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Abstract

In this paper we discuss three key points related to error detection (ED) in learners’ English.
We focus on content word ED as one of the most challenging tasks in this area, illustrating our
claims on adjective—noun (AN) combinations. In particular, we (1) investigate the role of con-
text in accurately capturing semantic anomalies and implement a system based on distributional
topic coherence, which achieves state-of-the-art accuracy on a standard test set; (2) thoroughly
investigate our system’s performance across individual adjective classes, concluding that a class-
dependent approach is beneficial to the task; (3) discuss the data size bottleneck in this area, and
highlight the challenges of automatic error generation for content words.

1 Introduction

Error detection (ED) in the prose of ‘English as a Second Language’ (ESL) learners has recently attracted
much attention (Ng et al., 2014; Ng et al., 2013; Dale et al., 2012; Dale and Kilgarriff, 2011). Earlier
work on ED in ESL writing mostly focused on grammatical errors and errors in function words (Felice
and Pulman, 2008; Gamon et al., 2008; Tetreault et al., 2010; Gamon, 2010; Rozovskaya and Roth,
2010a; Dahlmeier and Ng, 2011b; Ng et al., 2013). Lately, the focus has shifted to other error types,
with the recent shared tasks encompassing all errors (Ng et al., 2014; Daudaravicius et al., 2016). In Ng
et al. (2014), errors in content words are reported to be the second most frequent error type among 28
categories, accounting for 11.8% of all errors in the training and for about 14% in the test data, yet most
teams scored poorly in this category suggesting that this is a challenging and mostly unsolved problem.
Current ED approaches can be broadly described as either modular, addressing one error type in par-
ticular, or as comprehensive, spanning all error types, as in case of the SMT-based techniques (Felice et
al., 2014; Junczys-Dowmunt and Grundkiewicz, 2014). The modular approaches rely on the systematic
and recurrent nature of the error patterns, and on the availability of closed confusion sets which en-
able casting the task as a multi-class classification problem. Since content words do not assume a finite
set of confusions, it has been shown that ED for these combinations cannot be performed in a similar
way (Kochmar and Briscoe, 2014; Rozovskaya et al., 2014). State-of-the-art SMT-based approaches
also struggle with content word errors. We argue that ED systems for words which carry lexical meaning
should necessarily involve a semantic component, which is typically not needed for other error types.
From a pedagogical point of view, detecting content word errors is an important task. Since content
words carry the semantics of a sentence as well as the communicative intent of the writer, incorrect uses
may lead to misunderstandings and meaning distortions: for example, classic and classical are frequently
confused by language learners, yet classic dance and classical dance clearly have different denotations.
The importance of content word knowledge in language learning has been demonstrated in the previous
ESL studies: James (1998) points out that language learning itself is sometimes equated with mastering
vocabulary. Leacock et al. (2014) mention an experiment in which teachers of English were asked to
rank errors according to their gravity, and word choice errors were ranked as one of the two most serious
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error categories. The study of Leacock and Chodorow (2003) also demonstrates that errors in content
words have a direct impact on overall results in the Test of English as a Foreign Language (TOEFL).

In this paper, we focus on the underexplored task of content word error detection, independently of
correction (see §2). We follow the semantically motivated approach outlined by Kochmar and Briscoe
(2014) (henceforth K&B) for adjective—noun (AN) combinations,’ building on their work by integrating
context information in the classification. That is, we want to learn that although classical dance is more
frequent than classic dance, the latter is correct in a context such as They performed a classic Scottish
dance. In §3, we propose that features based on distributional topic coherence (Newman et al., 2010) can
catch semantically anomalous ANs by modelling the effects of errors on the coherence of their context.
A simple system based on this idea obtains state-of-the-art results. In §4, we show that the combination
of the proposed in-context (/C) system with the out-of-context (OOC) ED system of K&B can further
improve results, as long as the OOC system’s error recall is sufficient. A thorough investigation of our
system reveals that its performance is dependent on the adjective classes (see §5). This leads us to the
conclusion that content word errors should be treated in a class-dependent way.

Finally, we show that availability of high-quality learner data for training the ED algorithms is of
paramount importance. We note that certain error types, having recurrent error patterns, allow for
straightforward artificial error data generation. However, we experimentally show that quality artificial
data cannot be so easily generated for content words (see §6).

2 Related work

2.1 ED in content words

Previous approaches to error detection and correction of content words fall into two paradigms. One
focuses on correction only, assuming that errors are detected by a separate ED algorithm (Liu et al.,
2009; Dahlmeier and Ng, 2011a). The second performs error detection and correction through a single
algorithm (Chang et al., 2008; Futagi et al., 2008; Park et al., 2008; Yi et al., 2008). The latter type relies
on comparison of the learner’s choice with possible alternatives: if any alternative scores higher than the
original according to the chosen frequency-based metric, the original combination is flagged as an error
and the alternative is suggested as a correction (Leacock et al., 2014). Approaches based on this idea have
a number of weaknesses. In particular, they rely on the availability of a set of plausible alternatives and
are unable to detect errors in the absence of such alternatives, even though a number of studies (Leacock
et al., 2009; Chodorow et al., 2010; Andersen et al., 2013) have shown that ED alone (without correction)
is useful for language learners. Crucially, K&B have also shown that some original word combinations
can be felicitous even when some alternatives score higher, leading to over-corrections which can be
hugely detrimental to ESL learners. Such considerations speak for considering ED as a separate task.

Prior proposals have rarely analysed content word errors from a semantic perspective. K&B have
focused on ED for AN phrases and shown that approaches aimed at detecting semantic deviance can
also identify errors in content words. These authors cast ED as a binary classification task and train
a machine learning classifier using features derived from compositional distributional semantics. They
obtain 81% accuracy, and show that their semantically motivated approach outperforms the state-of-the-
art in ED so far. One drawback of their method is that they do not take context into account: features
are based on the distributions of an AN’s components and their composition, but not on the particular
context where it is used. When evaluating their system in context by comparing the system’s predictions
with human, context-sensitive annotation, the authors note that accuracy drops to 65%. Our approach
takes both semantic aspect and surrounding context into account.

2.2 Learner data

Since the standard approaches to ED rely on machine learning, availability of learner data is of paramount
importance. Some error types allow for straightforward generalisation from seen examples (e.g., errors
in function words or mechanical errors), but errors in content words appear to be less systematic. There-
fore, it is crucial to have sufficient, thoroughly annotated learner data. To the best of our knowledge,

"We also believe that our approach can ultimately be applied to other types of content word combinations.
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the AN dataset released by K&B? is the only publicly available dataset of learners’ errors in content
words that satisfies quality requirements. ANs are labelled with error type (semantically-related or form-
related confusion, or no relation) and possible corrections are suggested. The data contains a two-level
annotation, with the ANs being labelled as correct or incorrect out of their context (OOC), as well as in
the original context of use (/C). For example, classic dance is annotated as correct OOC, but incorrect
IC whenever it is used erroneously in place of classical dance. The dataset contains 798 ANs that are
extracted from the Cambridge Learner Corpus (CLC)? and are unattested in the British National Cor-
pus (BNC). This data is interesting for a linguistically-motivated investigation of learners’ errors: K&B
demonstrated that approaches that simply rely on frequency and collocational strength do not perform
well on it.

The dataset contains 892 unique contexts, and in our experiments, we use a subset of 824 contexts (see
§3). The lower bound for /C-annotated ANs is estimated as the majority class baseline and equals 0.55.
The upper bound estimated as the average inter-annotator agreement is 0.74.

3 Topic coherence for error detection

3.1 Topic coherence

Topic coherence is a measure of the semantic relatedness of the items in a given set of words, which
has mostly been studied from the perspective of ‘topic modelling’ techniques (Steyvers and Griffiths,
2007). Topic modelling is a text classification method which generates so-called topics from a corpus by
analysing word co-occurrences, and subsequently models any new text in terms of those topics. A topic
is expressed as a list of keywords supposed to be highly characteristic for a subject: for instance, {film,
actor, cinema, Hollywood} might be the main keywords for a film topic. In order to obtain an intrinsic
evaluation of such models, recent work has started investigating whether topics produced by standard
techniques can be said to be ‘coherent’, i.e. whether topic keywords belong together, from a human
point of view (Chang et al., 2009; AlSumait et al., 2009; Newman et al., 2010; Mimno et al., 2011).

Even though they stem from research on topic modelling, topic coherence measures can be applied to
any set of words, and might for instance tell that the set {chair, table, office, team} is more coherent than
{chair, cold, elephant, crime}. They are well suited to model semantic association and we hypothesise
that they can tell us something about the semantic validity of a sentence.

3.2 Experimental setting

Following Newman et al. (2010), we define the coherence COH of a set of words w;...w,, as the mean
of their pairwise similarities:

COH(wi..n) = mean{Sim(w;,w;),ij € 1..n,i < j}

We estimate similarity as the cosine distance between two words in a distributional space (Turney and
Pantel, 2010). In that setup, the meaning of a word is a vector that lives in a space where dimensions
correspond to linguistic contexts. The vector’s components reflect how characteristic a context is for the
word under consideration.

Our hypothesis is that some lexical errors might result in a sharp variation of semantic coherence.
Consider an example from learners’ data:

€Y ... it was very difficult for my ’ friends ‘ to ’ call ‘ me with the classical

The adjective classical is distributionally associated with the arts, collocating with nouns like dance,
music, style or literature. Its similarity to friend, call or phone is much lower than the pairwise similarities
of those words alone. We hypothesise that the inclusion of the unrelated classical in the sentence would
thus have an adverse effect on its overall coherence.

http://ilexir.co.uk/applications/adjective—noun-dataset/
http://www.cup.cam.ac.uk/gb/elt/catalogue/subject/custom/item3646603/
Cambridge-International-Corpus—-Cambridge-Learner—Corpus/
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Context size 1 2 3 4 5

SVM (low) 0.59 (£0.02) | 0.58 (£ 0.02) | 0.58 (£0.01) | 0.58 (+=0.02) | 0.58 (£ 0.02)
SVM (high) | 0.59 (£ 0.02) | 0.59 (£ 0.03) | 0.58 (£ 0.02) | 0.59 (£ 0.02) | 0.59 (£ 0.02)
+adj. (low) | 0.62 (£ 0.04) | 0.62 (£ 0.04) | 0.62 (£ 0.03) | 0.62 (£ 0.02) | 0.62 (£ 0.04)
+ adj. (high) | 0.64 (& 0.04) | 0.66 (£ 0.06) | 0.64 (£ 0.04) | 0.63 (+0.02) | 0.64 (£ 0.02)

Table 1: SVM classification accuracy over different context sizes with three COH features, and with
added adjective feature. The ‘low/high’ scores are the lowest/highest across all values of the C parameter.

Our learners’ data consists of the AN dataset (see §2), spell-checked to correct orthographic errors.
We build a distributional semantics space from the BNC,* using lemmatised word windows as context
(size=10), the top 2000 most frequent content words as dimensions, and Positive Pointwise Mutual
Information (PPMI) as weighting measure.®> For each instance in the learners’ data, we define a context
window W as the AN under consideration and n words on each side of that AN. Allowable context
words are nouns, verbs, adjectives and adverbs for which a BNC distribution is available. When the AN
contains a word not found in the BNC, we discard the corresponding instances, ending up with 824 items
out of the original 892 in the AN dataset. We are interested in three measures:

e the topic coherence COH of context W;
e the topic coherence COH-4; of the context without the adjective;

e the topic coherence COH-,,0un of the context without the noun.

Our starting hypothesis is that when the AN is erroneous, omitting either the adjective or the noun in
the calculation results in a significant variation of the original coherence score.

3.3 Topic coherence results

We perform SVM classification with 5-fold cross-validation, using the coherence figures COH, COH.- 44
and COH-poun as features. The order of the data is randomised before creating the folds, and the ra-
tio of correct/incorrect instances kept equal between folds (55% correct to 45% incorrect). We use
SVM" 9" (Joachims, 1999) with an RBF kernel to classify the data. We tune penalty parameter C, exper-
imenting with the values of C in the range 10-200. Since the size of the AN dataset does not allow for
the use of a development set, we report the lowest and highest system performance across all folds.

Table 1 shows that our simple 3-feature system reaches 59% accuracy. We attempt to improve on this
by specifying which adjective occurs in the AN: we add 61 binary features to the SVM, corresponding to
the 61 different adjectives in the data, and ‘turn on’ the feature matching the adjective under consideration
for each data point. This step results in a further increase in accuracy, reaching 66%, which is on a par
with the result reported by K&B when taking the OOC annotation to an in-context setting. This result is
highly encouraging since our system is overall much simpler: given an available distributional semantic
space, coherence values can be computed very straightforwardly and the SVM classifier relies on few
features. We also note that the system is stable across various values of C: the differences between lowest
and highest scores are not significant given the variability observed across all 5 folds. In the rest of this
paper, we only report our highest scores under the understanding that varying C does not significantly
affect results.

The best accuracy is obtained for a context size of 2, but the differences in performance between
various context sizes are not statistically significant either. Most likely, the ideal context window for the
task depends on the sentence. In some cases, larger context is actually harmful to ED, as in Ex. 2 below,
where the context words are mostly about shopping/buying and do not have a straightforward association
with either cat or funny. In contrast, Ex. 3 needs a larger window to catch that the sentence is not about
different bears drinking but rather about a restaurant with beers.

*nttp://www.natcorp.ox.ac.uk/

5The space was built using the DISSECT toolkit (Dinu et al., 2013), available at http://clic.cimec.unitn.it/
composes/toolkit/index.html.
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System description Classifier | Accuracy
COH 83.3 SVM 0.66
+ COMPDIST | feat. combination (§4.1) | SVM 0.68
+ COMPDIST | pipeline (§4.2) SVM 0.67
+00C gold | §4.2 SVM 0.76
COMPDIST K&B DT 0.64
+ COH feat. combination (§4.1) | DT 0.66

Table 2: Classifier combination accuracies

2) I went shopping yesterday, and I've bought a new shirt. I had to buy it because it had a funny cat
on it. It was quite cheap, it costs just £4.

3) In the second one you can eat some easy food as salads, but you also can drink a great number
of different bears.

An analysis of our results shows that the classifier is well-balanced, achieving 0.66 and 0.65 preci-
sion for correct and incorrect instances, as well as 0.65 and 0.66 recall. This is an improvement over
the context-insensitive system from K&B, which scored much better recall on correct than incorrect
instances (72% vs 58%).

4 Combining classifiers

K&B showed that it is possible to classify OOC-annotated content word errors with high accuracy: the
authors reported an accuracy of 81% on this task. This means that regardless of context, we can learn that
e.g. *big quantity is incorrect. In the next set of experiments, we investigate the benefits of including
context-insensitive classifier in our system: since the ANs that are annotated as errors OOC are also
errors IC, we would expect the system to benefit overall from context-insensitive annotation.

We consider combinations of the following two systems and their respective semantic information:

e COMPDIST is the context-insensitive system of K&B, which we ran on our subset of 824 contexts.
The AN vectors are built using the multiplicative model of semantic composition (Mitchell and
Lapata, 2008). A set of measures that can distinguish between the representations of the correct
and incorrect ANs is applied, including, for example, vector length, cosine similarity between the
AN vector and the input noun, and so forth.® The values of these measures are then used by an ED
algorithm running over a Decision Tree (DT) classifier.’

e COH is the context-sensitive system presented in this paper, with three coherence-based features and
a feature representing the adjective in the AN (see §3.3).

We examine two architectures: in a first experiment, we simply concatenate the features from COM-
PDIST and COH and input the resulting vector into (a) an SVM classifier, as used in this paper; (b) a DT
classifier, as used in K&B. In a second experiment, we design a pipeline system, where the classification
of COMPDIST is fed into the topic coherence model. All results reported in this section are for a context
size of 2. A summary can be found in Table 2.

4.1 Direct feature combination

We first run COMPDIST in isolation over the /C annotation, to get a baseline accuracy. This results in a
performance of 64%, just below our COH system accuracy of 66% (see Table 2).

We then proceed with feature concatenation, starting with the full feature set and then applying ab-
lation tests to identify the best-performing features. The features are fed into the DT classifier of
K&B on one hand (line COMPDIST+COH in Table 2) and our SVM classifier on the other hand (line
COH+COMPDIST).

SFor the full feature set, please consult K&B.
"We use the NLTK implementation (Bird et al., 2009).

980



1 usual (4/4)

.83 strong (15/18)

.63 fast (7/11)

.41 historical (5/12)

1 rapid (1/1) .83 clear (5/6) .62 small (15/24) .40 economic (2/5)
1 magic (1/1) .80 actual (4/5) .62 nice (39/62) .33 deep (1/3)

1 incorrect (3/3) .75 bad (24/32) .62 important (18/29) .30 whole (3/10)

1 elder (16/16) .72 good (39/54) .60 unique (6/10) .25 heavy (2/8)

1 economical (33/33) .71 hard (5/7) .60 high (3/5) .20 true (1/5)

1 classical (5/5) .70 main (7/10) .60 electric (3/5) .18 certain (2/11)
1 classic (3/3) .70 different (29/41) .60 correct (3/5) .14 precious (1/7)
.90 funny (10/11) .69 best (36/52) .57 near (4/7) .14 particular (1/7)
.89 suitable (8/9) .68 typical (11/16) .53 wrong (7/13) .14 ancient (1/7)
.89 soft (8/9) .67 big (63/94) .50 short (6/12) 0 far (0/2)

.89 full (8/9) .66 various (6/9) .50 present (2/4) 0 false (0/2)

.89 convenient (8/9) .64 proper (9/14) .47 common (8/17) 0 electrical (0/3)
.87 large (7/8) .63 great (26/41) .42 appropriate (3/7)

Table 3: Per-adjective precision values for SVM classification, sorted from highest to lowest

Using the DT classifier, the best accuracy of the direct combination of features is 66% with the feature
set including cosine similarity to the input noun, ranked density, adjective and a coherence-based feature
based on (COH — COH.-4q;). The improvement over baseline is however not statistically significant.

Adding the COMPDIST features to the SVM COH system results in a similar improvement, reaching
68% from a 66% baseline, using the cosine similarity to the noun, and semantic neighbourhood features.

4.2 Pipeline system

To test the actual effect of the topic coherence features at in-context classification stage, we first attempt
to add the OOC gold annotation to our system, in the form of a new feature. The baseline created by the
OO0C gold annotation is very high: running the classifier over that one feature results in 73% accuracy.
Nevertheless, performance increases when the gold annotation is combined with COH. The best result is
76% — a 3% improvement (statistically significant at p = 0.03). This is over the human upper bound of
74%, and it shows that the topic coherence features perform well in contextualising the OOC annotation.

However, since a ‘real-world’ pipeline system does not have access to the gold annotations, we replace
the gold annotations with the output of COMPDIST. In this setting, the combination only produces mini-
mal improvement, reaching 67% accuracy with the SVM and 66% with the DT classifier. The reason for
this result is low error recall of the OOC system which is tuned towards high precision because of the
strong negative impact on the learners when wrongly reporting an error. While this is sensible from an
educational point of view, it means that we are only recalling 17% of erroneous ANs at the OOC stage.
We conclude that improving OOC detection can hugely benefit the overall system.

5 Adjective-dependent classification analysis

5.1 COH analysis

Our experiments with the coherence-based system showed that it is particularly accurate in classifying
form-related errors: the accuracy on classic, classical, economical, elder, electric, electrical and histor-
ical — which are responsible for 80% of the form-related errors in our data — is 77%. Otherwise, the
accuracy of the system is generally dependent on the adjective being classified. Table 3 shows precision
values for each adjective in our data.® While economical (33 instances) and funny (11 instances) achieve
100% and 90% precision respectively, certain (11 instances) and ancient (7 instances) only reach 18%
and 14%. Roughly speaking, adjectives expressing a sentiment (funny, suitable, convenient, bad, good,
best, great, nice) are to be found at the top of the table, while no such consistency is to be found for
the quantity adjectives: large, big, small, high, deep, short and heavy span a whole range of precision
values, from 87% down to 25%. We conclude that the adjectives in our dataset can behave very differ-
ently with respect to the types of errors they attract, and a single classifier may not be able to model all
cases equally well. In the next set of experiments, we thoroughly investigate our system’s performance

$Morphologically related forms, for example big and biggest, are collapsed together.
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Adjective Best training elements Accuracy
appropriate | {nice, good, best, different, bad, short, fast} 71.43%
bad {unique} 78.12%
best {nice, good, different, fast, funny, unique } 71.70%
big {proper} 68.09%
correct {nice, good, best, different, bad, short, fast, unique} 80.00%
economic {strong, typical, elder, certain} 80.00%
economical | {small, strong, typical, elder, proper, certain} 100.00%
elder {economical, small, strong, typical, proper, certain} | 100.00%
Sfunny {big} 90.91%
good {nice, best, different, fast} 70.91%
great {wrong, main} 69.05%
nice {good, best, different, fast} 67.74%
precious {funny} 71.43%
small {big, proper, funny} 68.00%

Table 4: Best training elements for a subset of adjectives, together with accuracy

across individual adjective classes. Since we lack data for a separate development set, these experiments
present the analysis of the data rather than actual classification results but we believe that these results
can inform future studies.

5.2 Modelling the AN data

We hypothesise that some adjectives behave in a similar way with respect to their interaction with topic
coherence, and may be classifiable under a joint category. Since there are no obvious confusion sets
for content words to guide category formation (see §1), we attempt to model the AN set in a purely
data-driven way. We first train a classifier over each adjective with frequency > 10, thus obtaining 27
individual classifiers. We then apply each classifier to every single other adjective and record which
one(s) perform(s) best for that item. For example, we verify how well ancient is classified by each of
the 26 models and record the classifier trained on unique as the one performing best. We take this as
evidence that ancient and unique share some properties with respect to the task.

Table 4 shows accuracy for some adjectives, with the best recorded training set(s). The overall accu-
racy, averaged over all adjectives, is 75%. This result is on a par with human performance estimated at
74% (see §2). Per-class precision is 80% on errors and 73% on correct instances, while recall is 59% for
errors and 88% for correct ANs.

We note two trends: (a) adjectives of judgement (appropriate, bad, correct, nice, precious) tend to be
best trained by other judgement adjectives (best, good, nice); (b) adjectives for which form-related errors
are frequent (classic/classical, economicl/economical, elder) tend to get their best accuracy when trained
on the same set (strong, typical, elder, certain).

These results suggest that training adjective classes separately could have a very positive impact. For
instance, let’s consider the set {nice, good, best, bad, convenient, suitable, appropriate}. Training each
adjective over the other members of the set results in an increase in performance for those adjectives:
e.g., accuracy for nice increases by 5 points, for appropriate by 14 points. Similarly, training {small,
big, large} as a set gives a 5-point improvement on our best results.

However, due to the relatively small size of the dataset, it is impossible to have a development phase to
choose the best training sets, and a separate test phase to verify robustness: confirming that bad is indeed
best trained on unique would overall require more data than the 32 and 10 instances currently available.

5.3 Adjective-specific system combination

We have shown that cCOH performs differently on adjective-specific subsets and we have assumed a
complex interaction between topic coherence and error patterns specific for particular adjectives. Our
tests using COMPDIST and COH with the DT classifier confirm that the performance of the two systems
on the adjective-specific subsets in the data is also different: for example, COH performs well on the
adjectives large, bad and good (see Table 3), while COMPDIST achieves better results on short and heavy.
In the next experiment, we combine the two systems in an integrated adjective-specific ED algorithm.
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We implement an oracle system via a voting step based on the COMPDIST and COH adjective-specific
performance. That is, for each test item, we use the prediction of the system which has best accuracy
for the particular adjective under consideration. This oracle system achieves an accuracy of 71% which
compares favourably to the results of COMPDIST (64%), COH (66%) alone, as well as the direct com-
bination of the features used by the two systems (68%). Although this result is an upper bound since
we lack data to set up a separate development set, we can reliably make two observations. First, we
confirm that using adjective-specific information in ED improves the algorithm performance. Second,
we note that the voting system’s upper bound is comparable to human performance, indicating that the
combination of a strong OOC baseline and a relatively simple semantic model of context provides the
necessary conditions for ideal results: the combined system covers all relevant information for the task,
and training on an expanded dataset can be expected to drastically improve performance.

6 Generating errors

Earlier we noted that high-quality learner data is crucial for ED and that, due to the size of the K&B
dataset, we could not verify the results of our experiments on a separate development set (§3 and §5).
Since annotated content word error data is expensive and time-consuming to produce, in this final set of
experiments we attempt to generate more data in an automated way. Artificial error generation has pre-
viously been demonstrated to be useful for function word ED (Foster and Andersen, 2009; Rozovskaya
and Roth, 2010b; Felice and Yuan, 2014). Following this line of work, we attempt to produce data by
random substitution of adjectives.

For each adjective, we extract new data from a section of ukWaC (Baroni et al., 2009) totalling 1M
tokens, POS-tagged and parsed with the RASP parser (Briscoe et al., 2006). We collect word windows
containing the adjective under consideration, using the pattern [word_»] [word_;] [ADJ] [noun]
[word41] [wordys], thus using a 2-word context around the AN. Next, we randomly shuffle the
adjectives and their contexts so that for a particular context window Wy, associated with an adjective ay,
we replace aj, with a,, — an adjective linked to another context window — assuming that in most cases,
such substitutions will produce incorrect instances. Then, we collect all incorrect instances for a given
adjective and concatenate them with an equal number of correct uses, giving us a balanced training set
for that adjective. The size of each training set is dependent on the overall frequency of the adjective,
ranging from 20 to 2600 instances. Around half of the adjectives have a training set with over 1000
instances, the vast majority (93%) have at least 100 training examples.

Training and testing on this data unfortunately does not produce the expected improvements, with the
accuracy falling to 56%. We conclude that the nature of the training data is vital to the performance of
the system: in complex tasks like content word ED, automatically generated examples are no substitute
for real human errors, and the subtle semantic phenomena occurring in learners’ writing cannot be easily
reproduced. The absence of clear confusion sets for content word errors makes the task of error gener-
ation particularly arduous. The erroneous calling on the classical phone is a case in point, showing that
a wrong use of classical does not necessarily derive from a confusion with classic: the speaker prob-
ably meant landline. Such cases show that the diversity of content words errors makes artificial error
generation less viable than for function words, and illustrates the value of ‘real’, annotated learner data.

7 Conclusion

We have investigated the linguistic felicity of AN phrases through the lens of distributional topic coher-
ence and conclude by showing how this work can inform future research on content word ED.

First, we showed that using topic coherence features to model context leads to accuracy figures that are
competitive with previously reported results (K&B). Framing ED in terms of coherence is linguistically
sensible and computationally efficient. There are benefits in using OOC and IC systems in a pipeline
architecture, but this relies on the OOC system having good enough recall.

Second, we found that per-adjective classification could in principle approach human-like perfor-
mance. However, proper training and evaluation requires a larger dataset than is currently available.
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Thirdly, we investigated the automatic creation of training data. Our experiments demonstrated that
real learners’ data cannot be easily substituted: in contrast with function words, content words are not
naturally associated with clear confusion sets which might guide data generation.

In further work, we would like to pursue our investigation of the linguistic factors that govern certain
types of errors. One interesting avenue would be to research the influence of the learner’s L1 language
on the observed semantic mistakes: we could imagine, for instance, that some systematicity could be
captured in the effects of polysemy across languages (e.g. heavy might be more—or at least differently—
polysemous in English compared to the learner’s L1).

We will also concentrate on the expansion of the available dataset in a controlled fashion, ensuring
that enough data is supplied for individual adjective training and testing. Whilst our results on error
generation indicate that automatic methods may not be suited to the task, more sophisticated procedures
could be tried out. For instance, it is conceivable that a distributional analysis of a (non-annotated)
learners’ corpus would highlight certain systematic errors which would be replicable on a larger scale.
With more training data available, another interesting avenue would be to further explore adjective-
dependent classification approaches and adjective category formation.
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