is still in custody and will appear in court on Friday.’

ILPbi Omar Hassan est toujours en détention et se présenter cour vendredi.
’Omar is still in custody and will appear court on Friday.’

DPbi Omar Hassan est toujours en détention et se présenter en vendredi.
’Omar is still in custody and will appear in on Friday.’

Ref. Après un accord de paix signé en 1992, elle est devenue un parti d’opposition .
’After a peace agreement signed in 1992, it became an opposition party.’

ILPbi Après accord de paix signé en 1992, elle est devenue parti opposition.
’After peace agreement signed in 1992, it became opposition party.’

DPbi Après un accord de paix signé en 1992, elle est devenue un parti d’opposition .
’After a peace agreement signed in 1992, it became an opposition party.’

Table 4: Examples of ILPbi and DPbi compressions

4 Related Work

The deletion-based compression problem has been studied using a series of modeling paradigms.
We mention first the work of Knight and Marcu (2002), who use the noisy channel model.
This approach aims to maximize P (f′|f) ∝ P (f′)P (f|f′), where P (f′) is the source model, and
P (f|f′) models the syntactic parse tree probability of the long sentence being an expansion of the
compressed one. The noisy channel model is also used by approaches that consider compression
as a monolingual translation problem (Napoles et al., 2016).

McDonald (2006) formulates the problem as a binary sequence labeling problem with a rich
syntactic feature set, and proposes a solving procedure based on dynamic programming tech-
niques. More recent DP solutions to the sentence compression problem use neural network
architectures (Filippova et al., 2015).

The ILP approach to compression was introduced by Clarke and Lapata (2008). The main
motivation was the necessity to take global features into account (e.g., the constraint to have at
least one verb in the compressed sentences). This approach has been widely reused in research
related to text compression with various modifications to syntactic and informativeness scores
used by Clarke and Lapata (2008) (see also (Wei et al., 2015; Filippova and Altun, 2013)).

In our bilingual framework we compare the performance of DP and ILP approaches. As far
as we know this is the first attempt to create compressed parallel bitext in asymmetrical setting.
A closely related work is that of Aziz et al. (2012), who also exploits bilingual information. The
authors propose a PBSMT solution for joint translation and compression of subtitles, which
dynamically decides where it is necessary to impose a space/time constraint on the translated
text.

5 Conclusions

In this paper we consider sentence compression in a bilingual setting. We adopt an asymmetrical
view to the task, where we first compress the source, then look for a compressed target translating
the reduced source. Based on recent research on these issues, our main contribution is to adapt
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existing monolingual compression techniques to produce compressed bitext. As we know this the
first attempt of the kind. We use dynamic programming (DP) and integer linear programming
methods (ILP) enriched with bilingual features. Both methods improve the preservation of the
compressed source meaning, hence the parallelism of the resulting bitext, as opposed to using
independently monolingual methods in source and target.

In our setting, ILP was found to perform better than DP; the ILP method is more flexible and
requires less resources for tuning; furthermore, it can accommodate more complex (e.g. global)
constraints. Our future work includes exploring additional global constraints, experimenting
with shorter compressions, as well as using basic phrase-based statistical machine translation
(PBSMT) techniques, including applying the noisy channel model and beam-search decoding to
find the best possible target compression.

The results of bilingual compression can be used for human-oriented (language learning, sub-
titles generation etc.) purposes, or in a large spectrum of natural language processing (NLP)
tasks. The approach can be extended to paraphrastic compression (as opposed to deletion-
based), as well as applied in the symmetric compression scenario, when source and target are
compressed simultaneously.
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