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Abstract

Identification of Multi-Word Expressions (MWEs) lies at the heart of many natural language
processing applications. In this research, we deal with a particular type of Hebrew MWEs, Verb-
Noun MWEs (VN-MWEs), which combine a verb and a noun with or without other words.
Most prior work on MWEs classification focused on linguistic and statistical information. In this
paper, we claim that it is essential to utilize semantic information. To this end, we propose a
semantically motivated indicator for classifying VN-MWE and define features that are related to
various semantic spaces and combine them as features in a supervised classification framework.
We empirically demonstrate that our semantic feature set yields better performance than the
common linguistic and statistical feature sets and that combining semantic features contributes
to the VN-MWEs identification task.

1 introduction

Multi-word expressions (MWE) were defined by Sag et al. (2002) as “idiosyncratic interpretations that
cross word boundaries (or spaces)” while Bouamor et al. (2012) defined a MWE as “a combination of
words for which syntactic or semantic properties of the whole expression can not be obtained from its
parts”.

Jackendoff (1997) claimed that that the frequency of MWEs in a speaker’s lexicon is of the same
order of single words. Due to their relative high frequency and complexity, MWEs require high-quality
treatment in many applications in natural language processing (NLP) such as data mining, machine
translation (MT), information retrieval, natural language understanding, natural language generation,
question answering (QA), text summarization, and word sense disambiguation (WSD).

The aim of this work is to explore Hebrew Verb-Noun MWEs (VN-MWEs). VN-MWEs are MWEs
whose constitutents include a verb and a noun. The motivation of this research is to enable automatic
identification of VN-MWEs for various NLP tasks such as MT, QA, and WSD, and to classify colloca-
tions that include verbs as VN-MWEs or non-VN-MWEs.

Most prior efforts to automatically classify MWEs focused on three approaches: (1) Statistical ap-
proaches, either frequency-based or co-occurrence-based (Dias et al., 1999; Deane, 2005; Pecina and
Schlesinger, 2006). (2) Linguistic approaches that are based on NLP tools, such as taggers and parsers
(Al-Haj, 2009; Bejcek et al., 2013; Green et al., 2013). (3) Hybrid approaches which combine statistical
and linguistic approaches (Baldwin, 2005; Boulaknadel et al., 2008; Farahmand and Nivre, 2015).

In this paper, we claim that on top of standard linguistic and statistical metrics, MWE identification
methods can greatly benefit from exploiting semantically motivated cues. For example, when a VN-
MWE is highly idiomatic, the semantics of the verb and the noun are not likely to overlap.

The contribution of this paper is, in a first step, to combine semantic features in the framework of
supervised MWE classification. We suggest a simple semantically-motivated indicator that helps to
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detect VN-MWEs. Then, we define semantic features that implement our indicator in various semantic
spaces and integrate them within our Machine Learning (ML) classification algorithm.

We show that combining semantic features improves the accuracy and F-score results of VN-MWE
classification. Moreover, our analysis reveals that the semantic feature set yields better results than each
one of the two other approaches, the statistical and the linguistic.

The rest of this paper is organized as follows: Section 2 introduces relevant background about MWEs
in Hebrew and identification of MWEs using semantic features. Section 3 presents the linguistic, sta-
tistical, and semantic feature sets that were applied for the supervised VN-MWEs classification task.
Section 4 introduces the experimental setting, the experimental results for nine ML methods, and their
analysis. Finally, Section 5 summarizes the main findings and suggests future directions.

2 Background

2.1 MWEs in Hebrew

Al-Haj (2009) presented an architecture for lexical representation of MWEs written in Hebrew and a
specification of the integration of MWEs into a morphological processor of Hebrew. He also introduced
a system that extracts noun compounds from Hebrew raw text based on their idiosyncratic morphological
and syntactic features. A support vector machine (SVM) classifier using these features identified noun-
noun constructs with an accuracy of over 80%.

Al-Haj and Wintner (2010) created for each noun-noun construction, a vector of the 16 features: 12
linguistically-motivated features and 4 collocation measures. Their dataset includes 463 instances, of
which 205 are noun compounds (positive examples) and 258 negative. They applied LIBSVM classifier
(Chang and Lin, 2001) with a radial basis function kernel. The best combination of features yielded an
accuracy of 80.77% and F-score of 78.85, representing a reduction of over one third in classification
error rate compared with the baseline.

Tsvetkov and Wintner (2012) proposed a methodology for extracting MWEs in Hebrew-English cor-
pora. MWEs of various types are extracted along with their translations, from small, word-aligned
parallel corpora. They focused on misalignments, which typically indicate expressions in the source lan-
guage that are translated to the target in a non-compositional way. They implemented a simple algorithm
that proposes MWE candidates based on such misalignments, relying on 1:1 alignments as anchors that
delimit the search space. Evaluation of the algorithm’s quality demonstrates significant improvements
over Naive alignment-based methods.

Tsvetkov and Wintner (2014) proposed a framework for identifying MWEs in texts using multiple
sources of linguistic information. Their system enables identification of MWEs of various types and
multiple syntactic constructions. Their methodology is unsupervised and language-independent; it re-
quires relatively few language resources and is thus suitable for a large number of languages. They
applied four ML methods. The system was tested on three languages: Hebrew, French, and English.
Applying the Bayesian Network ML method on a combination of linguistically motivated features and
feature interdependencies reflecting domain knowledge yielded the best results (Hebrew: accuracy of
76.82% and F-score of 0.77; French: accuracy of 79.04% F-score of 0.778; and English: accuracy of
83.52% and F-score of 0.835).

Sheinfux et al. (2015) introduced different types of verbal MWEs in Modern Hebrew. In addition, they
proposed an analysis of these MWEs in the framework of HPSG, and they incorporated this analysis into
HeGram, a deep linguistic processing grammar of Modern Hebrew. Their analysis covers various MWE
types, including challenging phenomena such as (possessive) co-indexation and internal modification.
The HeGram grammar produced two analyses for most MWEs, corresponding to their idiomatic and
literal readings.

Liebeskind and HaCohen-Kerner (2016) presented a lexical resource containing 505 Verb-Noun
MWEs (VN-MWEs) in Hebrew. These VN-MWEs (247 bigrams and 258 trigrams) were manually
collected from five web resources and annotated. Following Al-Haj (2009), the authors classified the
linguistic properties of these VN-MWEs along 3 dimensions: morphological, syntactic, and semantic.
The major findings are: (1) the main characteristic properties of VN-MWEs are the semantic properties
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of non-compositionality and lexical fixedness; (2) High degrees of idiomaticity (92%) and lexical fixed-
ness (94%) were found for the VN-MWEs; (3) 82% of the VN-MWEs do not allow any changes in the
constituent order; and (4) 87% have a non-compositional syntax.

2.2 Identification of MWEs using Semantic Features

Katz and Giesbrecht (2006) applied latent semantic analysis (LSA) vectors to distinguish composi-
tional from non-compositional uses of German expressions. The LSA vectors of compositional and
non-compositional meaning were constructed from a training set of example sentences. Afterwards, a
simple nearest neighbor algorithm was applied on the LSA vectors of the tested MWEs. The LSA-based
classifier obtained an average accuracy of 72%, which outperformed the simple maximum-likelihood
baseline with accuracy of 58%.

Sporleder and Li (2009) proposed supervised and unsupervised methods to distinguish literal from
non-literal usages of idiomatic expressions by measuring the semantic relatedness of an expression’s
component words to nearby words in the text. Their assumption was that if an expression is used literally,
but not idiomatically, its component words will be related semantically to a few words in the surrounding
discourse. If one or more of the expression’s components were sufficiently related to enough surrounding
words, the usage was classified as literal, otherwise as idiomatic. The supervised classifier method (90%
F-score on literal uses) was better than the lexical chain classifier methods (60% F-score).

Biemann and Giesbrecht (2011) provided an overview of the shared task at the ACL-HLT 2011 DiSCo
(Distributional Semantics and Compositionality) workshop. The authors described the motivation for
the shared task, the acquisition of datasets, the evaluation methodology, and the results of participating
systems. The evaluation shows that most systems outperformed simple baselines, yet have difficulties in
reliably assigning a compositionality score that closely matches the gold standard. Generally, approaches
based on word space models performed slightly better than approaches relying merely on statistical
association measures.

Guevara (2011) proposed and evaluates a framework that models the semantic compositionality in
computational linguistics based on the combination of distributional semantics and supervised ML. The
applied method, Partial Least Squares (PLS) Regression, outperformed all the competing models in the
reported experiments with Adjective-Noun (AN) pairs extracted from the BNC.

Salehi et al. (2015) introduced the first attempt to use word embeddings to predict the compositionality
of MWEs. They considered both single- and multi-prototype word embeddings. Experimental results
showed that, in combination with a back-off method based on string similarity, word embeddings are
superior to, or competitive with state-of-the-art methods over 3 standard compositionality datasets ((1)
English noun compounds (”ENCs”); (2) English verb particle constructions (”EVPCs”); and (3) German
noun compounds (”GNCs”)).

3 Supervised VN-MWEs Classification

In the previous section, we discussed linguistic properties of Hebrew VN-MWEs that may help in dis-
tinguishing coincidental word combinations from collocations. We next define them and describe how
to incorporate these properties as features within a ML framework for classifying candidate VN-MWEs.

3.1 Feature Sets

We next detail how the semantic properties of VN-MWEs, as well as the linguistic and statistical proper-
ties found useful in prior work, are encoded as features. Then, in Section 4, we describe the supervised
ML model and our feature analysis procedure. There are 206 features in our model, divided into 3 sets:
linguistic, statistical and semantic. We defined the sets as Al-Haj and Wintner (2010) and Liebeskind and
HaCohen-Kerner (2016) did. However, we note that semantic information is often defined as a sub-type
of linguistic information and it might be more accurate to contrast morpho-syntactic information (i.e.,
parts-of-speech and syntactic parses) with semantic information.
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3.1.1 Linguistic features
Most of our linguistic features are based on information extracted from a Part-Of-Speech (POS) tagger
for the Hebrew language (Adler, 2007). Our linguistic features encode both morphological and syn-
tactical properties of VN-MWEs. For each candidate VN-MWE, we compute counts that reflect the
reasonableness of the candidate to represent at least one of its linguistic properties. We focus on the
linguistic properties that Liebeskind and HaCohen-Kerner (2016) recognized as notable. Our linguistic
properties include two families of properties: morphological and syntactical.

Partial Inflection Following Al-Haj and Wintner (2010), for each VN-MWE candidate, the following
8 features are defined: the number of occurrences of the candidate in which both constituents are in
singular, the number of occurrences in which both constituents are in plural, the number of occurrences
in which the verb is in singular and the noun is in plural, the number of occurrences in which the noun
is in singular and the verb is in plural, the number of occurrences of the verb in plural, the number of
occurrences of the verb in singular, the number of occurrences of the noun in plural and the number
of occurrences of the noun in singular. Two additional features that we calculate are the number of
verb suffixes, which indicate a conjugation of grammatical tense, possession or direct objects, as well
as the number of noun suffixes, which indicate nouns number and gender (ildi1 (my child), ildinw (our
children), ildh (a girl)).

Syntactic Fixedness VN-MWEs are expected to appear in restricted syntactic forms. Fazly and
Stevenson (2006) suggested that to quantify the syntactic fixedness of a VN-MWE candidate, we need
to: (i) identify relevant syntactic patterns and (ii) translate the frequency distribution of the candidate in
the identified patterns into a measure of syntactic fixedness. Following this approach, we define syntactic
patterns and clues as features in our supervised framework.

We use the most frequent POS patterns found in Liebeskind and HaCohen-Kerner (2016)’s VN-MWEs
lexical resource as relevant syntactic patterns and count the number of occurrences of the candidate in
each of these patterns (7 features).

Since prepositions and definite articles frequently appear in these patterns, we counted the number
of occurrences of the candidate in which it includes an article, a pronoun, a particle, a conjunction,
an auxiliary or a negation (6 features). Then, considering the fact that some of these POS are often
Hebrew prefixes, we also encoded prefixes’ occurrences. The features that we calculate are the number
of occurrences of verb and noun prefixes (2 features), the number of occurrences of prefixes which
start with a certain frequent formative letter (7 features for each POS, verb and noun), the number of
occurrences of a certain frequent prefix (36 features for each POS). Our Hebrew stopword list also
include some particles. Therefore, we calculated an additional feature of the number of stopwords in the
candidate VN-MWE (1 feature).

The syntactic property of compositionality is encoded by the difference between the number of oc-
currences of the candidate constituents with and without a slot (1 feature). The syntactic property of a
number of syntactic structures that permit a change in the order of constituents is encoded by the dif-
ference between the number of occurrences of the candidate constituents in their original order and the
number of occurrences of the candidate constituent in a reversed order (1 feature).

3.1.2 Statistical features
We define some statistical features based on frequency and co-occurrence affinity. Each of these features
is separately calculated for two candidate representations: surface and lemmatized. First, we compute
the raw frequency of the VN-MWE candidate and the raw frequency of its verb and noun constituents
(6 features). Then, we utilize features that represent known association measures: Log-likelihood, Total
mutual information, Pointwise mutual information and Poisson-Stirling measure. We calculate them for
bigrams and trigrams separately (16 features). Finally, we define four statistical features based on two
non-parametric methods, which does not make the independence assumption and allows scores to be

1To facilitate readability we use a transliteration of Hebrew using Roman characters; the letters used, in Hebrew lexico-
graphic order, are abgdhwzxTiklmns`pcqršt.
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compared across n-grams of different length: Mutual Expectation (ME) (Dias et al., 1999) and Mutual
Rank Ratio (MRR) (Deane, 2005) (4 features).

In addition, we calculate the number of words, number of characters and the average number of char-
acters per word (3 features) for each candidate in its base form.

3.1.3 Semantic features
Liebeskind and HaCohen-Kerner (2016) observed that the most characteristic properties of VN-MWEs
are the semantic properties of compositionality and lexical fixedness. To encode this property, we rep-
resent the meaning of the candidate’s constituents by vectors in the same semantic space. Due to the
idiomaticity of VN-MWEs, we expect the similarity of vectors of words in a non-VN-MWE to be greater
than the similarity of vectors of words in a VN-MWE. For example, the VN-MWE to eat one’s hat vs.
the non-VN-MWE to eat an apple. We expect the vectors of eat and apple, which share a common
context, to be closer than the vectors of eat and hat in a representative semantic space.

We construct semantic features from the following five different semantic spaces:
(1) Hyperspace Analogue to Language (HAL) (Lund and Burgess, 1996): The algorithm computes a

word-by-word matrix, using a 10-word reading frame that moves incrementally through a corpus of text.
The algorithm considers context only as the words that immediately surround a given word. Any time
two words are simultaneously in the frame, the association between them is increased, that is, the corre-
sponding cell in the matrix is incremented. The amount by which the association is incremented varies
inversely with the distance between the two words in the frame; closer neighboring words are thought
to reflect more of the focus word’s semantics and so are weighted higher. The algorithm also records
word-ordering information by treating the co-occurrence differently based on whether the neighboring
words appeared before or after the focus word.

(2) Correlated Occurrence Analogue to Lexical Semantics (COALS) (Rohde et al., 2006): The
algorithm constructs a word-by-word matrix where each element in the matrix represents how frequently
wordi occurs with wordj in a certain window. The matrix is then normalized by correlation, and any
negative values are set to zero and all other values are replaced by its square root. Then, optionally, the
Singular Value Decomposition (SVD) is used to reduce the word co-occurrence matrix.

(3) Random Indexing (RI) (Sahlgren, 2005): The algorithm uses statistical approximations of the
full word co-occurrence data to achieve dimensionality reduction. RI represents co-occurrence through
index vectors. Each word is assigned a high-dimensional, random vector that is known as its index vector.
These index vectors are very sparse, which ensures that the chance of any two arbitrary index vectors
having an overlapping meaning is very low. Word semantics are calculated for each word by keeping a
running sum of all of the index vectors for the words that co-occur.

(4) Reflective Random Indexing (RRI) (Cohen et al., 2010): The algorithm is a second-order iterative
extension to the RI method. Reflective random indexing adds another cycle by restarting the construction
of the term vectors using the basis of document vectors, and then creating the document vectors again
using the term vectors. Such retraining has been found to improve the ability of RI to make indirect
inferences, drawing meaningful associations between terms that do not occur together in any document.

(5) Word Embeddings (Mikolov et al., 2013): Word embedding is the collective name for neural-
network based approaches in which words are embedded into a low dimensional space. In word embed-
ding models, the contexts of each word are modeled by a d-dimensional vector of real numbers. The
vector are meaningless on their own, but semantically similar words have similar vectors, and vector
similarities are easy to compute.

Each of these five semantic spaces is generated for two word representations: surface and lemmatized.
We use different measures to compute the similarity between two vectors. For the first four semantic
spaces2, we calculate Cosine similarity, Lin similarity, Euclidean distance, Pearson correlation, average
common feature rank, Jaccard index, Tanimoto coefficient, and Spearman rank correlation. For the fifth
semantic space3, we calculate cosine similarity, euclidean distance, and manhattan distance.

2implemented by the S-Space Package https://github.com/fozziethebeat/S-Space
3implemented by the deeplearning4j word2vec package http://deeplearning4j.org/word2vec

1246



Some of the measures did not yield a valid score for all the examples in our dataset. As a result, the
total number of semantic features is 62.

An additional semantic feature, which measures lexical fixedness, counts the number of occurrences
of the VN-MWE candidate in the Bible. MWEs from the Bible are citations that tend to be fixed,
replacing any of their constituents by a semantically similar word generally results in an invalid or a
literal expression.

We note that corpus-based statistics are used to calculate some of the linguistic features (e.g., the
features which encode the Partial Inflection property). Additionally, some of the statistical features,
such as Mutual Expectation (ME) and Mutual Rank Ratio (MRR), capture the semantic behavior of
VN-MWEs.

4 Evaluation and Analysis

4.1 Experimental setting
Following Al-Haj and Wintner (2010), we used four of the MILA knowledge center4corpora: the Knes-
set corpus, which contains the Israeli parliament proceedings from 2004-2005; the Haaretz corpus that
contains articles from the Haaretz newspaper from 1991; TheMarker corpus, which contains financial
articles from the TheMarker newspaper from 2002; and the Arutz 7 corpus, which contains newswire
articles from 2001-2006. From the morphologically disambiguated version of the corpora (Itai and Wint-
ner, 2008; Yona and Wintner, 2008; Bar-haim et al., 2008), we extracted all word bigrams and trigrams
that include a verb and a noun.

To evaluate our proposed supervised model, we constructed a labeled dataset. We selected all the word
bigrams and trigrams that occur at least 25 times in the corpora. These candidates were annotated by
two annotators, who were asked to classify them as a VN-MWE or a non-VN-MWE. We evaluated the
inter-annotator agreement and observed a Kappa (Cohen, 1960) value of 0.59, which is considered as
moderate (Landis and Koch, 1977). Thus, we considered a candidate as a VN-MWE or not only if both
annotators agreed on its classification. This reduced the labeled data to 553 instances, of which 306 are
VN-MWEs (256 bigrams and 50 trigrams) and 247 are non-VN-MWEs (157 bigrams and 90 trigrams).

4.2 Application of nine Machine Learning methods
We combined the features in a supervised classification framework using nine ML methods: Random
Forest, Decision Tree, Bagging, Adaboost, Bayes Network, Supported Vector Machine (SVM), Logistic
Regression and Multilayered Perceptron. The accuracy rate of each ML method was estimated by a 10-
fold cross-validation test. We ran these ML methods by the WEKA platform (Witten and Frank, 2005;
Hall et al., 2009) using the default parameters. Table 1 shows the performances of the different ML
methods on the full feature set of 206 features, as described above. The best ML method was Random
Forest. Therefore, we have performed further experiments using only this method. These experiments
are presented in the next sub-section.

4.3 Further experimental results using the random forest method
In this research, we defined three types of feature sets (Section 3): linguistic, statistic and semantic. The
classification results of the Random Forest algorithm (the best ML method in Table 1) on each of the sets
are presented in the left side of Table 2. The semantic feature set yielded the best accuracy result (77.4%).
The advantage of the semantic feature set over the linguistic and statistical feature sets is notable (3.5%
and 5% respectively) and is statistically significant according to the McNamar test (McNemar, 1947) for
the statistical feature set (p=0.017). The advantage is also almost statistically significant at level 0.05 for
the linguistic feature set (p=0.056).

A hybrid approach, which combines the linguistic and statistical information, is commonly used in
MWE extraction. Therefore, we investigated different combinations of feature sets. The results of our
exploration are presented in the right side of Table 2. The best results were obtained using all the
three sub-feature sets. However, the contribution of the linguistic feature set was negligible (80.47% vs.

4http://www.mila.cs.technion.ac.il/resources/
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# ML Method Accuracy (%) F-Measure
1 Random Forest 80.47 0.795
2 Decision Tree (J48) 71.25 0.708
3 Bagging 78.84 0.78
4 AdaBoost (M1) 74.32 0.736
5 Bayes Network 69.80 0.703
6 Logistic Regression 70.52 0.706
7 Multilayered Pereceptron 68.72 0.686
8 SVM (SMO) 76.13 0.76
9 SVM (LibSVM) 63.11 0.488

Table 1: Comparison of results obtained by nine ML methods

Feature Set Accuracy (%) F-Measure Feature Sets Accuracy (%) F-Measure
Linguistic 73.96 0.721 Linguistic & Semantic 77.4 0.765
Statistical 72.51 0.712 Linguistic & Statistic 78.84 0.777
Semantic 77.4 0.767 Semantic & Statistic 80.29 0.796

All 80.47 0.796

Table 2: Comparison of results for different combinations of feature sets

80.29%). As was found in previous studies (Justeson and Katz, 1995; Pecina, 2010), the approach of
combining linguistic and statistical features works efficiently. Yet, combining linguistic and semantic
features did not yield any improvement over using only the semantic feature set.

For each of the above feature set configurations, we tried to filter out non-relevant features using
two well-known feature selection methods: Information gain (InfoGain, IG) (Hunt et al., 1966) and
Correlation-based Feature Subset (CFS) (Hall, 1998). The use of these two feature selection methods
did not improve the accuracy of any configuration. However, we used the information obtained by the IG
selection method to better understand which features have more influence on the classification accuracy.
Table 3 presents the features, which were selected by the IG method for the three feature sets (the number
in parentheses is the feature rank). The linguistic properties of partial inflection and constituent order
were found as important properties for distinguishing MWEs from non-MWEs. The two non-parametric
statistical features, Mutual Expectation (ME) and Mutual Rank Ratio (MRR), outperformed other base-
line association measures. The good performance of the algorithm using the semantic features is due to
the combination of various semantic spaces and vector comparison measures.

Table 4 shows the features that were selected by the IG method for the different combinations of
feature sets. For each feature sub-set of a combined configuration, Table 4 details how many and which
of its selected features were also selected by the IG measure when each set was tested as a standalone
feature set (see Table 3). While the same semantic features were selected for the standalone (Semantic)
and combined configurations (Linguistic & Semantic and Semantic & Statistical), different linguistic and
statistical features were selected by each of the configurations that include them.

We further analyze our suggested semantic feature set by comparing the performance of the different
semantic spaces. Table 5 shows the classification results of the Random Forest algorithm on the various
sub-sets of the semantic features. The semantic features that were constructed by the HAL semantic
space outperformed the other semantic representations. The advantage of the HAL semantic space might
be due to its sensitivity to word-ordering. This sensitivity enables the representation to model the im-
portant constituent order linguistic property of VN-MWE. The low performance of the word embedding
space could be explained either by its low number of features or by the fact that these vector were con-
structed without any task-depended training.

Finally, we investigated the False Positive (FP) and False Negative (FN) classifications of our sug-
gested semantic feature set. We found that some of the FPs were due to light verbs, such as lqbl mid` (to
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Feature set # of
feat.

Feature list

Linguistic 10 SINGUALR VERB PLURAL NOUN (1), COUNJUNCTION (2),
CONSTITUENT ORDER (5). PREFIX VERB (wmš (4), starts with
m (7), kšb (9)), PREFIX NOUN (mh (3), š (8), kšm (10))

Statistical 5 TRIGRAMSPMI (1), MUTUALRANKRATIO (2), NOUNLFRE-
QUENCY (3), MUTUALSCORE (4), TRIGRAMSLL (5)

Semantic 23 COAL: PEARSON (1), COSINE (5), AVER-
AGE COMMON FEATURE RANK (ACFR) (13), COAL LEMMA:
PEARSON (2), COSINE (3), TANIMOTO (4), ACFR (10)
HAL: EUCLIDEAN (8), ACFR (11), HAL LEMMA: ACFR (6), LIN
(17), TANIMOTO (19), PEARSON (22), COSINE (23)
RI: EUCLIDEAN (7), RI LEMMA: ACFR (12), TANIMOTO (15),
LIN (16)
RRI: EUCLIDEAN (9), RRI LEMMA: SPEARMAN (18)
Word Embeddings: EUCLIDEAN (20), COSINE (21), Word Embed-
dings LEMMA: MANHATTAN (14)

Table 3: InfoGain feature selection of the linguistic, statistic and semantic feature sets

get information) and `wšh `bwdh (to make a work). The general meaning of the light verbs decreased the
vectors comparison score and candidates with light verbs were wrongly classified as VN-MWEs. This
might be because light verbs have little semantic content of their own and they are used in combination
with various nouns. Thus, the semantic similarity between the light verb and a specific noun was rel-
atively low. A possible solution to the light verb issue is to use a directional inclusion-based measure
to compute the similarity between two vectors (Weeds and Weir, 2003; Clarke, 2009; Kotlerman et al.,
2010).

Another interesting finding is that domain-specific VN-MWEs were often misclassified as FNs. VN-
MWEs like lhqim mmšlh (to establish a government) and lgbš `mdh (to form an opinion) were wrongly
classified as non-MWEs since they frequently co-occur in our political domain, so their semantic vectors
are rather close.

5 Conclusions and Future Work

We presented a supervised classification model for identification of Hebrew VN-MWEs. Our semantic
feature set yields better performance than the common linguistic and statistical feature sets and that
combining semantic features contributes to the Hebrew VN-MWEs identification task.

Most previous related studies apply only one ML method. An exception was the study of Tsvetkov and
Wintner (2014), which applied 4 ML methods. In this research, we applied 9 ML methods. Moreover,
we have performed further experiments using only the Random Forest method, which has been found
as the best ML method for our task. Our experiment over a manually labeled dataset showed that the
semantic feature set outperforms the statistical and linguistic feature sets and that combining semantic
features with the two other feature sets further improved the performance (especially with the statistical
set).

In future work, we would like to investigate more sophisticated models for representing the semantic
meaning of VN-MWEs. For example, we plan to extend the single-word vector representation to learn
larger semantic composition representations (Baroni and Zamparelli, 2010; Grefenstette and Sadrzadeh,
2011; Socher et al., 2012). We also plan to investigate directional inclusion-based similarity measures
for computing vector similarity.

In addition, we plan to adopt our model to under-resourced languages, many of them are found in the
developing world where we lack the linguistic information.

1249



Feature set # of
feat.

Sub-feature
set

Overlapping features Additional features in top10

Linguistic &
Semantic

33 Linguistic CONSTITUENT ORDER
(1/10)

None

Semantic all (23/23) None
Linguistic &
Statistical

15 Linguistic CONSTITUENT ORDER
(1/10)

POSPATTERN (verb + preposi-
tion + noun), SINGULAR VERB,
PREFIX NOUN (wšb, kl), PLU-
RAL VERB SINGULAR NOUN,
PREFIX VERB (b), PRE-
FIX NOUN NUM

Statistical MUTUALRANKRATIO
(1/5)

MUTUALSCORELEMMA, BI-
GRAMSTMI

Semantic &
Statistical

28 Semantic all (23/23) None

Statistical None (0/5) FREQUENCY

Table 4: IG selection results for the different combinations of feature sets

Semantic Space # of feat. Accuracy (%) F-Measure ROC Area
COAL 13 73.59 0.731 0.8
HAL 14 75.04 0.738 0.82
RI 14 72.87 0.717 0.782
RRI 15 72.87 0.716 0.781
Word Embedding 6 64.56 0.635 0.69

Table 5: Comparison of the results obtained by different semantic sub-spaces
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