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Abstract

Semantic text processing faces the challenge of defining the relation between lexical expressions
and the world to which they make reference within a period of time. It is unclear whether the
current test sets used to evaluate disambiguation tasks are representative for the full complexity
considering this time-anchored relation, resulting in semantic overfitting to a specific period and
the frequent phenomena within. We conceptualize and formalize a set of metrics which eval-
uate this complexity of datasets. We provide evidence for their applicability on five different
disambiguation tasks. To challenge semantic overfitting of disambiguation systems, we propose
a time-based, metric-aware method for developing datasets in a systematic and semi-automated
manner, as well as an event-based QA task.

1 Introduction

Semantic processing defines a relation between natural language and a representation of a world it refers
to. A challenging property of natural language is the time-bound complex interaction between lexical
expressions and world meanings. We use meaning in this paper as an umbrella term for both concepts
and (event and entity) instances, and lexical expression as a common term for both lemmas and surface
forms. We can define this interaction as a set of relations, both sense relations and referential relations,
that exists within a language community in a certain period of time, e.g. one or a few generations.
The people belonging to these generations share one language system that changes relatively slowly but
during their lives there are many rapidly changing situations in the world that make certain meanings and
expressions dominant and others not. Likewise, we expect that a generation uses a certain set of lexical
expressions out of the available set in relation to a set of meanings that balances the trade-off between
learning many expressions and resolving extreme ambiguity of a small set of expressions.

The task of interpreting lexical expressions as meanings, known as disambiguation, has been addressed
by the NLP community following a “divide & conquer” strategy that mostly ignores this complex time-
bound relation. Over the years, this resulted in numerous separate disambiguation tasks each with a
specific set of datasets restricted to a small bandwidth with respect to the dynamics of the world and
the large scope of the possible meanings that lexical expressions can have. By dividing the problem
into different tasks on relatively small datasets, researchers can focus on specific subproblems and have
their efforts evaluated in a straightforward manner. Datasets have been developed independently for each
task, intended as a test bench to evaluate the accuracy and applicability of the proposed systems. Official
evaluation scripts have been created for most datasets to enable a fair comparison across systems.

The downside of this practice is that task integration is discouraged, systems tend to be optimized on
the few datasets available for each task, and the dependencies of ambiguities across tasks in relation to
the time-bound contextual realities are not considered. As a result, there is little awareness of the overall
complexity of the task, given language as a system of expressions and the possible interpretations given
the changing world over longer periods of time. Systems are thus encouraged to strongly overfit on a
single task, a single dataset, and a specific ‘piece’ of the world at a specific moment in time.

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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Each text forms a unique semantic puzzle of expressions and meanings in which ambiguity is limited
within the specific time-bound context, but is extreme without considering this context. The main ques-
tion we thus put forward and address in this paper is how to enhance disambiguation tasks to cover the
full complexity of the time-bound interaction between lexical expressions and meanings (in the broad
sense of the word as defined here). We therefore first propose a number of metrics that formally quantity
the complexity of this relation and apply this to a wide range of available datasets for a broad range of
semantic tasks. Secondly, we provide evidence for the limitations of the current tasks and, thirdly, we
present a proposal to improve these tasks in the hope that we challenge future research to address these
limitations.

The paper is structured as follows. We motivate the importance and relevance of this temporal interac-
tion for both concept- and instance-based disambiguation tasks in Section 2. Following up on previous
research (Section 3), we define a model of the complex interaction (Section 4), and we conceptualize
and formalize a collection of metrics in a generic manner (Section 5). Moreover, we apply these metrics
to quantify aspects of existing evaluation sets (Section 6). In Section 7, we propose two approaches for
creating metric-aware test sets that include a temporal dimension. The paper is concluded in Section 8.

2 Temporal Aspect of the Disambiguation Task

We live in a dynamic and rapidly changing world: some companies expand their offices all around the
globe, while others collapse; people become celebrities overnight and are forgotten only several years
afterwards. Similarly, a whole range of mainstream technological concepts of today’s world have only
been known since the last few decades. These observations have a big impact on the dynamics of a
language system, since the relation between language expressions and meanings follows the changes in
the world. To some extent this is reflected in new expressions and new meanings but most strongly this
is reflected in the distributional usage of expressions and their dominant meaning.

For instance, the dominant meaning of the terms mobile, cell, and phone is the same for the contempo-
rary, especially young, generations: mobile phone. On the other hand, older generations also remember
different dominant concepts from the 80s and 90s: mobile being typically a decoration hanging from the
ceiling, cell usually being a unit in a prison or body tissue, while phone referring to the static devices
found at home or on the streets. The dominant meanings of the 80s and 90s have been replaced by
new dominant meanings, whereas the younger generation may have lost certain meanings such as the
decoration. Similarly, football fans remember two different superstar Ronaldo players which have been
dominant one after the other: the Brazillian striker and the Portuguese Ballon d’Or award winner.

What is shown by these examples is that not only new meanings appear and old meanings become
obsolete but that, more strongly, the usage distribution of competing meanings changes over time. As
the mobile phone gains popularity and the mobile decoration gets replaced by others, people refer to the
mobile phone more often than the traditional mobile decoration. Hence, in a later point of time, the most
commonly used meaning for mobile changes, even though both meanings are still possible. Similarly
for the Ronaldo case: in 2016 one can still refer to both players, but the dominant meaning is now the
Portuguese player.

We also observe a relation between the variety of lexical expressions used to refer to a meaning, and its
dominance of usage. As the mobile phone gained popularity, its set of associated expressions expanded
from only mobile phone to also: mobile, phone, cell phone, and cell. On the other hand, when referring
to a prison cell without a specific context, one should nowadays explicitly use the full expression prison
cell instead of just cell.

To measure the usage distribution of competing meanings, we could use online resources that track
these distributions over time, such as Google Trends1 and Wikipedia Views.2 We present the usage
distribution for instances denoted by Tesla in Figure 1a, and for concepts expressed with the expression
cloud in Figure 1b. These plots demonstrate the ways in which the distribution of usage changes both for
instances and concepts as a function of the temporal dimension. As we discussed in Section 1, the notion

1https://www.google.com/trends/
2http://stats.grok.se/
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Figure 1: Usage distribution for ambiguous concepts and instances based on Google Trends data.

(a) Usage of two dominant meanings for Tesla. The black
line depicts the usage of Tesla Motors Company, while the
gray line represents Nikola Tesla.

(b) Usage of two dominant meanings for cloud. The black
line depicts the usage of the clouds in the sky, natural ob-
jects placed in the atmosphere. The gray line stands for
the modern meaning of cloud as an Internet-based type of
computing.

of time and its role in this mapping between expressions and meanings has not been taken into account
in the creation of existing disambiguation datasets. This observation points to a serious weakness in the
representativeness of existing datasets for the full complexity of the disambiguation task. Consequently,
systems are not encouraged to focus on the temporal aspect of the task but in reality the same language
system is still used for many different situations within a changing world. While this works for humans,
this is not yet solved for machines.

3 Related Work

The three problems enumerated in Section 1 have been addressed to some extent in past work.
Several approaches have attempted to resolve pairs of disambiguation tasks jointly. Examples include:

combined Entity Linking (EL) and Word Sense Disambiguation (WSD) (Hulpuş et al., 2015; Moro et
al., 2014), combined event and entity coreference (EvC and EnC) (Lee et al., 2012) and resolving WSD
and Semantic Role Labeling (SRL) together (Che and Liu, 2010). Although some task combinations are
well-supported by multi-task datasets, such as CoNLL 2011 and 2012 for joint coreference (Pradhan et
al., 2011; Pradhan et al., 2012), and Moro and Navigli (2015) for WSD and EL, still many multi-task
systems have to be evaluated on separate datasets. Notable efforts to create multi-task annotated corpora
are the AMR Bank (Banarescu et al., 2013) and the MEANTIME corpus (Minard et al., 2016a).

Properties of existing datasets have been examined for individual tasks. For WSD, the correct sense
of a lemma is shown to often coincide with the most frequent sense (Preiss, 2006) or the predominant
sense (McCarthy et al., 2004). In the case of McCarthy et al. (2004), the predominant sense is deliberately
adapted with respect to the topic of the text. Our work differs from McCarthy et al. (2004) because they
do not consider the temporal dimension. As a response to sense-skewed datasets, Vossen et al. (2013)
created a balanced sense corpus in the DutchSemCor project in which each sense gets an equal number
of examples. Similarly, Van Erp et al. (2016) conclude that EL datasets contain very little referential
ambiguity. Evaluation is focused on well-known entities, i.e. entities with high PageRank (Page et al.,
1999) values. Additionally, the authors observe a considerable overlap of entities across datasets, even
for pairs of datasets that represent entirely different topics. Cybulska and Vossen (2014) and Guha et al.
(2015) both stress the low ambiguity in the current datasets for the tasks of EvC and EnC, respectively.
Motivated by these findings, Guha et al. (2015) created a new dataset (QuizBowl), while Cybulska and
Vossen (2014) extended the existing dataset ECB to ECB+, both efforts resulting in notably greater am-
biguity and temporal diversity. As far as we are aware, no existing disambiguation dataset has included
the temporal dependency of ambiguity, variance, or dominance.

The problem of overfitting to a limited set of test data has been of central interest to the body of
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work focusing on domain adaptation (Daume III, 2007; Carpuat et al., 2013; Jiang and Zhai, 2007).
By evaluating on a different domain than the training one, these efforts have provided valuable insights
into system performance. However, to our knowledge, this research has also not addressed the temporal
aspect of the task.

We therefore propose to take this a step further and examine system performance with respect to a
set of metrics, applicable over disambiguation tasks, thus setting the stage for creation of metric-aware
datasets. We expect that these metrics show reduced complexity within well-defined temporal and topical
boundaries and increased complexity across these boundaries. More extensive datasets than existing
single- and multi-task datasets, driven by metrics on ambiguity, variance, dominance and time, would
challenge semantic overfitting.

4 Semiotic Generation and Context Model

We want to model the relation between expressions and meanings in the world within a generation that
shares the same language system, as well as the fluctuation in usage of expressions and meanings over
time within this generation. We therefore assume that for each language community at a specific time,
there exist a set of meanings M in the world and a set of lexical expressions L in a language. The
relation between these sets is many-to-many: each lexical expression Li can refer to multiple meanings
M1, M2, ... (ambiguity) and each meaning Mj can be verbalized through multiple lexical expressions
L1, L2, ... (variance). As we discuss in Section 2, the sets of M , L, their relations, and especially the
distributions of these relations, are dynamic, i.e. they can change over time. We denominate this model
“Semiotic Generation and Context Model”, because it captures the distribution changes in the semiotic
relation between meanings and lexical expressions, given the context of the changes in the world and
within the language system of a generation.

In practice, we study available proxies of the world at a moment in time and of the language of a
generation which capture this relation at a given time snapshot: lexical resources are considered as a
proxy of the language system of a generation and the dataset is considered as a proxy for the world
at a particular moment in time creating a specific context. We analyze the time-anchored interaction
between M and L in the datasets proxy and measure this against their interaction in the resources proxy
to provide insight on how representative the datasets are for the task. Note that the proxies of datasets and
resources cover only a subset of the language used within a generation, and (consequently) only a subset
of all possible meanings. While not ideal, this is the best we have because there is no way to capture all
language used within a generation nor possibly list every possible meaning, especially considering that
we can always create new meanings, e.g. by inventing some non-real world ones.

5 Methodology

Based on the Semiotic Generation and Context Model, we now define and formalize a number of metrics
that qualify datasets for disambiguation tasks. In this Section, we describe these metrics and explain the
tasks we focus on. Furthermore, we enumerate the design choices that guide our pick of datasets and we
elaborate on the datasets we analyze.

5.1 Metrics

Mean Observed Ambiguity (MOA)
We define observed ambiguity of an expression as the cardinality of the set of meanings it refers to
within a dataset (OLi). For example, the expression horse has 4 meanings in WordNet but only the chess
meaning occurs in the dataset, resulting in an observed ambiguity of 1. The Mean Observed Ambiguity
(MOA) of a dataset is then the average of the individual observed ambiguity values.
Mean Observed Variance (MOV)
We define observed variance of a meaning as the cardinality of the set of lexical expressions that express
it within a dataset (OMj ). The chess meaning of horse also has knight as a synonym but only horse occurs
in the dataset, hence an observed variation of 1. The Mean Observed Variance (MOV) of a dataset is
then the average of the individual observed variance values.
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Mean Observed Dominance of Ambiguity (MODA)
We define dominance of ambiguity as a frequency distribution of the dominant meaning of a lexical
expression. For example, horse occurs 100 times in the data and in 80 cases it has the chess meaning:
the dominance score is 0.8. The Mean Observed Dominance of Ambiguity (MODA) of a dataset is the
average dominance of all observed expressions.
Mean Observed Dominance of Variance (MODV)
We define the notion of dominance of variance, as a frequency distribution of the dominant lexical
expression referring to a meaning. If horse is used 60 times and knight 40 times for the same meaning
then the observed dominance of variance is 0.6. The Mean Observed Dominance of Variance (MODV)
of a dataset is then the average dominance computed over all observed meanings.
Entropy of the Meanings (Normalized) of a Lexical Expression (EMNLE)
We define an alternative notion of dominance, based on entropy, in order to consider the distribution of
the less dominant classes in a dataset. We introduce p(Mj |Li): a conditional probability of a meaning
Mj based on the occurrence of a lexical expression Li. We compute this probability using the formula
p(Mj |Li) = p(Mj ,Li)

p(Li)
, a ratio between the number of common occurrences of Mj and Li, and on the

other hand, occurrences of Li alone. We combine the individual conditional probabilities for Li in a
single information theory metric of entropy, H(OLi):

H(OLi) =
−

n∑
j=1

p(Mj |Li)log2p(Mj |Li)

log2(n)
(1)

For example, given 100 occurrences of the lexical expression horse, where 80 occurrences refer to the
the chess meaning and 20 to the animal meaning, the entropy of the expression horse would be 0.72. To
compute a single entropy (EMNLE) value over all lexical expressions in a dataset, we average over the
individual entropy values:

EMNLE(OL, RL) =
1
n

n∑
i=1

H(OLi , RLi) (2)

Entropy of the Lexical Expressions (Normalized) of a Meaning (ELENM)
We introduce p(Li|Mj): a conditional probability of a lexical expression Li based on the occurrence of
a meaning Mj . We compute this probability using the formula p(Li|Mj) = p(Li,Mj)

p(Mj)
, a ratio between

the number of common occurrences of Mj and Li, and on the other hand, occurrences of Mj alone. We
combine the individual conditional probabilities for Mj in a single information theory metric of entropy,
H(OMj ):

H(OMj ) =
−

n∑
i=1

p(Li|Mj)log2p(Li|Mj)

log2(n)
(3)

Suppose the meaning of horse as a chess piece is expressed 60 times by the lexical expression horse and
40 times by knight, then the entropy of the chess piece meaning of horse is 0.97. To compute a single
entropy (ELENM) value over all meanings in a dataset, we average over the individual entropy values:

ELENM(OM , RM ) =
1
n

n∑
j=1

H(OMj , RMj ) (4)

Relation between Observed and Resource Ambiguity (RORA)
We define resource ambiguity of a lexical expression as the cardinality of the set of meanings that it can
refer to according to a lexical resource (RLi). Then we define the ratio between observed and resource
ambiguity for a lexical expression as:

ratioamb(OLi , RLi) =
|{Mj : Mj ∈ OLi}|
|{Mj : Mj ∈ RLi}|

(5)
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In the case that only 1 out of 4 resource meanings is observed in the dataset, for example only the chess
meaning of horse, this would lead to a ratioamb value of 0.25. To compute the RORA value of a dataset,
we average over the individual ratios:

RORA(OL, RL) =
1
n

n∑
i=1

ratioamb(OLi , RLi) (6)

Relation between Observed and Resource Variance (RORV)
We define resource variance of a meaning as the cardinality of the set of lexical expressions which can
verbalize it (RMj ). Then we define the ratio between observed and resource variance for a given meaning:

ratiovar(OMj , RMj ) =
|{Li : Li ∈ OMj}|
|{Li : Li ∈ RMj}|

(7)

Suppose that the expressions horse and knight can refer to the meaning of chess piece according to a
resource, but only the expression horse refers to it in a particular dataset, this would lead to a ratiovar

value of 0.5. To compute the RORV value of a dataset, we average over the individual ratios:

RORV (OM , RM ) =
1
n

n∑
i=1

ratiovar(OMj , RMj ) (8)

Average Time-anchored Rank (ATR)
Since the relevance of meanings is not constant over time, we define the popularity of a meaning in a
point of time, popularityMj (t). A lexical expression can potentially denote multiple meanings, each
characterized with a certain degree of time-anchored popularity. Likewise, we order the list of candi-
date meanings for a given lexical expression based on their popularity at the moment of publishing of
the dataset document. For example, if the dataset covers news about a chess tournament, we will see
a temporal peak for the chess meaning of horse relative to the other meanings. The popularity rank of
each meaning, including the correct gold standard meaning, is its position in this ordered list. By aver-
aging over the ranks of all golden candidates we can compute the Average Time-anchored Rank of the
golden candidates in a dataset, which gives an indication about the relation between the relative temporal
popularity of a meaning and the probability that it is the correct interpretation of an expression, varying
from stable to extremely dynamic relations. An ATR rank of a dataset close to 1 indicates a strong bias
towards the popular meanings at the time of creation of the dataset.
Average Time-anchored Relative Frequency of Usage (ATRFU)
The potential bias of meaning dominance with respect to its temporal popularity can alternatively be
assessed through its frequency of usage at a point of time. We denote the usage of a meaning with UMj .
For a given lexical expression, we compute the relative temporal frequency of usage (FU) of the golden
meaning relative to the frequency of usage of all candidate meanings:

FUMj (t) =
UMj (t)

n∑
i=1

UMi(t)
(9)

The average relative frequency of usage at a given time point (ATRFU) is an average of the frequency
values of all gold standard meanings in a dataset. We introduce this metric in order to gain insights into
the popularity difference between the competitive meanings at a given time period. This metric would
allow us, for instance, to detect that in July 2014 the United States men’s national soccer team was much
more popular than the women’s national soccer team, while Tesla Motors was only slightly more popular
than Nikola Tesla in May 2015.
Dataset Time Range (DTR)
We define DTR as a time interval between the earliest and the latest published document of a dataset:

DTR = [min(datedoc), max(datedoc)] (10)

where datedoc is the publishing date of a document. For instance, the DTR of the MEANTIME (Minard
et al., 2016b) dataset is [2004, 2011].

1185



5.2 Tasks

Task Lexical expression Meaning Resource

WSD lemma sense WordNet
SRL predicate mention predicate PropBank
EL entity mention entity DBpedia
EnC entity mention entity DBpedia
EvC event mention event /

Table 1: Task specification of model compo-
nents.

We demonstrate the applicability of the metrics
defined in Section 5.1 on a selection of disam-
biguation tasks. We cover both concept-oriented
tasks (WSD and SRL), as well as instance-based
tasks (EL, EnC, and EvC).3 In Table 1, we spec-
ify the model components per disambiguation task,
enabling the metrics to be computed. The met-
rics concerning lexical resources (WordNet (Fell-
baum, 1998) for WSD, and PropBank (Kingsbury
and Palmer, 2002) for SRL) are only computed for
the concept-oriented tasks. Whereas lexical resources, such as WordNet and PropBank, can be seen as
reasonable proxies for most of the expressions and concepts known to a generation, it is more difficult
to consider databases of instances, such as DBpedia,4 to approximate all the possible instances that ex-
pressions, e.g. Ronaldo, can refer to. This is especially the case for events, e.g. the goals Ronaldo
scored, or the Ronaldo t-shirts being sold in a fan shop. There is hardly any registry of real world events
independent of the mentions of events in text. Likewise, we only find a few Ronaldo entities in DBpedia.
Despite its impressive size, DBpedia only covers a very small subset of all instances in the world.

5.3 Datasets
The choice of datasets conforms to the following rationale. We consider test datasets with running text
in English,5 because we assume that they are the most natural instantiations of the interaction between
lexical expressions and meanings and tend to report on the changes in the world. Moreover, such datasets
lend themselves better for joint tasks. Finally, we favor publicly available datasets which are commonly
used in recent research.

The chosen datasets per disambiguation task are as follows.
WSD The following datasets were taken into consideration: Senseval–2 (SE2 AW): All-Words task
(Palmer et al., 2001) ; Senseval-3 (SE3 task 1): Task 1: The English all-words task (Snyder and Palmer,
2004) ; SemEval-2007 (SE7 task 17): Task-17: English Lexical Sample, SRL and All Words (Pradhan
et al., 2007) ; SemEval–2010 (SE10 task 17): Task 17: All-Words Word Sense Disambiguation on a
Specific Domain (Agirre et al., 2010); SemEval–2013 (SE13 task 12): Task 12: Multilingual Word
Sense Disambiguation (Navigli et al., 2013). The number of test items per competition ranges from
roughly 500 to 2500 instances. All most frequent sense baselines are around 65%, except for SE10 task
17, in which the focus was on domain-specific WSD, resulting in a most frequent sense baseline of 55%.
SRL For Semantic Role Labelling, we selected the CoNLL-2004 Shared Task: Semantic Role Labeling
(CoNLL04) (Carreras and Màrquez, 2004). In total, 9,598 arguments were annotated for 855 different
verbs.
EL We consider the following datasets: AIDA-YAGO2 (AIDA test B) (Hoffart et al., 2011),
WES2015 (Waitelonis et al., 2015), and MEANTIME (Minard et al., 2016b). We analyze the com-
monly used test B collection from the AIDA-YAGO2 dataset, which contains 5,616 entity expressions
in 231 documents. WES2015 contains 13,651 expressions in 331 documents about science, while the
MEANTIME corpus consists of 120 documents regarding four topics, with 2,750 entity mentions in
total.
EnC Guha et al. (2015) created a dataset, QuizBow, for nominal coreference, containing 9,471 mentions
in 400 documents. The data annotated comes from a game called quiz bowl.6

3Note that in the case of SRL we focus on the expression-to-meaning mapping of predicates and do not analyze roles.
4http://dbpedia.org
5Our analysis in this paper is performed on 13 English datasets. The metrics we define in Section 5.1 can easily be applied

to many other languages. Namely, the resource-dependent metrics (RORA and RORV) can be applied to the wide range
of languages in which DBpedia/WordNet/PropBank are available (for an illustration, DBpedia is currently available in 125
languages). Furthermore, all other metrics rely solely on the annotated textual content within a corpus, which makes them
applicable for any language.

6https://en.wikipedia.org/wiki/Quiz_bowl
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EvC we consider three event coreference corpora: EventCorefBank (ECB) (Lee et al., 2012),
ECB+ (Cybulska and Vossen, 2014), and EventNuggets (TAC KBP ’15) (Mitamura et al., 2015). ECB
contains 480 documents spread over 43 topics, while its extension ECB+ contains an additional 502 doc-
uments spread over the same set of topics. The training corpus of TAC KBP ’15 contains 7,478 event
coreference chains (hoppers).7

6 Analysis

In this Section, we study to what extent datasets cover the complexity of the disambiguation task.8

Task Dataset MOA MOV MODA MODV EMNLE ELENM

SE2 AW 1.20 1.06 0.94 0.98 0.13 0.05
SE3 task 1 1.21 1.05 0.94 0.98 0.13 0.04

WSD SE7 task 17 1.14 1.04 0.95 0.98 0.10 0.03
SE10 task 17 1.25 1.06 0.93 0.98 0.13 0.05
SE13 task 12 1.10 1.06 0.97 0.98 0.14 0.05

SRL CoNLL04 1.20 1.00 0.96 1.00 0.09 0.00

AIDA test B 1.09 1.35 0.98 0.91 0.05 0.22
EL WES2015 1.06 1.33 0.97 0.88 0.05 0.21

MEANTIME 1.19 4.63 0.98 0.64 0.04 0.55

EnC QuizBowl 1.59 1.80 0.92 0.74 0.13 0.46

ECB 1.61 3.87 0.89 0.61 0.19 0.65
EvC ECB+ 2.09 3.40 0.85 0.66 0.27 0.57

TAC KBP ’15 4.97 1.22 0.69 0.94 0.47 0.12

Table 2: Observed ambiguity, variance and dominance.

According to Table 2, high complexity in both directions, i.e. high ambiguity and variance, is rare,
though the extent of this complexity varies per task. The datasets evaluating WSD, SRL, and EL al-
most have a 1-to-1 mapping between lexical expressions and meanings, while coreference datasets have
higher ambiguity and variance. This can be due to the following reasons: 1. Some of the coreference
datasets deliberately focus on increasing ambiguity. 2. An inherent property of coreference seems to be
high variance. Similarly, our dominance metrics (MODA/MODV and EMNLE/ELENM) demonstrate
a strong bias in our datasets: typically, for any of the datasets, approximately 90% of the occurrences
belong to the dominant class on average.

Task Dataset ATR ATRFU

EL WES2015 1.92 0.53
EL MEANTIME 1.51 0.51

Table 3: ATR and ATRFU values of the
datasets.

Task Dataset RORA RORV

SE2 AW 0.26 0.38
SE3 task 1 0.23 0.37

WSD SE7 task 17 0.20 0.36
SE10 task 17 0.25 0.40
SE13 task 12 0.26 0.40

SRL CoNLL04 0.63 1.00

Table 4: RORA and RORV values of the
datasets.

Concerning the concept-oriented tasks, Table 4 shows a notable difference in the complexity of the
interaction between the proxies of datasets and resources.9 Between 74 and 80% of the resource ambi-
guity per expression is not represented in the datasets, whereas this is the case for 60-64% of the resource

7We were unable to obtain the test data for the TAC KBP ’15 dataset, hence our analysis is performed on the training data.
8The metrics and the analyses of the datasets can be found at https://github.com/cltl/

SemanticOverfitting.
9While computing RORA and RORV, we ignore cases with resource ambiguity and variance of 1.
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variance per concept. This is an indication of strong semantic overfitting of the data to a small selection
that is not representative for the full potential of expressions and meanings. Furthermore, we observe
that this representativeness is relatively constant across concept datasets, which in part can be explained
by the fact that the WSD and SRL datasets mainly stem from the same time period (Figure 2), and even
from the same corpus (Hovy and Søgaard, 2015). One could argue that the data is correctly representing
the natural complexity of a specific time period and genre but it does not challenge systems to be able
to shift from one situation to another. We also note a temporal discrepancy between the concept- and
instance-based datasets, with the instance-based systems being evaluated on more recent data.

Figure 2: DTR values of the datasets

To understand further the time-bound interaction in our datasets, we study them together with time-
bound resources. While our lexical resources and instance knowledge sources contain very little temporal
information, we rely on query monitoring websites (Wikiviews and GoogleTrends) to get an indication
of the usage of a meaning over time. In Table 3, we show the temporal popularity of entities among
their candidates in our datasets according to our web sources.10 We note a correspondence between
the dominance of entities in datasets and their frequency of usage at that time, which exposes a bias of
existing datasets towards the most popular entities at the time of their creation.

Our analysis reveals that the existing disambiguation datasets show a notable bias with respect to the
aspects of ambiguity, variance, dominance, and time, thus exposing a strong semantic overfitting to a
specific part of the world, while largely ignoring long tail phenomena. Typically this is the part of the
world that is best known within the context of a generation at a moment of time. This implies that our
datasets have a strong bias towards meanings that are popular at that particular moment in time and do
not represent the temporal relativity of this bias. Although our metrics provide us with a valuable set
of insights into the evaluation datasets, complementary statistical measures should be introduced in the
future to capture individual distinctions blurred by averaging over a dataset. These could measure the
distribution of ambiguity and variance, their relation to dataset size, and outliers.

7 Proposal for improving evaluation

The direct contribution of our work lies in metric-based evaluation of datasets and resources for systems,
which helps interpreting their ability to cope with alterations of ambiguity, variance, dominance, and
time. Provided that a collection of multi-task annotated data is available at a central place, our metrics
could be applied to output a dataset following certain criteria, e.g. a test set annotated with WSD and
EL, whose ambiguity and variance are both between 1.2 and 1.4, and whose documents have been cre-
ated in the 90s. The practical obstacle is the availability of input data, which can be addressed by the
following (semi)automatic expansion method: 1. Collect annotated data and split the data according to
time periods. 2. Collect annotated expressions from the data with their dominant meanings. 3. Retrieve

10Due to the non-availability of information for the other tasks, we only analyze the temporal dominance for the EL task,
even though the set of represented entities in DBpedia is not complete (as discussed in Section 5.3). In our analysis, we
only consider ambiguous expressions that can denote more than one entity candidate. The candidates were obtained from
the Wikipedia disambiguation pages. From Wikiviews, the month of the document creation time was used for the dominance
information.
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new documents using unsupervised techniques in which these expressions occur with evidence for us-
age in other meanings than the dominant one in the existing datasets. Evidence can come from meta
data, unsupervised clustering, and temporal and topical distance from annotated data. 4. Fix alternative
meanings for all tokens in the new texts (one meaning-per-document), if necessary applying additional
disambiguation tools. Add this data as silver data to the collection. 5. If necessary, re-annotate silver
data manually or add annotations for other tasks.11 6. Spread documents over different time periods for
both annotated gold data and silver data to obtain sufficient variation in time-bound contexts. Provided
that this acquisition procedure is successful, selecting a dataset would require almost no effort, which
enables creation of many, well-motivated datasets. Consequently, the dynamic nature of this process
would challenge semantic overfitting.

In case the proposed data acquisition procedure proves too hard or too laborious to realize, we pro-
pose an alternative, namely an event-based Question Answering (QA) task, extensively elaborated on in
Postma et al. (2016), whose dataset would contain documents gathered in a smart automatic way. The
data acquisition procedure for this dataset is driven by multiple confusion factors: ambiguity, dominance,
variance, time, location, and topic. This data would reflect a high degree of ambiguity and variance and
would capture a wide range of small real-world phenomena. In order to perform on this task with a
good accuracy, the systems will be required to exhibit a deeper semantic understanding of the linguistic
tail of the disambiguation tasks we analyze in this paper. However, the only task that will explicitly be
evaluated is the QA task itself, which means that the annotation task would be largely reduced to the
components necessary for the questions and answers.

The resulting time-aware evaluation datasets, originating from both the annotation-based and QA-
based approaches, allow the community to test understanding of language originating from different
generations and communities, and a community’s language usage in relation to different world contexts.
It would also assess to what extent a disambiguation system can adapt to language use from another time
slice than the one trained on, with potentially new meanings and expressions, and certainly a different
distribution of the expression-meaning relation. We believe this challenges semantic overfitting to one
single part and time of the world, and will inspire systems to be more robust towards aspects of ambiguity,
variance, and dominance, as well as their temporal dependency.

8 Conclusion

We qualified and quantified the relation between expressions and meanings in the world for a generation
sharing a language system, as well as the fluctuation in usage of expressions and meanings over time.
We proposed the Semiotic Generation and Context Model, which captures the distribution changes in
the semiotic relation given the context of the changing world. We apply it to address three key problems
concerning semantic overfitting of datasets. We conceptualize and formalize generic metrics which eval-
uate aspects of datasets and provide evidence for their applicability on popular datasets with running text
from five disambiguation tasks. We observe that existing disambiguation datasets show a notable bias
with respect to aspects of ambiguity, variance, dominance, and time, thus exposing a strong semantic
overfitting to a very limited, and within that, popular part of the world. Finally, we propose a time-
based, metric-aware approach to create datasets in a systematic and semi-automated way as well as an
event-based QA task. Both approaches will result in datasets that would challenge semantic overfitting
of disambiguation systems.
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