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Abstract

This paper presents a new memory-bounded left-corner parsing model for unsupervised raw-text
syntax induction, using unsupervised hierarchical hidden Markov models (UHHMM). We deploy
this algorithm to shed light on the extent to which human language learners can discover hierar-
chical syntax through distributional statistics alone, by modeling two widely-accepted features of
human language acquisition and sentence processing that have not been simultaneously modeled
by any existing grammar induction algorithm: (1) a left-corner parsing strategy and (2) limited
working memory capacity. To model realistic input to human language learners, we evaluate our
system on a corpus of child-directed speech rather than typical newswire corpora. Results beat
or closely match those of three competing systems.

1 Introduction

The success of statistical grammar induction systems (Klein and Manning, 2002; Seginer, 2007; Ponvert
et al., 2011; Christodoulopoulos et al., 2012) seems to suggest that sufficient statistical information is
available in language to allow grammar acquisition on this basis alone, as has been argued for word seg-
mentation (Saffran et al., 1999). But existing grammar induction systems make unrealistic assumptions
about human learners, such as the availability of part-of-speech information and access to an index-
addressable parser chart, which are not independently cognitively motivated. This paper explores the
possibility that a memory-limited incremental left-corner parser, of the sort independently motivated in
sentence processing theories (Gibson, 1991; Lewis and Vasishth, 2005), can still acquire grammar by
exploiting statistical information in child-directed speech.

2 Related Work

This paper bridges work on human sentence processing and syntax acquisition on the one hand and
unsupervised grammar induction (raw-text parsing) on the other. We discuss relevant literature from
each of these areas in the remainder of this section.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/
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2.1 Human sentence processing and syntax acquisition

Related work in psycholinguistics and cognitive psychology has provided evidence that humans have
a limited ability to store and retrieve structures from working memory (Miller, 1956; Cowan, 2001;
McElree, 2001), and may therefore employ a left-corner-like strategy during incremental sentence pro-
cessing (Johnson-Laird, 1983; Abney and Johnson, 1991; Gibson, 1991; Resnik, 1992; Stabler, 1994;
Lewis and Vasishth, 2005). Schuler et al. (2010) show that nearly all naturally-occurring sentences can
be parsed using no more than four disjoint derivation fragments in a left-corner parser, suggesting that
general-purpose working memory resources are all that is needed to account for information storage and
retrieval during online sentence processing. These findings motivate our left-corner parsing strategy and
depth-bounded memory store.

An extensive literature indicates that memory abilities develop with age (see e.g. Gathercole, 1998 for
a review). Newport (1990) proposed that limited processing abilities actually facilitate language acquisi-
tion by constraining the hypothesis space (the ‘less-is-more’ hypothesis). This theory has been supported
by a number of subsequent computational and laboratory studies (e.g, Elman, 1993; Goldowski & New-
port, 1993; Kareev et al., 1997) and parallels similar developments in the ‘curriculum learning’ training
regimen for machine learning (Bengio et al., 2009).1 Research on the acquisition of syntax has shown
that infants are sensitive to syntactic structure (Newport et al., 1977; Seidl et al., 2003) and that memory
limitations constrain the learning of syntactic dependencies (Santelman and Jusczyk, 1998). Together,
these results suggest both (1) that the memory constraints in infants and young children are even more
extreme than those attested for adults and (2) that these constraints impact – and may even facilitate
– learning. By implementing these constraints in a domain-general computational model, we can ex-
plore the extent to which human learners might exploit distributional statistics during syntax acquisition
(Lappin and Shieber, 2007).

2.2 Unsupervised grammar induction

The process of grammar induction learns the syntactic structure of a language from a sample of un-
labeled text, rather than a gold-standard treebank. The constituent context model (CCM) (Klein and
Manning, 2002) uses expectation-maximization (EM) to learn differences between observed and unob-
served bracketings, and the dependency model with valence (DMV) (Klein and Manning, 2004) uses EM
to learn distributions that generate child dependencies, conditioned on valence (left or right direction) in
addition to the lexical head. Both of these algorithms induce on gold part-of-speech tag sequences.

A number of successful unsupervised raw-text syntax induction systems also exist. Seginer (2007)
(CCL) uses a non-probabilistic scoring system and a dependency-like syntactic representation to bracket
raw-text input. Ponvert et al. (2011) (UPPARSE) use a cascade of hidden Markov model (HMM)
chunkers for unsupervised raw-text parsing. Christodoulopoulos et al. (2012) (BMMM+DMV) induce
part-of-speech (PoS) tags from raw text using the Bayesian multinomial mixture model (BMMM) of
Christodoulopoulos et al. (2011), induce dependencies from those tags using DMV, and iteratively re-tag
and reparse using the induced dependencies as features in the tagging process. In contrast to ours, none
of these systems employ a left-corner parsing strategy or model working memory limitations.

3 Methods

Experiments described in this paper use a memory-bounded probabilistic sequence model implementa-
tion of a left-corner parser (Aho and Ullman, 1972; van Schijndel et al., 2013) to determine whether
natural language grammar can be acquired on the basis of statistics in transcribed speech within human-
like memory constraints. The model assumes access to episodic memories of training sentences, but
imposes constraints on working memory usage during sentence processing. The core innovation of this
paper is the adaptation of this processing model to Bayesian unsupervised induction using constrained
priors.

1The ‘less-is-more’ hypothesis has been a subject of controversy, however. See e.g. Rohde and Plaut (2003) for a critical
review.
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Figure 1: Trees and partial analyses for the sentence ‘We’ll get you another one’, taken from the training
corpus. Derivation fragments are shown vertically stacked between words, using ‘/’ to delimit top and
bottom signs.

3.1 Left-corner parsing
Left-corner parsing is attractive as a sentence processing model because it maintains a very small number
of disjoint derivation fragments during processing (Schuler et al., 2010), in keeping with human work-
ing memory limitations (Miller, 1956; Cowan, 2001; McElree, 2001), and correctly predicts difficulty
in recognizing center-embedded, but not left- or right-embedded structures (Chomsky and Miller, 1963;
Miller and Isard, 1964; Karlsson, 2007). A left-corner parser maintains a sequence of derivation frag-
ments a/b, a′/b′, . . . , each consisting of an active category a lacking an awaited category b yet to come.
It incrementally assembles trees by forking off and joining up these derivation fragments, using a pair of
binary decisions about whether to use a word w to start a new derivation fragment (initially a complete
category c):2

a/b w
a/b c

b
+→ c ... ; c→ w (F=1)

a/b w
c

a = c; b→ w (F=0)

and whether to use a grammatical inference rule to connect a complete category c to a previously disjoint
derivation fragment a/b:

a/b c
a/b′ b→ c b′ (J=1)

a/b c
a/b a′/b′ b

+→ a′ ... ; a′ → c b′ (J=0)

These two binary decisions have four possible outcomes in total: the parser can fork only (which in-
creases the number of derivation fragments by one), join only (which decreases the number of derivation
fragments by one), both fork and join (which keeps the number of derivation fragments the same), or
neither fork nor join (which also preserves the number of derivation fragments).

An example derivation of the sentence ‘We’ll get you another one,’ in shown in Figure 1.

3.2 Probabilistic sequence model
A left-corner parser can be modeled as a probabilistic sequence model using hidden random variables at
every time step for Active categories A, Awaited categories B, Preterminal or part-of-speech (POS) tags
P, and an observed random variable W over Words. The model also makes use of two binary switching

2Here, b
+→ c ... constrains c to be a leftmost descendant of b at some depth.
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variables at each time step, F (for Fork) and J (for Join) that guide the transitions of the other states.
These two binary switching variables yield four cases: 1/1, 1/0, 0/1 and 0/0 at each time step.

Let D be the depth of the memory store at position t in the sequence, and let the state q1..D
t be the

stack of derivation fragments at t, consisting of one active category ad
t and one awaited category bd

t at
each depth d. The joint probability of the hidden state q1..D

t and observed word wt, given their previous
context, are defined using Markov independence assumptions and the fork-join variable decomposition
of van Schijndel et al. (2013), which preserves PCFG probabilities in incremental sentence processing:

P(q1..D
t wt | q1..D

1..t−1 w1..t−1) = P(q1..D
t wt | q1..D

t−1 ) (1)
def
= P(pt wt ft jt a1..D

t b1..D
t | q1..D

t−1 ) (2)

= PθP(pt | q1..D
t−1 ) ·

PθW (wt | q1..D
t−1 pt) ·

PθF ( ft | q1..D
t−1 pt wt) ·

PθJ ( jt | q1..D
t−1 pt wt ft) ·

PθA(a1..D
t | q1..D

t−1 pt wt ft jt) ·
PθB(b1..D

t | q1..D
t−1 pt wt ft jt a1..D

t ) (3)

The part-of-speech pt only depends on the lowest awaited (bd
t−1) category at the previous time step,

where d is the depth of the stack at the previous time step and q⊥ is an empty derivation fragment:

PθP(pt | q1..D
t−1 ) def

= PθP(pt | d bd
t−1); d =max

d′
{qd′

t−1,q⊥} (4)

The lexical item (wt) only depends on the part of speech tag (pt) at the same time step:

PθW (wt | q1..D
t−1 pt)

def
= PθW (wt | pt) (5)

The fork decision ft is assumed to be independent of previous state q1..D
t−1 variables except for the previous

lowest awaited category bd
t−1 and part of speech tag pt:

PθF ( ft | q1..D
t−1 pt wt)

def
= PθF ( ft | d bd

t−1 pt); d =max
d′
{qd′

t−1,q⊥} (6)

The join decision jt is decomposed into fork and no-fork cases depending on the outcomes of the fork
decision:

PθJ ( jt | q1..D
t−1 ft pt wt)

def
=

PθJ ( jt | d ad
t−1 bd−1

t−1 ); d =maxd′{qd′
t−1,q⊥} if ft =0

PθJ ( jt | d pt bd
t−1); d =maxd′{qd′

t−1,q⊥} if ft =1
(7)

When ft=1, that is, a fork has been created, the decision of jt is whether to immediately integrate the
newly forked derivation fragment and transition the awaited category above it ( jt=1) or keep the newly
forked derivation fragment ( jt=0). When ft=0, that is, no fork has been created, the decision of jt
is whether to reduce a stack level ( jt=1) or to transition both the active and awaited categories at the
current level ( jt=0).

Decisions about the active categories a1..D
t are decomposed into fork- and join-specific cases depending

on the previous state q1..D
t−1 and the current preterminal pt. Since the fork and join outcomes only allow

a single derivation fragment to be initiated or integrated, each case of the active category model only
nondeterministically modifies at most one ad

t variable from the previous time step:3

PθA(a1..D
t | q1..D

t−1 ft pt wt jt)
def
=

~a1..d−2
t =a1..d−2

t−1 � · ~ad−1
t =ad−1

t−1 � · ~ad+0..D
t =a⊥�; d =maxd′{qd′

t−1,q⊥} if ft =0, jt =1
~a1..d−1

t =a1..d−1
t−1 � · PθA(ad

t | d bd−1
t−1 ad

t−1) · ~ad+1..D
t =a⊥�; d =maxd′{qd′

t−1,q⊥} if ft =0, jt =0
~a1..d−1

t =a1..d−1
t−1 � · ~ad

t =ad
t−1� · ~ad+1..D

t =a⊥�; d =maxd′{qd′
t−1,q⊥} if ft =1, jt =1

~a1..d−0
t =a1..d−0

t−1 � · PθA(ad+1
t | d bd

t−1 pt) · ~ad+2..D
t =a⊥�; d =maxd′{qd′

t−1,q⊥} if ft =1, jt =0

(8)

3Here ~φ� is a (deterministic) indicator function, equal to one when φ is true and zero otherwise.
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Figure 2: Graphical representation of probabilistic left-corner parsing model expressed in Equations 6–9
across two time steps, with D = 2.

Decisions about the awaited categories b1..D
t also depend on the outcome of the fork and join variables.

Again, since the fork and join outcomes only allow a single derivation fragment to be initiated or in-
tegrated, each case of the awaited category model only nondeterministically modifies at most one bd

t
variable from the previous time step:

PθB(b1..D
t | q1..D

t−1 ft pt wt jt a1..D
t ) def

=
~b1..d−2

t =b1..d−2
t−1 � · PθB(bd−1

t | d bd−1
t−1 ad

t−1) · ~bd+0..D
t =b⊥�; d =maxd′{qd′

t−1,q⊥} if ft =0, jt =1
~b1..d−1

t =b1..d−1
t−1 � · PθB(bd

t | d ad
t ad

t−1) · ~bd+1..D
t =b⊥�; d =maxd′{qd′

t−1,q⊥} if ft =0, jt =0
~b1..d−1

t =b1..d−1
t−1 � · PθB(bd

t | d bd
t−1 pt) · ~bd+1..D

t =b⊥�; d =maxd′{qd′
t−1,q⊥} if ft =1, jt =1

~b1..d−0
t =b1..d−0

t−1 � · PθB(bd+1
t | d ad+1

t pt) · ~bd+2..D
t =b⊥�; d =maxd′{qd′

t−1,q⊥} if ft =1, jt =0

(9)

Thus, the parser has a fixed number of probabilistic decisions to make as it encounters each word, re-
gardless of the depth of the stack. A graphical representation of this model is shown in Figure 2.

3.3 Model priors

Induction in this model follows the approach of Van Gael et al. (2008) by applying nonparametric priors
over the active, awaited, and part-of-speech variables. This approach allows the model to learn not
only the parameters of the model—such as what parts of speech are likely to be created from what
awaited categories—but also the cardinality of how many active, awaited, and part of speech categories
are present, in a fully unsupervised fashion. No labels are needed for inference, which alternates between
inferring these unseen categories and the associated model parameters.

The probabilistic sequence model defined above, augmented with priors, can be repeatedly sampled
to obtain an estimate of the posterior distribution of its hidden variables given a set of observed word
sequences. Priors over the syntactic models are based on the infinite hidden Markov model (iHMM)
used for part-of-speech tagging (van Gael et al., 2009). In that model, a hierarchical Dirichlet process
HMM (Teh et al., 2006) is used to allow the observed number of states—corresponding to parts of
speech—in the HMM to grow as the data requires. The hierarchical structure of the iHMM ensures that
transition distributions share the same set of states, which would not be possible if we used a flat infinite
mixture model.

A fully infinite version of this model uses nonparametric priors on each of the active, awaited, and
part-of-speech variables, allowing the cardinality of each of these variables to grow as the data requires.
Each model draws a base distribution from a root Dirichlet process, which is then used as a parameter
to an infinite set of Dirichlet processes, one each for each applicable combination of the conditioning
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variables at−1, bt−1, pt−1, jt, ft, at, and bt:

βA ∼ GEM(γA) (10)

PθA(ad
t | d bd−1

t−1 ad
t−1) ∼ DP(αA, βA) (11)

PθA(ad+1
t | d bd

t−1 pt) ∼ DP(αA, βA) (12)

βB ∼ GEM(γB) (13)

PθB(bd−1
t | d bd−1

t−1 ad−1
t−1 ) ∼ DP(αB, βB) (14)

PθB(bd
t | d ad

t ad
t−1) ∼ DP(αB, βB) (15)

PθB(bd
t | d bd

t−1 pt) ∼ DP(αB, βB) (16)

PθB(bd+1
t | d ad+1

t pt) ∼ DP(αB, βB) (17)

βP ∼ GEM(γP) (18)

PθP(pt | d bd
t−1) ∼ DP(αP, βP) (19)

where DP is Dirichlet process and GEM is the stick-breaking construction for DPs (Sethuraman, 1994).
Models at depth greater than one use the corresponding model at the previous depth as a prior.

3.4 Inference
Inference is based on the beam sampling approach employed in van Gael et al. (2009) for part-of-speech
induction. This inference approach alternates between two phases in each iteration. First, given the
distributions θF , θJ , θA, θB, θP, and θW , the model resamples values for all the hidden states {qd

t , pt}.
Next, given the state values {qd

t , pt}, it resamples each set of multinomial distributions θF , θJ , θA, θB, θP,
and θW . The sampler is initialized by conservatively setting the cardinalities of the number of active,
awaited, and part-of-speech states we expect to see in the data set, randomly initializing the state space,
and then sampling the parameters for each distribution θF , θJ , θA, θB, θP, and θW given the randomly
initialized states and fixed hyperparameters.

As noted by Van Gael et al. (2008), token-level Gibbs sampling in a sequence model can be slow to
mix. Preliminary work found that mixing with token-level Gibbs sampling is even slower in this model
due to the tight constraints imposed by the switching variables—it is technically ergodic but exploring
the state space requires many low probability moves. Therefore, the experiments described in this paper
use sentence-level sampling instead of token-level sampling, first computing forward probabilities for the
sequence and then doing sampling in a backwards pass; resampling the parameters for the probability
distributions only requires computing the counts from the sampled sequence and combining with the
hyperparameters. To account for the infinite size of the state spaces, these experiments employ the beam
sampler (Van Gael et al., 2008), with some modifications for computational speed.

The standard beam sampler introduces an auxiliary variable u at each time step, which acts as a
threshold below which transition probabilities are ignored. This auxiliary variable u is drawn from
Uniform(0, p(q1..D

t |q1..D
t−1 )), so it will be between 0 and the probability of the previously sampled tran-

sition. The joint distribution over transitions, emissions, and auxiliary variables can be reduced so that
the transition matrix is transformed into a boolean matrix with a 1 indicating an allowed transition. De-
pending on the cut-off value u, the size of the instantiated transition matrix will be different for every
time-step.

Values of u can be sampled for active, awaited, and POS variables at every time step, rather than a
single u for the transition matrix. It is possible to compile all the operations at each time step into a
single large transition matrix, but computing this matrix is prohibitively slow for an operation that must
be done at each time step in the data.

To address this issue, the learner may interleave several iterations holding the cardinality of the instan-
tiated space fixed with full beam-sampling steps in which the cardinality of the state space can change.
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Figure 3: Log Probability (with punc) Figure 4: F-Score (with punc)

Figure 5: Depth=2 Frequency (with punc)

When the cardinality of the state space is fixed, the learner can multiply out the states into one large,
structured transition matrix that is valid for all time steps. The forward pass is thus reduced to an HMM
forward pass (albeit one over a much larger set of states), vastly improving the speed of inference. Al-
ternating between sampling the parameters of this matrix and the state values themselves corresponds to
updating a finite portion of the infinite possible state space; by interleaving these finite steps with occa-
sional full beam-sampling iterations, the learner is still properly exploring the posterior over models.

3.5 Parsing
There are multiple ways to extract parses from an unsupervised grammar induction system such as this.
The optimal Bayesian approach would involve averaging over the values sampled for each model across
many iterations, and then use those models in a Viterbi decoding parser to find the best parse for each
sentence. Alternatively, if the model parameters have ceased to change much between iterations, the
learner can be assumed to have found a local optimum. It can then use a single sample from the end of
the run as its model and the analyses of each sentence in that run as the parses to be evaluated. This latter
method is used in the experiments described below.

4 Experimental Setup

We ran the UHHMM learner for 4,000 iterations on the approximately 14,500 child-directed utterances of
the Eve section of the Brown corpus from the CHILDES database (MacWhinney, 2000).4 To model the
limited memory capacity of young language learners, we restricted the depth of the store of derivation
fragments to two.5 The input sentences were tokenized following the Penn Treebank convention and
converted to lower case. Punctuation was initially left in the input as a proxy for intonational phrasal
cues (Seginer, 2007; Ponvert et al., 2011), then removed in a follow-up experiment.

4We used 4 active states; 4 awaited states; 8 parts of speech; and parameter values 0.5 for αa, αb, and αc, and 1.0 for α f , α j,
and γ. The burnin period was 50 iterations.

5This limited stack depth permits discovery of interesting syntactic features – like subject-aux inversion – while modeling
the severe memory limitations of infants (see §2.1). Greater depths are likely unnecessary to parse child-directed input (e.g.,
Newport et al., 1977).
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With punc No punc
P R F1 P R F1

UPPARSE 60.50 51.96 55.90 38.17 48.38 42.67
CCL 64.70 53.47 58.55 56.87 47.69 51.88

BMMM+DMV (directed) 62.08 62.51 62.30 61.01 59.24 60.14
BMMM+DMV (undirected) 63.63 64.02 63.82 61.34 59.33 60.32

UHHMM-4000, binary 46.68 58.28 51.84 37.62 46.97 41.78
UHHMM-4000, flattened 68.83 57.18 62.47 61.78 45.52 52.42

Right-branching 68.73 85.81 76.33 68.73 85.81 76.33

Table 1: Parsing accuracy on Eve with and without punctuation (phrasal cues) in the input. The UHHMM
systems were given 8 PoS categories while the BMMM+DMV systems were given 45. UPPARSE and
CCL do not learn PoS tags. Only the UHHMM systems model limited working memory capacity or
incremental left-corner parsing.

To generate accuracy benchmarks, we parsed the same data set using the three competing raw-
text induction systems discussed in §2: CCL (Seginer, 2007), UPPARSE (Ponvert et al., 2011),6

and both directed and undirected variants of BMMM+DMV (Christodoulopoulos et al., 2012).7 The
BMMM+DMV system generates dependency graphs which are not directly comparable to our phrase-
structure output, so we used the algorithm of Collins et al. (1999) to convert the BMMM+DMV output
to the flattest phrase structure trees permitted by the dependency graphs.

We evaluated accuracy against hand-corrected gold-standard Penn Treebank-style annotations for Eve
(Pearl and Sprouse, 2013). All evaluations were of unlabeled bracketings with punctuation removed.8

Accuracy results reported for our system are extracted from arbitrary samples taken after convergence
had been reached: iteration 4000 for the with-punc model, and iteration 1500 for the no-punc model (see
Figures 3 and 6, respectively).

5 Results

Figures 3, 4, and 5 show (respectively) log probability, f-score, and depth=2 frequency by iteration for
the UHHMM trained on data containing punctuation. As the figures show, the model remains effectively
depth 1 until around iteration 3000, at which point it discovers depth 2, rapidly overgeneralizes it, then
scales back to around 350 uses over the entire corpus. Around this time, parsing accuracy drops con-
siderably. This result is consistent with the ‘less-is-more’ hypothesis (Newport, 1990), since accuracy
decreases near the point when the number of plausible hypotheses suddenly grows. In our system, we
believe this is because the model reallocates probability mass to deeper parses. Nonetheless, as we show
below, final results are state of the art.

We sampled parses from iteration 4000 of our learner for evaluation. As shown in Table 1, initial
accuracy measures are worse than all four competitors. However, our system generates exclusively
binary-branching output, while all competitors can produce the higher arity trees attested in the PTB-like
evaluation standard (notice that our recall measure for the binary branching output beats both CCL and
UPPARSE). To correct this disadvantage, we flattened the UHHMM output by first converting binary
trees to dependencies using a heuristic that selects for each parent the most frequently co-occurring
child category as the head, then converting these dependencies back into phrase structures using the
Collins et al. (1999) algorithm. As shown in Table 1, recall remains approximately the same while
precision predictably improves, resulting in higher overall F-measures that beat or closely match those
of all competing systems.9

6Using the best cascaded parser settings from that work: probabilistic right-linear grammar with uniform initialization.
7We ran both variants of the BMMM+DMV system for 10 generations, with 500 iterations of BMMM and 20 EM iterations

of DMV per generation, as was done by Christodoulopoulos et al. (2012).
8Note that while punctuation was removed for all evaluations, inclusion/removal of punctuation in the training data was an

independent variable in our experiment.
9It happens to be the case that these child-directed sentences are heavily right-branching, likely due to the simplicity and
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Figure 6: Log Probability (no punc) Figure 7: F-Score (no punc)

Figure 8: Depth=2 Frequency (no punc)

Figures 6, 7, and 8 show (respectively) log probability, f-score, and depth=2 frequency by iteration for
the UHHMM trained on data containing no punctuation. Somewhat surprisingly, the model discovers
depth 2 and converges much more quickly than it did for the with-punc corpus, requiring fewer than
1000 iterations to converge. This is possibly due to the slight reduction in corpus size. As in the case
of the with-punc trained learner, once depth 2 is discovered, the system quickly overgeneralizes, then
converges in a consistent range (in this case around 250 uses of depth 2).

To evaluate accuracy on the punctuation-free data, we sampled parses from iteration 1500 of our
learner. Results are given in Table 1. Binary UHHMM results are on par with UPPARSE, worse than
CCL, and considerably worse than BMMM+DMV, while flattened UHHMM results show higher overall
F-measures than both CCL and UPPARSE. BMMM+DMV suffers less in the absence of punctuation
than the other systems (and therefore generally provides the best induction results on no-punc). The
large drop in UHHMM accuracy with the removal of punctuation provides weak evidence for the use of
intonational phrasal cues in human syntax acquisition.

While the BMMM+DMV results are on par with ours, it is important to note that we used a severely
restricted number of categories in order to improve computational efficiency. For example, our system
was given 8 PoS tags to work with, while BMMM+DMV was given 45. Finer grained state spaces in a
more efficient implementation of our learner will hopefully improve upon the results presented here.

Finally, it is interesting to observe that the uses of depth 2 shown in Figures 5 and 8 are in general
linguistically well-motivated. They tend to occur in subject-auxiliary inversion, ditransitive, and contrac-
tion constructions, in which depth 2 is often necessary in order to bracket auxiliary+subject, verb+object,
and verb+contraction together, as illustrated in Figure 9. Unfortunately, due to the flat representation of
these constructions in the gold standard trees, this insight on the part of our learner is not reflected in the
accuracy measures in Table 1.

short length of child-directed utterances, and therefore the right-branching baseline (RB) outperforms all systems by a wide
margin on this corpus. However, we argue that such utterances are a more realistic model of input to human language learners
than newswire text, and therefore preferable for evaluation of systems that purport to model human language acquisition. Our
system learns this directional bias from data, and does so at least as successfully as its competitors.
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1. Subject-auxiliary inversion:
ACT4

AWA2

AWA1

AWA4

AWA2

AWA1

AWA4

POS8

?
POS3

step

POS6

the

POS8

on

POS3

still

ACT4

POS1

rangy
POS7

is

POS8

,

POS2

oh

2. Ditransitive:
ACT1

AWA3

AWA1

AWA4

AWA4

POS8

.
POS3

one

POS6

another

ACT4

POS5

you
POS7

get

POS7

’ll

POS1

we

3. Contraction:
ACT4

POS8

?
ACT2

AWA2

AWA1

POS5

it
ACT1

POS5

n’t
POS7

is

POS8

,

ACT2

AWA4

AWA4

POS3

picture
POS6

pretty

POS6

a

ACT1

POS7

’s
POS1

that

Figure 9: Actual parses from UHHMM-4000 (with punctuation), illustrating the use of depth 2 (bold)
for subject-aux inversion, ditransitives, and contractions.

6 Conclusion

This paper presented a grammar induction sytem that models the working memory limitations of young
language learners and employs a cognitively plausible left-corner incremental parsing strategy, in contrast
to existing raw-text induction systems. The fact that our system can model these aspects of human
language acquisition and sentence processing while achieving the competitive results shown here on
a corpus of child-directed speech indicates that humans can in principle learn a good deal of natural
language syntax from distributional statistics alone. It also shows that modeling cognition more closely
can match or improve on existing approaches to the task of raw-text grammar induction.

In future research, we intend to make use of parallel processing techniques to increase the speed of
inference and (1) allow the system to infer the optimal number of states in each component of the model,
permitting additional granularity that might enable it to discover subtler patterns than is possible with our
currently-restricted state inventories, and (2) allow the system to make use of depths 3 and 4, modeling
working memory capacities of older learners.
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