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Abstract

Unexpected events such as accidents, natural disasters and terrorist attacks represent an informa-
tion situation where it is crucial to give users access to important and non-redundant information
as early as possible. Previous work uses either a fast but inaccurate pipeline approach or a pre-
cise but slow clustering approach. Instead, we propose to use sequential clustering for grouping
information so that we are able to publish sentences at each time step. By doing so, we combine
the best of both clustering and pipeline approaches and create a fast and precise real-time sys-
tem. Experiments on the TREC Temporal Summarization 2015 shared task dataset show that our
system achieves better results compared to the state-of-the-art.

1 Introduction

Events such as accidents, natural disasters and terrorist attacks provide an important and challenging
information problem. Shortly after such an event has occurred, the information situation is usually
unclear. Initially, only vague information about the event may become available, for example that an
earthquake has occurred, but details such as magnitude, epicenter, and whether a tsunami has to be
expected are not known at this early point in time. Such information becomes only available as the event
develops over time. In such situations, it is crucial for responders, crisis management organizations, and
victims to get information as soon as possible. However, it is impossible for humans to monitor vast
amount of textual information contained in sources such as news articles, tweets, social media posts,
forum discussions, and live blogs. In incremental update summarization (IUS) (McCreadie et al., 2014b)
the detection of important information in a timely manner is a major challenge. Since the information
sources are also highly redundant, detecting and filtering redundancy is a second important challenge in
IUS.

In the past, two types of systems were used for IUC: pipeline systems (McCreadie et al., 2014a; Mc-
Creadie et al., 2015) and ordinary clustering systems (Kedzie et al., 2014; Zhao et al., 2014; Yingzhe Yao
and Fan, 2015; McCreadie et al., 2015). Pipeline systems process document or sentence and decide about
importance of information and novelty immediately and achieve therefore a good timeliness. However,
they publish a large amount of unimportant information (low precision) or miss important information
(low recall) since they do not make use of the redundancy of information as signal for importance, which
is a usually a very good feature in newswire documents (Nenkova et al., 2006). Traditional clustering
systems on the other hand are able to exploit redundancy and therefore produce better summaries accord-
ing to precision and recall. Since they collect documents (for example all documents within one hour)
before they decide whether or not to publish information, timeliness is a major issue of these approaches.

Instead of choosing between one of these architectures, we propose to use sequential clustering (Sec-
tion 3.1) for incremental update summarization. With a sequential clustering, we are able to combine best
of both worlds: clustering for redundancy avoidance to achieve high precision and recall and the abil-
ity to publish information at every time step to achieve a good timeliness. Hence, sequential clustering
seems to be a natural fit for the task of IUS. In the sequential clustering, we jointly identify importance
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and redundancy by using contextual importance measures (Section 3.2). They are used to assign util-
ity scores to clusters, sentences, and tokens depending on already selected information. An additional
redundancy avoidance methodology, as used by the other systems, becomes therefore obsolete.

We show in an experimental evaluation by using data of the TREC 2015 shared task on temporal
summarization (Aslam et al., 2015) that our system SeqCluSum is able to outperform state-of-the-art.
A substantial improvement is achieved even though the computed scores can only be considered a lower
bound on the performance since the original competition used a manual and individual evaluation which
cannot be reconstructed without loss of precision.

2 Related Work

Traditional extractive multi-document summarization approaches (Nenkova and McKeown, 2011) ex-
tract unmodified sentences from source documents to produce a summary. Graph-based approaches
(Erkan and Radev, 2004; Mihalcea and Tarau, 2004; Parveen and Strube, 2015) represent source docu-
ments as graph and use algorithms such as HITS (Kleinberg, 1999) and PageRank (Brin and Page, 2012)
to find important information. Centroid-based summarization (Carbonell and Goldstein, 1998; Radev et
al., 2000) systems estimate sentences importance by computing their centrality in the source documents.
Similarly to these systems, our approach extracts unmodified sentences and uses centrality as a signal
for importance. The systems above perform a retrospective summarization, meaning that the systems
analyze all source documents at once independently from their publication date. In IUS however, this
is not possible, since important information has to be published as soon as possible. Furthermore, the
mentioned systems create summaries of fixed lengths. In IUS we observe a situation where it is not clear
in advance how long a summary has to be for a proper summarization of an event. Standard extractive
summarization systems are therefore not suited for IUS.

In update summarization (Dang and Owczarzak, 2008), a summary is presented to the systems in
addition to source documents which contain new information. The task is to summarize the source
documents without repeating information which is already contained in the summary. Since this task
is very similar to extractive summarization, methods, which are successfully applied to extractive, were
also applied to update summarization.

Research in incremental update summarization (McCreadie et al., 2014b) is strongly influenced by the
TREC Temporal Summarization (TREC-TS) shared task (Guo et al., 2013). The TREC-TS 2014 shared
task (Aslam et al., 2014) provided a high-volume, pre-filtered version of the TREC KBA 2014 dataset.1

The best performing run (Kedzie et al., 2014) in the challenge according to the official target metric
uses affinity propagation clustering. Zhao et al. (2014), best performing system according to expected
latency gain, applies a query expansion and information retrieval step in addition to a k-means cluster-
ing and sentence selection step. McCreadie et al. (2014a) proposes a real-time summarization system
which achieved best comprehensiveness scores. They use a processing pipeline to filter out irrelevant
documents, to classify sentences according to their relevance, and to filter out redundant sentences.

In the TREC-TS 2015 shared task (Aslam et al., 2015) systems competing in the ”summarization only”
subtask 3 were provided with a low-volume stream of documents.2 The best system according to the
official evaluation score in 2015 was proposed by Raza et al. (2015). The authors use BM25 for sentence
scoring and redundancy avoidance based on cosine similarity values. McCreadie et al. (2015) focuses
on entity importance and entity-entity interaction to identify important entities in an event. Kedzie et
al. (2015) processes documents in hourly batches and combine salience prediction for sentences with
affinity propagation clustering.

Our approach aims to combine the timeliness of a pipeline approach such as McCreadie et al. (2014a)
with the importance detection strategy of a clustering approach such as Zhao et al. (2014).

1http://trec-kba.org/kba-stream-corpus-2014.shtml
2http://dcs.gla.ac.uk/˜richardm/TREC-TS-2015RelOnly.aws.list
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3 Approach

In this section, we propose sequential clustering in combination with contextual importance measures
for incremental update summarization. The algorithm, SeqCluSum, consists of two subsystems, which
are alternatingly applied to the documents in the stream. In the first subsystem, a sequential clustering al-
gorithm clusters all sentences in a document according to similarity measures (Section 3.1). The second
subsystem, a contextual importance measure, estimates scores for clusters (Section 3.2). Both subsys-
tems work hand in hand in order to satisfy the three objectives to publish (i) important information while
(ii) avoiding redundancy in a (iii) timely manner.

To detect important information, we make use of the property that important information occurs fre-
quently in newswire data (Nenkova et al., 2006). We define the utility of a cluster as the sum of the
utilities of the contained sentences the size of a cluster is an important factor for the cluster importance.
By this definition, larger clusters tend to obtain higher utility scores than smaller clusters. Furthermore,
we use normalized temporal TF-IDF scores in the contextual importance measure to estimate the utility
of a sentence (cf. Section 3.2). Frequent terms in the input documents tend to obtain higher scores than
infrequent terms. A cluster containing sentences with frequent terms will therefore obtain higher scores
than a cluster with infrequent terms. We prevent publishing redundant information by allowing at most
one update per cluster. This is reasonable since one cluster is assumed to represent one particular in-
formation which is not represented by another cluster. If a cluster is selected to publish a sentence, this
cluster will be marked as published and will not be considered for publishing a sentence again. Since the
system processes each document sequentially, it is able to publish sentences after each processing step
which enables it to satisfy the third objective of timeliness. The pseudo-code of the complete system is
shown in Algorithm 1. Line references are given in parenthesis with respect to this pseudo-code.

Algorithm 1 Sequential Clustering and Contextual Importance Measuring
documents = ordered list of documents, clusters← ∅, updates← ∅

1: for each document ∈ documents do
2: document← preprocess (document) . remove boilerplate content and stem words
3: for each sentence ∈ document do . add each new sentences to a clusters
4: nearestCluster = arg maxc∈clusters similarity(sentence, c)
5: if clusters = ∅ or (similarity(sentence, nearestCluster) > Θ) then
6: clusters← clusters ∪ {{sentence}}; . create a new cluster
7: else
8: nearestCluster ← nearestCluster ∪ sentence . add to nearest cluster
9: end if

10: end for
11: for each cluster ∈ clusters do . evaluate clusters and generate updates
12: if cluster is not published and w(cluster) > µ then
13: bestSentence = arg maxs∈cluster v(s) . find best sentence in cluster
14: updates← updates ∪ (document.timestamp, bestSentence)
15: set cluster to published
16: end if
17: end for
18: end for
19: return updates

Before we apply our system for incremental update summarization to the document stream, we apply
three preprocessing steps. We remove duplicate occurrences of web pages, utilize a boilerplate removal,
and stem all words in the source documents with the well-known Porter-stemming algorithm (Porter,
1980).

3.1 Sequential Clustering

For the first part of our proposed incremental update summarizer, we adapt the sequential clustering
algorithm (Theodoridis and Koutroumbas, 2009) to IUS. The algorithm iterates over all sentences in
the currently processed document (line 3) and searches for the nearest existing cluster for each sentence
using a similarity measure (line 5), which is described below. If the similarity to all existing clusters
is lower than a fixed threshold Θ or no cluster has been created yet, a new cluster is created and the
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sentence is added to the new cluster (line 6). Otherwise, the sentence is added to the nearest existing
cluster (line 8).

The similarity measure reduces the similarity between a sentence s and a cluster c to the similarity
between the sentence s and the first sentence of the cluster c. This has several advantages in comparison
to considering all sentences in the cluster. First, the center of the cluster is fixed when we compare only
with the first sentence of the cluster. This prevents the cluster from a topic drift. Adding more and more
sentences and also using the newly added sentences in the similarity calculations could instead change the
initial notion of the cluster significantly since the center of the cluster could move. We observed that this
can be a serious issue which leads to a poor clustering. Second, the approach is computationally efficient
in comparison to an approach where we would compute the similarity by considering all sentences in a
particular cluster. The number of maximal comparisons is reduced from the number of all sentences in
a topic to the number of clusters created for a topic. Third, it emphasizes the notion of a cluster as a set
of sentences, each of which contains the same information. The system chose the first sentences of each
cluster to be its representative since each first sentence has a special role. This special role derives from
the fact that the first sentence of each cluster was the reason why the cluster was created. The sentences
did not fit to another cluster and were the reason for creating its own, new cluster.

The actual similarity measure (line 4+5) is based on Cosine similarity based on TF-IDF vectors (Salton
and McGill, 1986). To calculate the TF-IDF vectors, we use a background corpus B created from
100,000 randomly sampled English Wikipedia articles in addition to all Wikipedia articles which are
longer than 10,000 characters (5,794 documents). We use DKPro Similarity (Bär et al., 2013) to calculate
the Cosine similarity. A detailed analysis of similarity measures is given in Section 5.2.

3.2 Measuring Importance

After the sentences in a document are clustered, the system evaluates the current cluster landscape to
detect important information. We introduce the utility functions u, v, and w to measure the utility
of tokens, sentences, and clusters, respectively. The score of a cluster c is measured with a cluster
utility function w and equals to the sum of the scores of all sentences si in the cluster. We define
w(c) =

∑
si∈c v(si), where v is a utility function for sentences. Summing the scores of all sentences in a

cluster addresses the property of the corpus that more important information is repeated more frequently
in the source documents since larger clusters obtain higher utility scores (c.f. Section 1). The score of a
sentence s is defined as the sum of the weights of the tokens ti contained in sentence s. Thus, we define
v(s) =

∑
ti∈s u(ti), where u is a utility function for a token. In the following, we define a contextual

importance measure to estimate the utility of a single token. Since we summarize an ongoing event and
do not know which documents will appear later in the stream, we cannot compute TF-IDF scores over all
documents. Nevertheless, we want to estimate how salient a token is relatively to the already observed
documentsDτ at time τ . This will provide us with a signal about the relative relevance of the tokens very
similarly to the well-known TF-IDF. To measure the importance of a token, we first define a context-free
utility function ucf in Equation 1. This gives us an impression on how salient a token is in a document
collection Dτ . Since the document collection Dτ changes after each time step τ , the utility scores are
constantly updated when new documents are processed. We define

ucf (t,Dτ ) =
∑
D∈Dτ

nD(t)
|D| · log

( |B|
nB(t)

)
(1)

where nB(t) denotes the number of occurrences of the token t in the background corpusB and |B| refers
to the total number of tokens in B. Unknown tokens, which do not appear in the background corpus (i.e.
nB(t) = 0), are ignored in the calculation of sentences importance. The contextual similarity measures
defined in Equation 2 takes already published tokens into account when estimating the utility of a token.
It captures therefore the importance of a token with respect to already published tokens. Hence, it
avoids publishing sentences which are similar to already published sentences by discounting the scores
for already published tokens and therefore provides redundancy avoidance implicitly. We discount the
context-free values by dividing the context-free score ucf (t,Dτ ) by the number of occurrences of token
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t in the already published updates. We define uc(t,Dτ ) in Equation 2, where nU (t) denotes the number
of occurrences of token t in the current list of updates U .

uc (t,Dτ ) =
vcf (t,Dτ )
1 + nU (t)

(2)

3.3 Publishing an Information Update

A cluster is considered as sufficiently important if a fixed threshold µ is exceeded (line 12). As a con-
sequence, one sentence from the cluster is published (line 14). The threshold can easily be adapted on
demand to produce more or less verbose summaries. If a cluster exceeds the threshold, the best sentence
according to the sentence utility score v is published. The cluster is marked as published in this case
(line 15), which means that the cluster will not be selected in the future.

4 Evaluation

In this section, we describe the evaluation of our approach. First, we provide detailed information about
the used evaluation data in Section 4.1. The evaluation methodology is described in Section 4.2. We
use a trace-driven simulation which simulates the course of events to evaluate our system. Results are
presented in Section 6 after a detailed analysis of our system in Section 5.

4.1 Data

As evaluation dataset, we use the TREC-TS-2015RelOnly3 dataset, which was created by the organizers
of the 2015 Temporal Summarization shared task (Aslam et al., 2015). The corpus is a filtered version
of the KBA Stream Corpus 20144, contains documents from various text genres like mainstream news
articles, blogs/microblogs, and forum posts, and is divided into 21 clusters of documents. Each cluster
represents one topic and has additional meta-data about the start and the end of the event as well as a
query term indicating the topic of the event. Each document has sentence segmentation annotations and
is guaranteed to contain at least one relevant sentence for the topic. All documents in the corpus have an
associated timestamp which equals the crawling time of the document.

Figure 1: Illustration of the TREC-TS dataset. Information nuggets were retrieved from Wikipedia
articles and annotated with timestamps at which this information became publicly available. Sentences
in the source documents are matched against the extracted information nuggets.

For the evaluation in the shared task, the organizers extracted time-stamped information nuggets based
on the Wikipedia article revision histories of the corresponding events. In a first step, information nuggets
were extracted from the revision histories by the track organizers. The nuggets were classified with
an importance score of 1, 2, or 3, and tagged with a timestamp, which represents the time when this
information became publicly available. In a second step, sentences were pooled from each submission
in the TREC-TS 2015 shared task. For each submission, at most 60 sentences were pooled per topic and
were manually matched with the extracted information nuggets. A sentence can match multiple nuggets
as well as no nugget. Figure 1 illustrates the annotation. Due to the huge annotation effort, only a small
set of sentences in the corpus is labeled. This is problematic, since one cannot train, validate, or evaluate
a system accurately without additional annotation effort.

3http://dcs.gla.ac.uk/˜richardm/TREC-TS-2015RelOnly.aws.list
4http://trec-kba.org/kba-stream-corpus-2014.shtml
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4.2 Methodology

In the task of IUS, the documents have to be processed in temporal order. The result of a system is a list
of updates. When a system decides that a sentence from the stream should be published, this particular
sentence is marked with the timestamp of the currently processed document according to Algorithm 2.

Algorithm 2 Incremental Update Summarization (IUS)
S = summarizing system; documents = time-ordered list of documents; updates = ∅

1: for each document ∈ documents do
2: t← document.time
3: S.process(document)
4: updatest ← S.getUpdates()
5: for each u ∈ updatest do updates← updates ∪ {(t, u)} end for
6: end for
7: return updates

The systems are not allowed to use information from the future to make this decision. Incorporating
information that only became available after the current timestamp is not allowed. One example for such
an improper use of information would be the computation of TF-IDF values over the whole corpus since
this would provide information about which words will become important in the future.

In our evaluation, we use the same metrics as in the TREC-TS 2015 shared task. The first metric is
normalized expected gain nEG(S). This metric is comparable to precision since it measures whether a
system publishes updates which are on-topic and novel. It will give a low score to systems which publish
irrelevant or redundant information. The second metric C(S) measures the comprehensiveness of a sum-
mary. It is similar to recall since it measures how many of the information nuggets that could have been
retrieved are covered by the summary. Systems which miss a large amount of important information will
obtain a low score according to C(S). A third metric, the expected latency metric E[Latency], measures
to which degree the information in the summary is outdated.5 This metric reflects the requirement that
systems are supposed to publish sentences as early as possible to produce the maximal benefit for the
users. The later a system identifies important information, the lower its expected latency score. The
final measure H combines the three individually measured properties precision, recall, and timeliness
and served as official target measure for the task and is also our main metric to evaluate the systems.
It computes the harmonic mean of a latency discounted version of nEG(S) and a latency discounted
version of C(S). We refer to Aslam et al. (2015) for more detailed information about the metrics.

5 Analysis

In the following, we provide a detailed analysis of our system. We investigate the impact of three parts
of our system: the boilerplate removal (Section 5.1), the used similarity measure (Section 5.2), and the
clustering (Section 5.3).

5.1 Boilerplate Removal

In this section, we evaluate the boilerplate removal preprocessing step in terms of precision and recall.
Although preprocessing is not part of the contribution of this paper, it has an impact on the system
performance and is therefore discussed briefly. False positive errors made by the preprocessing cannot
be corrected by the subsequent clustering and therefore limits the performance of the overall system
irrevocably. It gives also an impression about the dataset itself which is otherwise hard to grasp. For the
analysis, we use only non-duplicate documents (i.e. only the first version of each document). Since we
do not have gold standard boilerplate removal data for the dataset, we use the nugget annotations instead.
Table 1 provides the results of this analysis. Since both boilerplate systems work on the document level,
we had to map the result of the boilerplate removal to single sentences. To do this, we used the Jaccard

5The name for the metric is a little counter-intuitive, since it used as a discount factor for nugget importance. A value of 1
means that the update is in-line with the Wikipedia article and results in no discount. Values smaller than 1 mean that an update
was only published after it was included in the reference. Values bigger than 1 mean that a system published a nugget before it
occurred in the Wikipedia article the first time.
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Boilerplate system Similarity Thr Max length tp tn fp (critical) fn
- - - 5 294,993 8,472 180 474,017
- - - 6 341,444 8,396 256 427,566
- - - 7 372,331 8,272 380 396,679
- - - 8 394,354 8,112 540 374,656
- - - 9 416,763 7,908 744 352,247
- - - 10 436,579 7,641 1,011 332,431

Kohlschütter et al. (2010) Jaccard 0.6 5 684,059 4,266 4,386 84,951
Kohlschütter et al. (2010) Jaccard 0.8 5 714,653 3,194 5,458 54,357
Kohlschütter et al. (2010) Cosine 0.6 5 639,374 5,706 2,946 129,636
Kohlschütter et al. (2010) Cosine 0.8 5 695,350 3,859 4,793 73,660

Habernal et al. (2016) Jaccard 0.4 5 682,985 4,392 4,260 86,025
Habernal et al. (2016) Jaccard 0.6 5 721,033 3,187 5,465 47,977
Habernal et al. (2016) Cosine 0.6 5 686,671 4,340 4,312 82,339
Habernal et al. (2016) Cosine 0.8 5 729,665 2,820 5,832 39,345

Table 1: We report the performance according to true positives (tp), true negatives (tn), false positives
(fp), and false negatives (fn) of the length cutoff baseline and two boilerplate removal system. False
positives (falsely pruned valuable sentences) are critical, since the pruned sentences are not processed by
the following sequential clustering.

and the Cosine similarity. We tagged the sentence as boilerplate if it was less similar to the most similar
sentence in the text retrieved by the boilerplate system according to a threshold and had a maximum
length of 5. We observe that we can discard a lot of sentences with only a lengths criterion without
too many false positives. Both boilerplate removal systems, Boilerpipe (Kohlschütter et al., 2010) and
the tool used in Habernal et al. (2016), do not perform very well in combination with the two similarity
measures since both generate a large number of false positives.

5.2 Similarity Measures
One key component of summarization systems are similarity measures which estimate the semantic sim-
ilarity of two texts or sentences. We therefore performed experiments with different measures in the
TREC-TS dataset. We evaluate the similarity measure by comparing the score of similar sentences,
which contain exactly the same nuggets and for dissimilar sentences which do not share any nuggets.
We define sets of sentence ss1, . . . ssL according to the information nuggets contained in the sentences.
Since each sentence can contain multiple nuggets, we first define nugget sets ns1, . . . , nsM which repre-
sent all sets of nuggets similarly to label powersets in multi-label classification. Sentences in a particular
sentence set ssi contain exactly the same information nuggets, i.e. each sentence is contained in exactly
one sentence set. For sets ss1, . . . ssL, and sentences S = {s1, . . . , sK} we define the sim score of a
similarity measure σ as the average similarity of all similar sentences

sim(σ) =
L∑
l=1

1
|ssl|

|ssl|∑
l1,l2=1,l1<l2

σ(sl1 , sl2) (3)

and the dissim score of a similarity measure σ as the average similarity of all dissimilar sentence

dissim(σ) =
L∑

l1,l2=1,l1<l2

1
|ssl1 | · |ssl2 |

∑
s1∈ssl1
s2∈ssl2

σ(s1, s2). (4)

An appropriate similarity measure can perform both, assigning high scores to similar sentences and
low scores to dissimilar sentences. Therefore, we measure both by computing diff(σ) = sim(σ) −
dissim(σ). We report the scores of various similarity measures in Table 2.

We observe that the TF-IDF-based Cosine similarity with log +1 IDF weighting and L2 normalization
performs best.6 For details regarding the similarity measures, we refer to Bär et al. (2013). Cosine sim-
ilarity based on the sum of GloVe (Pennington et al., 2014) word embeddings to represent a sentences

6The results provided in the table were computed for the complete dataset. Results on the splitted datasets, which were used
for the evaluation of the system, confirmed the results.
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TF-IDF-based Cosine Jaccard-n Word embedding-based Cosine
random log+1 L1 log+1 L2 binar L2 n = 1 n = 2 unweighted weighted

sim(σ) 0.50 0.16 0.41 0.40 0.29 0.19 0.79 0.69
dissim(σ) 0.50 0.01 0.15 0.20 0.10 0.01 0.70 0.52
diff(σ) 0.00 0.15 0.26 0.20 0.19 0.18 0.09 0.17

Table 2: Results of sim(σ) and dissim(σ) for different similarity measures.

yields the lowest results.7 A weighted version, where we multiply the word vectors with the correspond-
ing IDF score achieves better results than the unweighted Cosine based on the word embeddings.

5.3 Clustering
In this section, we evaluate the cluster landscape by computing cluster purity (Manning et al., 2008)
and nugget concentration. Cluster purity measures how many different nugget sets (ns1, . . . , nsM ) are
contained in the clusters. According to the underling idea that one cluster represents one nugget set, one
cluster should only contain sentences that belong to the same information nuggets. With the definition
of a cluster as a set of sentences (i.e. c ⊂ S), the cluster purity of the clusters C = {c1, . . . cI}, sentence
sets ss1, . . . ssL, and K sentences (Manning et al., 2008) is defined as

purity(C) =
1
K

I∑
i=1

max
l
|ci ∩ ssl| (5)

Similarity to purity, we also define a purity purity+ where we do not consider the sentence set which
contains all sentences without any nuggets as majority class in maxl|ci ∩ ssl|. This provides a better
insight into the mixture of non-empty nugget sets. In a perfect clustering, we get a score of 1, i.e. that
all clusters contain only sentence which belong to a particular nugget set. Since a purity of 1 is easy to
achieve with K clusters, we introduce the term nugget concentration (nc), which is defined as

nc =
1
L

L∑
l=1

maxi|ci ∩ ssl|
|ssl| (6)

Boilerplate system Θ # cluster purity purity+ nc nc (after bpr)
max length 8 1.0 1 0.4874 0.1779 0.5134 1.0000
max length 8 0.9 563 0.5759 0.4310 0.4780 0.8914
max length 8 0.8 800 0.6261 0.5151 0.4745 0.8791
max length 8 0.7 893 0.6764 0.6191 0.4717 0.8670
max length 8 0.6 950 0.7259 0.7019 0.4718 0.8648

Kohlschütter et al. (2010) + Cosine < 0.6 1.0 1 0.4466 0.1923 0.4729 1.0000
Kohlschütter et al. (2010) + Cosine < 0.6 0.9 229 0.5328 0.4336 0.4473 0.9038
Kohlschütter et al. (2010) + Cosine < 0.6 0.8 390 0.5784 0.5186 0.4402 0.8871
Kohlschütter et al. (2010) + Cosine < 0.6 0.7 534 0.6613 0.6316 0.4422 0.8780
Kohlschütter et al. (2010) + Cosine < 0.6 0.6 618 0.7360 0.7361 0.4404 0.8693

Habernal et al. (2016) + Cosine < 0.8 1.0 1 0.4406 0.1815 0.3853 1.0000
Habernal et al. (2016) + Cosine < 0.8 0.9 107 0.5299 0.4294 0.3671 0.9291
Habernal et al. (2016) + Cosine < 0.8 0.8 189 0.6058 0.5519 0.3675 0.9253
Habernal et al. (2016) + Cosine < 0.8 0.7 254 0.7078 0.6909 0.3663 0.9195
Habernal et al. (2016) + Cosine < 0.8 0.6 323 0.7826 0.7900 0.3558 0.9219

Table 3: Results of the cluster evaluation for difference boilerplate versions and difference values of Θ.

We use for the analysis the TF-IDF-based Cosine similarity with log + 1 IDF weighting and L2
normalization (according to Section 5.2). Since the boilerplate removal can have a significant impact, we
report the results based on different boilerplate removal versions. In Table 3 we see that more clusters
(due to a lower Θ) lead to a higher purity as expected. Nugget concentration decreases, because it
becomes more likely that one nugget set is distributed across multiple clusters. If we only consider

7We used pre-calculated word embeddings from http://nlp.stanford.edu/projects/glove
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sentences which passed the boilerplate removal step (column nc (after bpr)) we see that the system
performs best with the stricter boilerplate removal. This can be explained due to the fact that the nugget
sets are smaller and a distribution across multiple clusters is less likely. If we consider all sentences in
the data, the system based on the first boilerplate removal performs best (column nc). A strict boilerplate
removal with many false positives harms the overall performance of the systems. However, processing
fewer sentences in the rather computational expensive clustering (compared to the boilerplate removal)
leads to better computational performance. A better boilerplate removal would therefore be desirable to
improve the performance in IUS.

6 Results

We present in Table 4 the evaluation scores of our system as well as the official evaluation scores of
subtask 3 of the TREC-TS 2015 challenge. The results for our systems are computed with the original
evaluation script provided by the TREC-TS organizers. The evaluation results of the other systems
are taken from the overview paper of the TREC-TS shared task (Aslam et al., 2015). Due to per-task
normalization, metric values across the different subtasks at TREC-TS are not comparable. We only
provide a lower bound evaluation of our system, generated by only using the annotations provided by
the TREC-TS organizers. As described in Section 4.1, only a small subset of sentences in the corpus is
annotated. All non-annotated sentences are considered to be unimportant by the evaluation script, which
means that valuable sentences might be misinterpreted as noise when using this dataset without additional
annotations. This disadvantage does not apply to the reference systems, since at least the top 60 sentences
of each reference systems were labeled for each topic. In total, 57.99% of the sentences selected by
our system were not annotated. We report this number for a better assessment of the performance of
our system. Although our system might get penalized for valuable sentences, we outperform the other
approaches. As described in Section 1, we expect that a sequential clustering approach should be able to
detect important information very early. The timeliness of our approach (column E[Latency]) confirms
this expectation and is an important factor for the superior performance of our system. We also observe
that our system is able to generate a reasonable balance of precision (nEG(S)) and recall (C(S)).

System H E[Latency] F1(nEG(S),C(S)) nEG(S) C(S)
SeqCluSum (lower bound) 0.1526 0.8013 0.1842 0.1485 0.2426
Raza et al. (2015) 0.0853 0.3983 0.1773 0.1840 0.1710
McCreadie et al. (2015) 0.0639 0.5335 0.1189 0.0667 0.5459
McCreadie et al. (2015) 0.0508 0.6741 0.0758 0.0402 0.6590

Table 4: System results sorted by descending H, the main metric used in the TREC-TS shared task.
The columns nEG(S), C(S), and E[Latency] show the results according to evaluation metrics described
in Section 4. Since the main metric is computed by building a harmonic mean of latency discounted
versions of nEG(S) and C(S) there is no point in achieving high scores in one of these measures while
achieving only a low score according to the other metric.

To find reasonable values for the parameters Θ and µ, we manually evaluated our system with a cross-
validation. We did this by randomly splitting the topics in two evenly sized sets of topics and used one
of the sets as test set while using the other one for parameter optimization. As described in Section 4.1,
we did this on the basis of a sparsely labeled dataset. We expect better results if we could use more
densely labeled data. We use the Cosine similarity with log +1 IDF weighting and L2 normalization (cf.
Section 5.2). We could not determine a superior boilerplate removal in Section 5.1 and Section 5.3 and
therefore apply (Kohlschütter et al., 2010) since it is considered to be a well-known standard boilerplate
removal system. During the cross-validation, we found H scores of 0.1664 and 0.1858 in the validation
sets which resulted in H scores of 0.1550 and 0.1501 in the test sets. We report the averaged scores of
both test sets in Table 4.
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7 Discussion

The sequential clustering depends strongly on the accuracy of the used similarity measure. Since we
only use predefined standard similarity measures, we assume that a more sophisticated selection of sim-
ilarity measures could lead to an improvement of the performance. More abstract semantic methods
or additional knowledge resources may model the semantic similarity of words and sentences better.
We therefore assume that the performance of the similarity and redundancy detection can be further
improved.

Another improvement of the similarity measure would be to utilize the weights of the tokens, which
are used during the contextual measuring of importance also in the clustering. If we weight important
tokens higher in the similarity measure, we could achieve that the clusters would be more focused on a
particular information nugget.

The clustering can also be improved by introducing a re-clustering step, which could split a cluster
into multiple clusters when the system detects that one cluster contains too diverse sentences. This is
currently prevented by the parameter Θ. By enabling the system to execute a re-clustering step, this
parameter could become obsolete. Furthermore, the system could merge multiple clusters to one cluster
if it detects that the content of the clusters are more similar as the seed sentence suggested.

Our model relies heavily on centrality as a features to detect important information timely. Kedzie et
al. (2015) mentioned that using centrality as signal for importance is problematic in IUS since it requires
some time until an important information is central enough in the news stream. However, the burstiness
of news streams can diminishes this issue. A system which is independent from the centrality features
would nevertheless be able to detect new important information in big data streams earlier than our
systems.

To evaluate our system, we used a cross-validation to optimize the parameters µ and Θ in validation
sets and applied the values to test sets. This limits the performance of our system, since the topics have
different sizes and different amounts of interesting information. Therefore, an extension of our system
where the parameters µ and Θ are adaptive could further improve the performance. µ for example, could
depend on the time since no update has been published. If there is a long time span with no updates, µ
could be lowered to increase the probability that there will be a new message soon.

8 Conclusions

In this paper, we proposed SeqCluSum, a system for incremental update summarization based on se-
quential clustering and contextual importance measures. It combines the strength of the two prior pro-
posed techniques, namely real-time processing pipelines or clustering approaches. The sequential clus-
tering arranges similar sentences together while the contextual importance measures score the clusters
and sentences according to their contextual importance. The contextual importance measures estimate
the importance of information as well as their novelty jointly. The evaluation shows that even the lower
bound scores of our system outperforms previous state-of-the-art systems. We obtain better latency and
higher H scores, which means that our system detects important information earlier and with a better
trade-off between precision and recall. We therefore conclude that sequential clustering in combination
with contextual importance measuring is well-suited for the task of IUS. Furthermore, our system does
not use the provided query and is hence able to detect important information without using query ex-
pansion, which was often used by previous systems to improve recall. We do not use any handcrafted
knowledge bases to get additional domain-knowledge, which is another advantage of our system.
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